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ABSTRACT

Lightweight fiber reinforced composites are widely used in engineering structures, which often fail catastrophically

due to the uncertainty of external loads and their brittle nature. The development of pseudo ductile hybrid composites

was the proposed solution to create minimal ductility in fiber reinforced composites so that equipment downtime, cost,

and loss of lives can be minimized in their structural application. However, the development of pseudo ductile hybrid

composites does not guarantee that pseudo ductile hybrid composite is prone to failure. As a result, different models,

including Halpin-Tsai, Hashin and Shtrikman, Weibull, and log-normal models, were developed to predict degradation

of mechanical properties and structural failure so that prior recognition of failure can be achieved. The current structural

health monitoring research trend shows the development of hybrid mechanical property and structural failure prediction

models spalling the drawback of data-driven and physics-based models. Physics-based models require detail understanding

of the root cause of failure in terms of mathematical or physical model to predict failure progression whereas data-driven
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models rely on historical data or sensor data collected from machineries or structures. While hybrid models combine the

strengths of both physics-based and data-driven models providing manageable uncertainty and more accurate prediction.

This paper aims to review model-based mechanical property and structural failure prediction strategies with regard to

pseudo ductile hybrid composites highlighting future research directions and challenges, and offering insights beneficial to

the research and industrial communities.

Keywords: Failure Prediction; Mechanical Property Prediction; Pseudo Ductile Hybrid Composite; Data-Driven Models;

Physics-Based Models; Hybrid Models; Electric Aircraft

1. Introduction

Predicting mechanical properties, damage and failure

of mechanical systems and structures has become critical

for researchers and industrialists, especially with the rise of

preventive maintenance (PM) [1]. The predictive capability

of different methods for composites was evaluated in the first

two worldwide failure exercises (WWFE I and II) [2]. In the

2020s, a comprehensive approach to failure prediction and

maintenance decision-making was introduced to enhance

the reliability and efficiency of composite systems, utilizing

advanced deep learning techniques [3].

1.1. Structural Application of Composites

Lightweight design, an extensively explored concept

in aerospace and automotive applications, is crucial for re-

ducing fuel consumption and CO2 global emissions
[4]. For

example, 10–12% fuel efficiency can be attained for 20%

weight reduction in Boeing 787 [5], and 6-8% fuel consump-

tion can be saved for a 10% vehicle weight reduction [6].

Composites, particularly those made from metal fibers, syn-

thetic fibers such as carbon fiber, and metal matrix compos-

ites [7], are preferred for such lightweight applications due to

their high strength-to-weight ratios. However, natural fiber

reinforced polymer (FRP) composites have limited use as

primary and secondary structures in these applications be-

cause of their instability at high temperatures [8]. Despite this,

significant research has been conducted and some progress

made in using polymer-based composites in lightweight ap-

plications (Figure 1), such as spacecraft and electric vertical

take-off and landing aircraft (eVTOL), to enhance fuel effi-

ciency [9]. For instance, the International Air Transport Asso-

ciation aimed to save 3925 Kg of fuel and prevent the release

of 4 tons of CO2 for 10 Kg of weight savings [10]. These

weight savings focus on increasing the payload capacity and

battery life in the case of eVTOL.

(a) (b)

Figure 1. Composite usage. (a) Ratio of structural weight. (b) Composites in Boeing 787.

Specifically, due to their fuel efficiency, greater spe-

cific stiffness and strength, fiber reinforced laminated com-

posite parts have been successfully installed in automotive

sports cars, aerospace and marine systems [11]. For instance,

high-strength Euro carbon fiber composite was used for the

trailing arm of the F-16 landing gear, BMW electric vehi-

cle project and Airbus A340 horizontal tail, resulting in sig-

nificant weight and cost reductions, along with enhanced
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performance [12, 13]. Beachcraft Starship is a business air-

craft that was entirely built from composites and remains

in operation [14]. Another shift towards composite construc-

tion is the development of the eVTOL design concept [15].

In conventional aircraft such as Airbus A350 and Boeing

787 Dreamliner, carbon fiber reinforced plastic composite

(CFRPC) is extensively used as an aeronautical structural ma-

terial [16]. Despite their benefits, thewider adoption of CFRPC

in lightweight applications is limited due to the complexity

of the manufacturing process, higher cost and brittleness [17].

1.2. Strategies for Enhancing the Ductility of

Composites

Brittleness is the main drawback of composites [18].

These factors place composites third in overall material us-

age (Figure 2) [19]. To address these limitations, strategies

such as matrix toughening, interfacial toughening and pseudo

ductility have been developed [20], with pseudo ductility gain-

ing interest for its potential to reduce brittleness [18]. This

is because the ongoing maintenance expenses and capital

investment for matrix toughening and interfacial toughen-

ing are significant [20]. Pseudo ductile hybrid composites

(PDHCs) combine materials with different properties and

thicknesses, such as hybridizing low-strain material (LSM)

with high-strain material (HSM) or metal fibers with carbon

fiber [21]. They can be configured using interlayer, intralayer,

and fiber-by-fiber or intra-yarn methods [22]. Another method

of achieving pseudo ductility is the use of different weave

architectures such as plain weave, satin weave and twill

weave [22]. These PDHCs are being used in lightweight fuel-

efficient areas including aerospace, medical, automotive,

marine, construction, and sports equipment [23].

