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Flexural strength was monitored and predicted on the application improv-
ing concrete strength with wood and fly as partial replacement for cement. 
The study observed the pressure from the constituent of these locally 
sourced material that has been observed from the study to influence the 
flexural strength through the effect from this locally sourced addictives. 
The study monitors concrete porosity on heterogeneity as it reflect on the 
flexural strength of self compacting concrete. Other condition considered 
was the compaction and placement of concrete. These effects were moni-
tored at constant water cement ratio from design mix. The behaviour from 
this effects on the concrete observed the rate of flexural growth under the 
influences of these stated conditions. The simulation expressed the reac-
tions of these effects through these parameters monitored to influence the 
system. Numerical simulations were also applied to the optimum curing 
age of twenty eight days, while analytical simulation was also applied. 
This concept is the conventional seven days interval that concrete curing 
were observed, these are improvement done on the study carried out by 
experts [16]. These locally sourced material were experimentally applied. 
The simulation predictive values are at the interval of seven days of 
curing, which was also simulated. The predictive values were compared 
with the experimental values of the researchers [16], and both values de-
veloped best fits correlations. The study is imperative because the system 
considered the parameters used on experimental and observed other influ-
ential variables that were not examined. These were not observed in the 
experimental procedure. Experts in concrete engineering will definitely 
find these concept a better option in monitoring flexural strength of self 
compacting concrete in general.
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1. Introduction

There has been the exhibition of mechanical properties 

on High-Strength Concrete (HSC), two groups on these 

properties can be separated as short terms, known to be 
mechanical properties, and long-term mechanical prop-
erties. The stress strain from concrete on HSC are funda-
mentals that determine design model, it also includes the 
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behaviour of the materials parameters, aggregates type are 
included through experimental values such as curing age 
at testing, the strain rate includes other level of interaction 
between the specimen and testing machine. The stress-
strain model that is applied for NSC cannot be lengthy 
when it applied for HSC; it is observed from basis of 
loading curve that will definitely change it significantly 
[12,13,14,15]. Researchers through studies carried out have 
express the rising of steeper that observed sudden drop 
in strength after attaining a maximum value; this concept 
was developed from present numerical modeling on con-
crete stress-strain behaviour of HSC. [1,2,3] The study has 
recommended that HSC performs like a real composite 
material; it’s also equivalents of stress-strain that can be 
drawn to the applied developed concept in rock mechanic 
[5,6,7]. [9] observed that it is observed to experienced less in-
ternal microcracking in HSC. This implies that it is more 
than that of NSC for the same axial strain imposed. It has 
been observed that HSC experience a smaller amount 
lateral strain, and consequently it has a level of efficiency 
internment on compressive strength. HSC is limited com-
pared to that of NSC. Water cement ratios reduction [w/
c] experienced increases the strength of concrete using 
locally 3/8 all-one aggregate [10]. Nevertheless, hydrated 
cement strength is low if it is associated with the strength 
of coarse aggregates. The Comparison carried out be-
tween it very important that strength and quality of coarse 
aggregates should increase, more so together with other 
factors. Typically, w/c ratios between 0.2- 0.4 are applied 
for HSC. Meanwhile it is observed that Low w/c ratio 
decreases its workability. [12,14,15,16] evaluates the influence 
of silica fume on strength development of HSC coring 
age between 7 to 28 days after mixing. Compressive 
strength measured on HSC is determined based on test-
ing variables, which includes mold type, specimen size, 
end conditions and strain rate. 4×8 in. (102×204 mm), it 
also involves cylinder specimens that have been shown 
to generate (ACI, 2010). ACI-318 (ACI, 2011), it also 
defines the secant modulus of elasticity based on the ratio 
of stress and strain at 40% of the compressive strength. 
As strength of concrete experience increases, its modulus 
of elasticity also observed an increases, while Poisson’s 
ratio is not affected by compressive strength, this could be 
through curing method age of concrete [5,6,8,10,12].

2. Theoretical Background
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Substituting equation (1.2) and (1.3) into equation (1.1) 
we have that
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tegrating both sides we have
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tituting equation (1.2) into equation (1.13) we have
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3. Materials and Method 

3.1 Flexural and Tensile Strength

Concrete has relatively high compressive strength in 
the range of 10 to 50 Nmm2 and 60 to 120 Nmm2 for high 
strength concrete. Tensile strength significantly low con-
stitutes about 10% of the compressive strength (Neville & 
Brooks, 1996; Popovics, 1998).

Flexural test is done to find out the tensile strength of 
concrete. A typical set up recommended by British Stan-
dard is illustrated in Figure 1.

25mm

d

F

25mm

L/3 L/3 L/3

Specimen

Figure 1. Flexural Beam Test Set-ups
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From mechanics of materials and analysis of Figure 1, 
maximum tensile stress is expected to occur at the bottom 
of the constant moment region within which pure bending 
occurs. The modulus of rapture can be calculated as:

2tb
FLf
bd

=   3.1

Where L= Span of specimen beam
   F= maximum applied loads
   b= breadth of beam
   d= depth of beam
Other method used in determining the tensile strength 

of concrete is the indirect tension test (split cylinder test or 
Brazilian test) BS 1881: Part 117:1983 and ASTM C496-
71. As recommended in these standards, the splitting test 
is done by applying compression loads at a loading rate 
0.0112 to 0.0231 MPa/s along two axial lines that are dia-
metrically opposite on a specimen 150 x 300 mm cylinder.