Figure 2. Relative importance of different materials with regard to time.

1.3. Failure Mechanisms of Composites

Laminated composites exhibit complex failure mecha-

nisms, making their behavior challenging to model [24]. Due

to quasi-brittleness and lack of ductility, developing computa-

tional tools to predict local failures, such as matrix cracking,

fiber-matrix debonding, fiber breakage and delamination, is

challenging [25]. Composites are anisotropic, meaning they

cannot uniformly resist axial, side and shear loads, leading to

various failure forms [26]. Developing quasi-isotropic materi-

als that can handle shear, longitudinal and transverse loads is

essential [27]. Quasi-isotropic laminates cannot achieve true

isotropic performance [28], resulting in failures due to opera-

tional, environmental or manufacturing factors [11]. Failure

forms include fiber-level microdamage (such as fiber pull-

out, fiber breakage, interfacial debonding, fiber failure due

to matrix cracking, and transverse matrix cracking), matrix-

level damage (such as matrix cracking and fiber interfacial
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cracking), coupled micro-macro damage, and macro damage

(delamination) [29]. These damage forms range from surface

scratches to deep grooves and a complete separation of parts,

which results in increased stress or premature failure [30]. The

damage level starts from micro cracks and voids due to mate-

rial and manufacturing defects and grows into a macro-level

crack leading to final failure [31]. This is not only due to mate-

rial and manufacturing defects, but also mechanical loading,

chemical ingress, thermal gradients, environmental condi-

tions, and deterioration of fiber, matrix, and fiber/matrix in-

terfaces are among the major causes of composite failures [32].

When it comes to secondary structures like seat frames of pas-

senger aircraft, complex variable loads in different directions

such as impact force due to unpredictable falling passenger

baggage, vertical reaction force due to weight of passenger

and gravity, torsional and bendingmoment due to inertia force,

and gear walk and shimmy oscillations affects human ma-

chine safety during landing, take-off, maneuvering and other

multi-tasks [33]. As a result of all these factors, multiple dam-

age modes can be encountered, especially for carbon glass

PDHCs, since the individual fibers have different mechan-

ical properties [34]. For instance, fiber breakage may occur

in the carbon fiber as a result of the applied load and glass

fiber takes over the remaining external load demonstrating

different damage modes such as delamination.

1.3.1. Failure Mechanisms of Pseudo Ductile

Hybrid Composites

PDHCs can exhibit various fracture modes depending

on the ratio of low strain to high strain. When the ratio is

below a critical value, multiple fractures and delamination

can occur, while a higher ratio leads to premature failure

(Figure 3) [34].

Figure 3. Glass-carbon hybrid theoretical strength.

In a unidirectional (UD) PDHC, after the first crack ini-

tiation in the LSM, four possible failure developments could

occur [35]. First, fragmentation in the LSM occurs, followed

by dispersed delamination and then HSM failure. Second,

catastrophic delamination occurs, followed by HSM failure.

Third, fragmentation (multiple fractures) in the LSM leads

to HSM failure. Finally, premature failure of the hybrid

laminate occurs due to the first failure of LSM and a small

amount of HSM to withstand the applied stresses [35].

1.4. Motivation of Reviewing in This Area

Fiber reinforced PDHCs although slightly ductile, still

fail catastrophically due to small difference in elongation

between constituent fibers such as glass and carbon fibers [22].

Both PDHCs and conventional ductile materials deteriorate

and can fail catastrophically, leading to significant property

loss and fatalities [36, 37].

1.4.1. Typical Examples of Structural Failures

Failure of structures is a lifelong incident recorded

through time, resulting in material and life loss. For ex-

ample, out of a number of failure incidents each year, failure

of Quebec steel bridge and failure of Tuojiang bridge are

scientifically recorded ones [38]. A number of historical struc-

tural buildings, such as QasrAl-Manar (University of Libya),

fail due to severe damage [39]. A total of 1202 events of wind

turbine failures were recorded within 156,202h for 600 wind

turbines in Sweden from 2000 to 2004 [40]. There were also

a number of failures of aircraft in the aviation sector [41–44].

For instance, an American Airlines Airbus A300 failed due

to delamination [42]. Aircraft companies in the aviation in-

dustry face economic burden due to equipment downtime,

which disrupts services [45]. Such failures and the resulting

costs are thus the major global problem requiring a current,

up-to-date solution. As global aviation demand increases,

companies are expanding their fleets to meet the growing

need for safe and fuel-efficient aircraft. This indicates an

increased use of the aviation industry, accompanied by a

higher number of failures and accidents, primarily due to

structural, battery, or propulsion system failures. Specifi-

cally, congested cities and developed urban areas are shifting

to use eVTOL, which are entirely built from composites to

increase payload capacity and battery life. The rise of eV-

TOL for urban air mobility (UAM) necessitates analyzing
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material behavior, mechanical properties and failure mecha-

nisms to prevent economic losses and fatalities. Furthermore,

the accident rate is comparably higher. For instance, histori-

cal data shows high accident rates for US civil helicopters,

8.09 accidents per 100,000 flight hours in 2004 and 8.52 in

2005, emphasizing the need for improved safety [46]. While

significant research has been dedicated to design, manufac-

turing and crashworthiness of eVTOL, areas such as damage

assessment, performance prediction and structural failure

prediction are relatively unexplored [47]. In addition, most

studies regarding eVTOL have focused on concept design,

crashworthiness, battery life optimization, and propulsion

systems. Therefore, there is limited research in this area and

conducting a review of related research is crucial. The main

contribution of this review is to highlight future research

directions and challenges, and offer insights beneficial to

the research and industrial communities in the area of appli-

cation of eVTOL. This paper aims to review model-based

mechanical property and failure prediction approaches for

PDHCs, indicating the knowledge gap.

This review paper was done by searching the keyword

on Google Scholar and all the relevant number of publica-

tions and cumulative citations to the capability of accessibil-

ity of authors were used and presented as in Figure 4.

(a) (b)

Figure 4. Number of publications and cumulative citations on (a) year and (b) geography basis.

2. Materials and Methods

PDHC materials have recently been familiarized as a

new development of fiber reinforced polymer composites

(FRPCs) to tackle the abrupt and unpredictable failure [7]. To

produce PDHCs, diverse techniques and material amalgama-

tions have been utilized.

2.1. Pseudo Ductile Hybrid Composite Materi-

als

A basic approach to achieving pseudo-ductility is the

combination of fresh ductile fibers and matrices, which re-

quires extensive research and validation. Another possibility

is the alteration of the construction of FRLCs built from

commercially accessible raw materials, such as developing

hybrids, which is a much quicker and more straightforward

approach. This includes hybridizing conventional compos-

ites such as carbon FRPs with metal fibers such as steel [7],

or hybridizing thin-ply high-strain FRPCs with thin-ply or

conventional low-strain FRPCs.

2.2. Mechanical Property Prediction Models

Researchers have employed various methods, including

analytical, numerical and experimental techniques to achieve

this goal. Classical micro-mechanics-based analytical meth-

ods such as the rule of mixture, Halpin-Tsai equations and

Mori-Tanka methods are used to predict the macroscopic

properties of composites based on the properties of their

constituents [48]. A semi-empirical model called Halpin-Tsai

based on the micro-mechanical model developed by Hill

helps to estimate the composite modulus of different com-

posite geometries assuming that the composite is a single

fiber surrounded by a cylinder [49]. Kamocka et al. [48] used

Halpin-Tsai model to analytically estimate the properties of

composite materials (fiber metal laminates) evaluating the

effective properties of the hybrid layers by considering both
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matrix and fiber properties. However, it requires proving the

suitability of the Halpin-Tsai model for hybrid composites.

Nielsen modified the Halpin-Tsai model to represent the max-

imum packing fraction of the inclusion material [49]. Hashin

and Shtrikman developed an analytical model to predict the

elastic modulus of two-phase isotropic material based on the

change in strain energy using upper and lower theoretical

bounds [49], which can be extended to hybrid composites by

incorporating multiple phases and their interactions. The Tsai-

Wu model achieves accurate predictions for the macroscopic

properties of UD composite [50]. This model has accuracy con-

cerns over triaxial stresses compared to uniaxial conditions.

All these analytical models developed for solid particle lam-

inated UD composites and Neilson considered a correction

factor for hollow particles. Traditionally, FRPC UD lami-

nates impregnated with matrix material offer good in-plane

properties but not in the thickness direction [51]. Overcoming

the limitations of traditional micromechanics models, Kabir

et al. suggest a checkerboard model advancing the evaluation

of elastic constants for composites (particularly for composite

materials reinforced with graphene nanoplatelets) by incor-

porating a checkerboard configuration for the dispersion of

nanoplatelets within the composite matrix [52]. Whereas, wo-

ven FRP composites offer a 3D reinforcement in a single

layer and provide better mechanical properties. For a single-

layer UD woven composite, a 3D spring element shear lag

model can be used to predict mechanical properties using

Monte Carlo Simulation (MCS), finite difference successive

over-relaxation method, and weak link technique. Okabe et

al. have used shear lag model and MCS to examine how

micro-damage mechanics affects the mechanical behavior of

UD composite and weak link scaling technique to predict ul-

timate tensile strength (UTS) of macro-composite [53]. Finite

element analysis (FEA) numerical method is a powerful tool

for simulating the mechanical behavior of composites at vari-

ous scales, from micro to macro scale [54, 55]. Computational

homogenization numerical method is used to derive effec-

tive properties of composite materials from the analysis of

representative volume element (RVE) [51]. Traditional experi-

mental tests such as tensile, compressive and flexural tests

are used to determine the mechanical properties of compos-

ites [56, 57]. Machine learning techniques (MLTs), including

artificial neural networks (ANNs) and deep learning, are in-

creasingly being used to predict the mechanical properties of

composites based on experimental data and simulations [58–61].