4. Results and Discussion 

Predictive from Derive model Simulation and Exper-
imental Values of Flexure Strength are in Graphical Pre-
sentation and Tables.

Table 1. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age Predictive Values of 
Flexural   Strength

Experimental Values of 
Flexural Strength

7 7.290147108 7.203

8 7.304122385 7.226

9 7.318276351 7.249

10 7.33261129 7.272

11 7.347129516 7.295

12 7.361833373 7.318

13 7.376725235 7.341

14 7.391807504 7.364

15 7.407082616 7.387

16 7.422553037 7.41

17 7.438221263 7.433

18 7.454089823 7.456

19 7.47016128 7.479

20 7.486438228 7.502

21 7.502923293 7.525

22 7.519619138 7.548

23 7.536528456 7.571

24 7.553653977 7.594

25 7.570998467 7.617

26 7.588564724 7.64

27 7.606355584 7.663

28 7.624373919 7.686

Table 2. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age
Predictive Values of 

Flexural   Strength[W/
C-0.35]

Experimental Values of 
Flexural Strength [W/C-0.35 

7 7.009346574 6.999

8 7.02154282 7.012

9 7.033876586 7.025

10 7.046349423 7.038

11 7.058962898 7.051

12 7.071718598 7.064

13 7.084618126 7.077

14 7.097663104 7.09

15 7.110855171 7.103

16 7.124195987 7.116

17 7.137687229 7.129

18 7.151330593 7.142

19 7.165127793 7.155

20 7.179080565 7.168

21 7.193190663 7.181

22 7.207459861 7.194

23 7.221889953 7.207

24 7.236482752 7.22

25 7.251240094 7.233

26 7.266163834 7.246

27 7.281255848 7.259

28 7.296518033 7.272

Table 3. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age Predictive Values of 
Flexural   Strength

Experimental Values of 
Flexural Strength 

7 7.025133782 7.525

14 7.992358786 7.952

21 8.091346222 8.281

28 8.392420249 8.432

Table 4. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age
Predictive Values of 

Flexural   Strength [W/
C-0.35]

Experimental Values of Flex-
ural Strength [W/C-0.35]

7 7.199053635 7.029

14 7.506583612 7.505

21 7.829833947 7.981

28 8.36704706 8.454

DOI: https://doi.org/10.30564/jbms.v2i2.2948
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Table 5. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age Predictive Values of 
Flexural Strength

Experimental Values of 
Flexural Strength

7 7.878527419 7.87441
8 7.891488403 7.88676
9 7.904603993 7.89929
10 7.917876033 7.912
11 7.93130639 7.92489
12 7.944896953 7.93796
13 7.958649631 7.95121
14 7.97256636 7.96464
15 7.986649095 7.97825
16 8.000899817 7.99204
17 8.015320531 8.00601
18 8.029913263 8.02016
19 8.044680066 8.03449
20 8.059623015 8.049
21 8.074744214 8.06369
22 8.090045786 8.07856
23 8.105529885 8.09361
24 8.121198687 8.10884
25 8.137054395 8.12425
26 8.15309924 8.13984
27 8.169335477 8.15561
28 8.18576539 8.17156

Table 6. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age
Predictive Values of 

Flexural   Strength [W/
C-0.35]

Experimental Values of 
Flexural Strength [W/

C-0.35

7 7.86456235 7.85794
8 7.875352825 7.86784
9 7.886251855 7.87786
10 7.897260532 7.888
11 7.908379959 7.89826
12 7.91961125 7.90864
13 7.930955532 7.91914
14 7.942413939 7.92976
15 7.953987622 7.9405
16 7.965677739 7.95136
17 7.977485461 7.96234
18 7.989411973 7.97344
19 8.001458468 7.98466
20 8.013626154 7.996
21 8.02591625 8.00746
22 8.038329989 8.01904
23 8.050868612 8.03074
24 8.063533378 8.04256
25 8.076325554 8.0545
26 8.089246423 8.06656
27 8.10229728 8.07874
28 8.115479431 8.09104

Table 7. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age Predictive Values of 
Flexural   Strength

Experimental Values of 
Flexural Strength

7 7.075858436 7.044

14 7.424520654 7.382

21 8.176343921 8.068

28 8.393106863 8.334

Table 8. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age
Predictive Values of 
Flexural   Strength 

[W/C-0.35]

Experimental Values of Flex-
ural Strength [W/C-0.35]

7 6.833394616 7.65794

14 7.391165982 7.72976

21 8.337609706 8.00746

28 8.217817623 8.19704

Table 9. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age Predictive Values of 
Flexural   Strength