Statistical methods such as MCS and reliability analysis are

used to quantify uncertainties in the mechanical properties

of composites [62–64]. A combination of one or more reliable

and accurate models of these techniques was used to predict

mechanical properties and structural failure of composites.

2.3. Structural Failure Prediction Models

Predicting structural failure helps maintenance person-

nel prepare resources in advance [65, 66], reducing unexpected

downtime. Failure prediction, particularly in load-bearing

structures, has focused on PM, structural health monitoring

(SHM), and tracking fatigue damage [67]. Failure prediction

falls under PM, aiming to prevent catastrophic equipment

failures by using real-time data to signal impending issues [45].

These signals help PM personnel plan repairs and mainte-

nance, reducing operational disruptions. For instance, build-

ing rehabilitation is a key PM strategy to reduce structural

failure of buildings. For medium level of building damage,

cracks up to 3 mm wide, differential settlement of 4–5 cm,

and minimal angular rotation, rehabilitation involves repair-

ing and sealing cracks, refinishing surfaces and reinstalling

structural elements like doors with the goal of maintaining

buildings structural integrity, restore functionality and pre-

vent further deterioration [39]. When the level of damage is

characterized by 5–10 mm wide cracks, 5–8 cm differen-

tial settlement [39], and collapse structural elements, the goal

of rehabilitation, by opening, cleaning and treating cracks

and replacing damaged structural elements such as bricks, is

to address the series threat to structural integrity and avoid

potential failure. If not addressed promptly, structures may

show signs of distress such as reduced load carrying capacity,

cracks and corrosion over time leading to structural failure [68].

These days, soft computing models such as ANN, Gene Ex-

pression Programming (GEP) and Group Method of Data

Handling (GMDH) are being incorporated to predict fail-

ure of building structural elements including FRP concrete

columns [69]. In general, modern failure prediction approaches

should answer how and when a failure event can be predicted

for given data [45]. Traditional failure estimation methods are

based on recorded failure events for identical machine units,

including parametric approaches such as Weibull and log-

normal models. However, these have limited use in condition-

based maintenance (CBM) as they provide minimal system
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condition insights. Failure prognostic approaches are classi-

fied into model-based and non-model-based methods [36, 70],

or further divided into model-, data-, and knowledge-based

methods (Figure 5) [71]. Model-based methods build an ac-

curate mathematical description of systems using physics or

first principles and employ statistical techniques to detect,

isolate, and predict failure [72]. Knowledge-based methods

rely on engineering experience and events, offering intuitive

predictions [71]. Experience-based models adjust reliability

model parameters using maintenance and operating data [65].

Data-driven methods determine the health status of the sys-

tem within a certain period of time by analyzing previously

observed data. This previously observed data serves as a

benchmark in justifying the model performance and guiding

algorithm design. The three general damage prognosis meth-

ods are data-driven (black box), physics-based (white box),

and hybrid methods (gray box) [73–75] .

Figure 5. Damage prognosis methods.

2.4. Physics-Based Models

Physics-based approaches use detailed mathematical

or physical models to predict failure progression by recog-

nizing failure causes and estimating model parameters [75].

These approaches require extensive information on complex

phenomena and are computationally intensive. They predict

failure by deeply understanding and modeling systems’ ther-

mal, chemical, electrical or mechanical processes [76]. They

use data such as pressure, temperature, speed and power data

to compute the damage index through local load informa-

tion. To simplify the computationally expensive physics-

based model, a series of attempts have been made recently.

However, these simplifications overestimate and are error-

prone [77]. Some of the limitations of physics-based models

are that they are time-consuming since mathematical or phys-

ical models are required for individual failure modes, and it

is difficult to model or capture certain phenomena that are

not well understood [78]. The requirement for high computa-

tional speed in online responses necessarily leads to a limited

level of detail in the modeled phenomena, resulting in limited

accuracy in representing the actual behavior [70]. The most

widely used micromechanical models are shear lag, stress

transfer methods and variational methods among the analyti-

cal approaches and FEM-based methods such as RVE and

periodic unit cell (PUC) [79]. The material modeling in FEA

analysis consists of plasticity model (Johnson-Cook model)

and damage model (Lemaitre model) [80]. Lemaitre model

was used to define damage evolution [81]. Hashin used varia-

tional methods to determine stiffness reduction of cross-ply

laminates due to cracking [82]. The stiffness reduction method

of Hashin was expanded by Nairn, who used the concept of

energy release rate to determine the effective modulus of a

cross-ply laminate with 900 plies [83]. One of the limitations

of these methods is that they are limited to cross-ply lami-

nates and uniaxial tensile loading [79]. The cohesive elements

and virtual crack closure technique (VCCT) are mostly suit-

able for damage simulation in composite laminates. VCCT

is employed to simulate crack onset and propagation based

on Griffith’s theory, a fracture mechanics approach. Both

VCCT and cohesive behavior are used to model interfacial

shearing, delamination, crack propagation and failure [35].

In both cases, once the damage has initiated and dissipated

the same amount of energy between damage initiation and

failure, elastic damage constitutive theory can be used to

model material response. Modeling adhesives, gaskets, and

bonded surfaces of small thicknesses is mostly done using

the cohesive behavior approach. Element-based cohesive be-

haviors and surface-based elements such as slave and master

surfaces and contact pairs can be modeled using cohesive

behavior. The damage of the ply interface is modeled in

such a way that the adhesive layer is considered to be of zero

thickness. Finite elements as cohesive elements are charac-

terized by material properties (such as stiffness, strength, and

fracture energy) and numerical parameters (such as viscosity

and damage variables). Lower viscosity value needs more

computational time, whereas higher viscosity value does not

7
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represent the damage modeling of FRPC. Surface-based co-

hesive behavior is a straightforward approach to modeling

cohesive connections using the traction-separation interface

behavior, where the interface thickness is negligible. In gen-

eral, cohesive elements are recommended for more detailed

adhesive connection modeling. A quadratic failure criterion

was used to predict damage initiation for interface cohesive

elements inserted between two adjacent layers. Compared

to the maximum stress criterion, the quadratic failure cri-

terion is more suitable for predicting delamination onset,

as it allows for arbitrary mode interactions. Cohesive zone

models were proposed to be the most effective solutions to

describe delamination in FEM, simulating the interfaces be-

tween plies mainly represented by cohesive elements, which

can be regarded as a spring element superimposed between

two nodes, with matching solid meshes of upper and lower

plies on both sides.

However, use of cohesive zone models has some limi-

tations such as divergence of calculation with implicit algo-

rithms, unstable initiation and propagation of delamination

when the energy criteria are fulfilled before the stress crite-

ria, ill-posed problem when there is implicit static and rate-

independent formulation and very small lengths of debonding

due to onset delamination unless meshed finely [1]. Later in

part B ofWWFE-II, implicit/explicit algorithms inABACUS

were used to overcome some of these limitations [84].

There are also numerical approaches within the physics-

based category that have been used for predicting mechanical

properties and failure. For instance, a computer numerical

model was created to predict the forces and location of failure

of L-shaped joints made from composites subjected to bend-

ing load using the ABACUS user subroutine (user-defined

material subroutine (UMAT)) [85].

Physics-based multiscale hybrid approach was pro-

posed for prediction of damage and final failure, which the

nature, location and evolution of different damages up to

final failure precisely defined for higher confidence level, of

laminated composites introducing mesoscopic scale of micro-

mechanical aspects (e.g., effect of matrix micro-damage on

the strength of mesoscopic scale and non-linear behavior) us-

ing a combination of mathematical model and MATLAB for

material failure test cases and ZeBuLoN for finite element

simulations of open-hole and unnotched specimens subjected

to bending load [1].

2.5. Data-Driven Models

A set of black box models that are built on historical

data and input sensor data and learn directly from machinery

or structural data collected via sensors is the concept of data-

driven models [76]. In the context of prognosis, data-driven

methods are usually used to predict the failure of a system

with the help of sensor data or a combination of sensors

and life usage data [86]. Data-driven methods aim to model

non-linearities in system behavior, the aging process, and

condition monitoring data without requiring physical mod-

els [75]. Literature showed that data-driven approaches using

MLT and statistical techniques were devised in failure predic-

tion. Data-driven models can be further grouped into single

models and combined models based on the number of types

of algorithms used [74]. Single models such as conventional

exponential smoothing andmoving average, statistical regres-

sion, autoregression, K-nearest neighbors (KNN), decision

trees, support vector machines (SVM), ANN, genetic algo-

rithm (GA), genetic programming (GP), and fuzzy models

use a single algorithm for a straight forward predicting pro-

cess. While combined models, such as ensemble models, and

improved frameworks build a framework that manages the

strengths and weaknesses of techniques [74]. Data-driven ap-

proaches utilize monitored operational data related to system

health [70]. For instance, data-driven prognostic and diagnos-

tic models were used for lithium-ion battery health estimation

and lifetime prediction, determining how soon the battery per-

formance will become unsatisfactory [87]. These methods can

be deployed quickly and cheaply providing wide coverage of

system behavior [70]. One should, however, be aware of the

limitations of these techniques, which cannot be guaranteed

to function properly in situations not included in the database

used for training. Unlike physics-based failure models, data-

driven approaches attempt to derive models directly from

condition monitored (CM) and event data and are grouped

into machine learning and statistical approaches. MLTs, both

supervised and unsupervised, capture complex relationships

between input and output data and learn from them, which

can be difficult to describe using physics (Figure 6) [88–90].