Experimental Values of 
Flexural Strength

7 6.888260628 6.881

8 6.904492123 6.895

9 6.920961562 6.909

10 6.937672434 6.923

11 6.954628276 6.937

12 6.971832682 6.951

13 6.989289294 6.965

14 7.007001809 6.979

15 7.02497398 6.993

16 7.043209612 7.007

17 7.061712568 7.021

18 7.080486766 7.035

19 7.099536182 7.049

20 7.118864852 7.063

21 7.138476869 7.077

22 7.158376387 7.091

23 7.178567619 7.105

24 7.199054843 7.119

25 7.219842398 7.133

26 7.240934686 7.147

27 7.262336175 7.161

28 7.284051397 7.175

DOI: https://doi.org/10.30564/jbms.v2i2.2948
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Table 10. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age
Predictive Values of 

Flexural Strength  [W/
C-0.35]

Experimental Values of 
Flexural Strength  [W/

C-0.35]

7 6.870820879 6.866

8 6.884291658 6.878

9 6.897928946 6.89

10 6.911734801 6.902

11 6.925711307 6.914

12 6.939860574 6.926

13 6.954184736 6.938

14 6.968685956 6.95

15 6.983366423 6.962

16 6.998228351 6.974

17 7.013273984 6.986

18 7.028505593 6.998

19 7.043925476 7.01

20 7.059535961 7.022

21 7.075339404 7.034

22 7.091338189 7.046

23 7.107534731 7.058

24 7.123931476 7.07

25 7.140530896 7.082

26 7.157335499 7.094

27 7.174347819 7.106

28 7.191570424 7.118

Table 11. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age Predictive Values of 
Flexural   Strength

Experimental Values of Flex-
ural Strength

7 6.239583526 6.237

14 6.613762412 6.447

21 7.815783049 7.574

28 8.341567593 8.366

Table 12. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

Curing Age
Predictive Values of 
Flexural   Strength 

[W/C-0.35]

Experimental Values of 
Flexural Strength [W/

C-0.35]

7 6.219641662 6.223

14 6.568781151 6.318

21 7.761391953 7.449

28 8.328009693 8.315
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Figure 8. Predictive and Experimental Values of Flexural 
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Figure 9. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age
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Figure 11. Predictive and Experimental Values of Flexural 
Strength at Different Curing Age

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

Pr
ed

ic
tiv

e 
an

d 
an

d 
E

xp
er

im
en

ta
l V

al
ue

s o
f 

Fl
ex

ur
al

 S
tr

en
gt

h

Curing Age

Predictive Values of Flexural   
Strength   
Experimental  Values of 
Flexural  Strength    

Figure 12. Predictive and Experimental Values of Flexur-
al Strength at Different Curing Age

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30

Pr
ed

ic
tiv

e 
an

d 
E

xp
er

im
en

ta
l V

al
ue

s o
f 

Fl
ex

ur
al

 S
tr

en
gt

h

Curing Age

Predictive Values of Flexural   
Strength [W/C-0.35]  
Experimental  Values of 
Flexural  Strength [W/C-0.35]   

Figure 13. Predictive and Experimental Values of Flexur-
al Strength at Different Curing Age

DOI: https://doi.org/10.30564/jbms.v2i2.2948



44

Journal of Building Material Science | Volume 02 | Issue 02 | December 2020

Distributed under creative commons license 4.0

Figure 2-13 explained the heterogeneous behaviour of 
flexural strength from concrete partially replace cement 
with wood and fly ash. The study observed linear growth 
rate from the numerical applied in some parts of the 
simulation, why some part of the figures expressed grad-
ual increase, and at a certain level sight increase on the 
growth rate were experienced. These were in accordance 
with the conventional growth rate of concrete. The study 
monitored the effects from other parameters that were ob-
served to reflect its reaction on the heterogeneous growth 
rate of the flexural strength. These parameters considered 
in the system simulation are porosities and compaction of 
concrete that generates the flexural strength. The study ob-
served the variation rate of influence on the growth rate of 
the flexural strength based on these factors. Constant wa-
ter cement ratios were applied on the simulation, and this 
were also monitored to see its heterogeneous reflection 
on flexural strength. The derived model were simulated, 
examined and observed the heterogeneous behaviour of 
flexural as it also reflects on its mechanical properties. The 
predictive were compare with the experimental values of 
SachinPrabhu et al 2018, and both parameters developed 
best fits correlation.

5. Conclusions

Flexural strength was developed from a mixed design 
that partially replaced cement with wood and fly ash on 
self compacting concrete. The study applied these locally 
sourced materials that developed a mixed design to gen-
erates flexural strength. The behaviour of the material on 
the target concrete strength generated the flexural strength 
under the influenced of the locally sourced addictives. 
The system was monitored considering the dosage of the 
addictive at different percentage in the mixed design. The 
self compacting concrete with partial replacement cement 
with wood and fly ash was thoroughly examined through 
these simulation. The reactions of these self compacting 
concrete were expressed experimentally by SachinPrabhu 
et al 2018. The predictive and the experimental values 
expressed best fits correlation. The study has expressed 
the effect from other parameters that improve the study 
done by SachinPrabhu et al 2018. Other improvement 
was carried out applying numerical simulation to monitor 
the growth rate of the flexural strength at every twenty 
four hour. The increase in flexural strength increase in the 
study were thoroughly evaluated.
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