Supervised MLTs use observational evidence for model

construction, whereas unsupervised MLTs do not require any

output labels. In both types, various machine learning al-

gorithms (MLAs) are used for regression, classification, or

density estimation (clustering). One of the criticisms of the

8
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data-driven models is that they require a lot of failure data

than the physics-based approaches and it may not be feasible

to obtain such data in large quantities [88].

Figure 6. Different types of machine learning algorithms.

Statistical data-driven approaches (SDDAs) rely on the

history of data and statistical models. SDDAs can be grouped

into models that do and do not rely on directly observed state

information of an asset, based on model dependence on state

information. They rely on the availability and nature of data.

These include both subjective and objective data such as

vibration, oil analysis, temperature, moisture, pressure, hu-

midity, loading, speed and environmental data depending on

the nature or method of data collection. SVM,ANN, decision

trees and other statistical algorithms are the most commonly

used supervised MLAs for model training [73]. Statistical

approaches are classified into direct and indirect CM data

(Figure 7) [89]. Some examples of indirect CM data-based

statistical approaches are the hidden Markov model (HMM)

and hidden semi-Markov model (HSMM) [89].

Figure 7. Classification of statistical approaches based on direct

and indirect CM data.

The arrow in Figure 7 indicates that the state of the

system can be extracted from indirect CM data using di-

rect CM data-based statistical approaches. Other statistical

algorithms include KNN, case-based reasoning (CBR), mul-

tivariate adaptive regression spline (MARS), exponential

regression, polynomial regression (poly), Bayesian regres-

sion, autoregressive integrated moving average (ARIMA),

autoregressive (AR), ordinary list square regression (OLS),

general linear regression (GLR) and multiple linear regres-

sion (MLR).

2.6. Hybrid Models

A hybrid approach is a combination of physics-based

and data-driven models that leverages both approaches to

achieve finely tuned prediction models with improved qual-

ity in managing uncertainty, resulting in more accurate pre-

dictions [91]. They integrate physics and data-driven models

(Figure 8) to detect anomalous behavior or intermittent faults,

potential causes of system failure, precursors to failure for

effective maintenance planning and the extent and nature of

faults for effective maintenance strategies [91]. Physics-based

approaches can identify precursors to failure that indicate

early announcement and prediction of system failure. Once

the failure is defined, as shown in Figure 8, time series tech-

niques can be utilized to predict the critical parameter values

over time. The first step in the hybrid approach is to deter-

mine parameters to monitor, using physics-based models to

aid in the analysis of failure modes, mechanisms, and ef-

fects [66]. As a second step, monitoring the characteristics

of parameters of a product during all stages of its life cycle

is performed to understand the health status of the product.

In the third step, anomalies can be detected by extracting

features of training data and then creating a health baseline

with a comparison of monitored data. When anomalies are

detected, monitoring commences and proceeds to further

steps to predict remaining useful life, showing that the cur-

rent status of the equipment differs from the healthy baseline.

Then, parameter isolation can be carried out using various

techniques to identify the parameters that contribute to the

abnormal status of the equipment. In the next step, the fail-

ure definition can be carried out based on the identification

of potential failure mechanisms. A failure definition can

be created from physics-based models, historical databases,

equipment specifications, or related standards for each po-
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tential failure mechanism.

Figure 8. Schematics of Hybrid approach.

The other step is parameter trending, a process of pre-

dicting the behavior of parameters in the future based on

current and historical trends. For instance, accumulated dam-

age of the actual monitored equipment should be trended if

failure is defined by the accumulated damage of an equip-

ment which is a function of an isolated parameter.

In the last step, the time when the trended parame-

ters meet the failure definition is the predicted failure time.

The predicted failure times differ because various failure

mechanisms have distinct failure definitions and trending pa-

rameters. The failure mechanism with the shortest predicted

failure time determines the remaining useful life. If not de-

tected, the feature extraction and baseline creation process

stage takes over.

There are series or parallel-type hybrid approaches. In

a series approach, physics-based and data-driven models are

combined to predict process parameters that are uncertain us-

ing failure data from the field. However, historical field data

raises the issue of inaccuracy, and in situ data is preferable

these days [91]. These methods update the tunable param-

eter when new data is collected, and the core idea behind

them is that prediction is not necessarily a direct outcome of

tuned parameters, but can be tuned using the crack lengths

observed from a borescope inspection.

In the parallel approach, physics-based models can be

combined with data from other sources, and MLAs can be

trained to predict the errors in prediction that the physics

model does not explain. However, integration of model-

based methods such as Paris law and data-driven methods

such as particle filtering algorithm (PFA) or sequential Monte

Carlo technique (MCT) has wider popularity since PFA has

a consistent theoretical foundation to handle model non-

linearities or non-Gaussian observation noise [92].

Liu et al. used a hybrid approach of Paris law and

PFA to predict the residual gear fatigue life (RGFL) incor-

porating fracture mechanics and prior crack growth infor-

mation (PCGI) [93]. PFA, effective for non-linear and non-

Gaussian systems, employs MCT simulations and Bayesian

estimation to predict the posterior probability density func-

tion (PDF) [93]. Five implementation steps were proposed by

Liu et al. (Figure 9), to integrate Paris law and PFA [93].

Figure 9. Implementation steps of the hybrid approach using PL

and PFA.

By combining the strengths of physics-based and data-

driven models [94] while mitigating their individual limita-

tions [66], the hybrid approach improves prediction perfor-

mance [93]. Balancing physics-based and data-driven compo-

nents of this approach might lead to challenges in achieving

optimal performance. Although hybrid approaches lead to

more accurate predictions, the trade-off between the hybrid

approach and the effectiveness of the model lies in detailed

knowledge of physical processes in the system and choos-

ing the appropriate data-driven techniques for prognosis and

diagnosis [94].

2.7. Online Prognostics

Online prognostics, based on runtime monitoring, were

used to predict the fault of the aircraft engine bleed valve [86].

10
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Baptista et al. found that SVM outperforms the life usage

models on standard deviation, median error, median absolute

error and percentage error [86]. Comparing traditional relia-

bility prediction methods (Weibull) with machine learning

methods (ANN, SVM, and soft computing methods) yielded

the best results in 19 industrial cases [95]. Online prognostic

framework (Figure 10), using PFA predicted composite lam-

inates fatigue life by varying the PL parameters distribution

between the current measurement data and zero [75].

Figure 10. Online prognostic framework using PFA.

3. Implications of Existing Studies

Kazemian et al. predicted damage in non-crimp fab-

ric composites subjected to transverse UD crushing using

MAT54 and MAT58 constitutive material models, based

on both experimental and numerical analyses [96]. The

model’s accuracy was verified using numerical simulations

in predicting interlaminar damage, delamination and force-

displacement response. The implication of this study is that

the proposed constitutive models are a reliable simulation

approach for predicting damage in non-crimp fabric compos-

ites in the areas of aerospace, automotive, and wind energy.

However, the multiaxial nature of loads acting in real-life

problems means that this study is limited to uniaxial crash

loading.

Naderpour et al. employedANN,GMDH, andGEPsoft

computing methods to predict the compressive strength of

FRP-concrete composite confined columns [69]. This study

implies that the proposed soft computing methods, espe-

cially ANN, accurately predict the compressive strength of

FRP-confined column concrete composite, offering a reli-

able alternative to traditional empirical methods. However,

the proposed methods rely on a limited dataset of 95 ex-

periments, which may not fully capture the variability in

real-world conditions, and require further validation with

large datasets.

Holmes et al. employed Gaussian process regression

MLT to predict loads on landing gear components using flight

test and drop test datasets, including measurement of strains,

accelerations, shock absorber travel, tyre closure, shock ab-

sorber pressure, and wheel speed [97]. This study suggests that,

without the need for additional instrumentation on the aircraft,

the developed model was able to predict loads on the landing

gear component, leading to a more accurate fatigue design

criterion, the identification of overloads, and the certification

of the landing gear based on actual service life experience.

However, further validation with larger datasets and differ-

ent aircraft configurations is needed to ensure the robustness

of the models and measurement data, which may limit the

applicability of the model to other landing gear systems.

Hart-Smith et al. employed maximum-strain failure

models to predict the failure of fiber/polymer composites [98].

However, their study relies on empirical data requiring fur-

ther validation with experimental results.

Getahun et al. predicted the tensile and compressive

strength of concrete using rice husk ash and Portland cement

aggregates, employing an ANN, which implies that the de-

veloped model can be applied in sustainable construction

materials, streamlining the design process and improving the

efficiency of concrete production [99]. However, the study

relied on a limited dataset, which may not fully capture the

variability in real-world conditions. Furthermore, a large

dataset verification with various concrete compositions is

necessary to ensure the robustness of the developed model.

Rahimi et al. predicted the failure behavior of compos-

ite laminates under uniaxial loading using both ANSYS and

a user-developed Fortran-90 FE program using Maximum

stress and Tsai-Wu Failure Criteria [100]. However, even if

the developed FEM saves cost and ease of modification and

manipulation, the model was dependent on a specific failure

criterion.

Seon et al. predicted delamination due to non-linear

interlaminar shear stress-strain employing non-linear FEM

and DIC for short-beam shear tests [101]. This study implies

that the proposed model can be used in industries where

thick composite materials are practiced, as the non-linear

model accurately predicts failure, capturing delamination

onset, compared to linear models. However, the model was

limited to a specific material configuration.
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Cuntze et al. investigated the theoretical failure pre-

diction of UD composite lamina focusing on non-linear pro-

gressive failure of 3D stressed laminates until final failure

using Puck’s and Cuntze’s failure theories [102]. However,

their study relied on empirical data and requires validation.

Peng et al. introduced impregnated fiber bundle (IFB)

elements based on a novel shear-lag model (SLM) to pre-

dict the tensile behavior of UD FRPCs, enabling full-field

failure simulation that considers the effects of varied con-

stituent properties, hybrid fibers, and initial defects [103]. The

study demonstrated that stable IFB strength, higher matrix

shear strength, a moderate hybrid ratio and careful packing

of fibers achieve optimal composite properties using 6 mm

FRP tendons and extending it to different cases. However,

although the study uses novel IFB elements that improve

computational efficiency, it excludes interfacial sliding in

the model.

Khan et al. predicted the residual strength of clay by ex-

ploring functional networks and comparing it with ANN and

SVM using statistical parameters such as root mean square,

maximum average error, absolute average error, correlation

coefficient, and Nash-Sutcliffe efficiency coefficient [104].

However, the proposed models require validation with larger

datasets.

Alessio et al. developed FEM to evaluate the mechan-

ical performance and failure behavior of aluminum alloy

2024-T3 and CFR-polyphenylene sulfide incorporating co-

hesive surface behavior to simulate the interface between

aluminum and composite with specific traction-separation

laws for different bonding zones [105]. The study demon-

strated that longer overlap lengths redistribute stress more

uniformly, delaying damage evolution in the bonding zones.

However, it requires validation with different configurations

and stress states.

Ghalehbandi et al. predicted damage and failure of

hot work tool steel regarding the thermomechanical fatigue

behavior using FEM [106]. In this study, failure was predicted

employing a local ductile damage initiation and evolution

model based on the hysteresis stress-strain energy concept

combined with element removal. It also predicts fatigue

crack initiation and growth by simulating thermomechanical

fatigue behavior in a hot forging die. However, the study

relies on a specific material property.

Aranda et al. investigated different damage mecha-

nisms including translaminar cracking, delamination, and

fragmentation in hybrid composites of UD thin layer rein-

forced with long carbon fibers embedded between two UD

layers reinforced with glass fibers under tension using the

Coupled Criterion of Finite Fracture Mechanics [107]. The

implication of this study is that the proposed method helps

to optimize the mechanical properties of hybrid composites

and enhance their damage tolerance in areas of aerospace

and automotive sector. However, the study was limited to a

specific composite configuration.

Zhang et al. predicted failure for magnesium alloy

sheet forming using an advanced fully coupled continuum

damage mechanics model and implementing it into FE code

ABAQUS/Explicit addressing tension-compression asym-

metry in yielding and hardening, stress state dependence in

damage evolution, and temperature and strain rate effects

for metal forming processes at elevated temperatures [108].

However, their study was limited to specific material config-

urations and may not be applicable to real-world problems.

Yang et al. predicted the stress-strain behavior of bi-

nary composites using CNN and principal component anal-

ysis [109]. However, the model’s robustness is dependent on

the amount of data used.

Cheng et al. effectively predicted delamination be-

havior by measuring moisture parameters of adhesive SY-

14M-III and composite T800/AC531, conducting double

cantilever beam and end-notched flexure tests in different

environments with an established damage model using co-

hesive zone models [110]. However, the model needs to be

tested for new material configurations.

Sun et al. predicted the failure of ductile adhesive of

CFRP laminates using FEM and experimental tests [111]. The

study compared the user-defined cohesive zone model and

the triangular cohesive zone model and examined the influ-

ence of adhesive properties. However, the study excludes

interfacial debonding.

Deng et al. predicted rock fracture using a novel in-

frared thermography technique combined with heat diffusion

theory, addressing the current limitation of current infrared

monitoring techniques, which often capture environmental

noise and produce unclear images [112].

Zhang et al. predicted the fault of industrial equipment

using a novel back propagation neural network and a dy-

namic cuckoo search algorithm [113]. This study implies that
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the proposed method can be applied efficiently in industries.

However, it relied on a specific dataset.

Ahn et al. predicted welding-induced residual stresses

and distortions employing sequentially coupled thermo-

metallurgical-mechanical solutions on 2 mm-thick Ti-6Al-

4V sheets welded using a fiber laser [114]. However, the study

was dependent on specific material configurations and pa-

rameters.

Tura et al. predicted tensile strength by examining pro-

cess parameters such as raster angle, printing orientation,

airgap, raster width and layer height using ANN and adap-

tive neuro-fuzzy techniques [115]. However, the study relied

on a specific amount of data. Kayiran et al. explored stress

predictions using Chebyshev Pseudo-spectral method [116].

In general, several factors affect the accuracy of the

model to predict mechanical behavior. For instance, material

anisotropy, non-locality and van der Waals interactions are

the major challenges in modeling carbon nanotubes using

continuum mechanics [117]. In addition, most of the studies

consider the mechanical behavior with regard to a specific

function of a material. However, materials can respond to

various stimuli, enabling them to perform multiple functions

simultaneously [118]. The implication of most studies is that

prediction accuracy is higher; for instance, Zhou et al. ob-

tained 99.4% accuracy, suggesting that these models can be

applied in maintenance practices, although a limited dataset

was used for training [119].

4. Discussion

PM is transforming traditional maintenance by utilizing

techniques like intelligent sensors for real-time monitoring

and prediction [3]. Laurin et al. improved the WWFE-II fail-

ure prediction model using a physics-based multiscale hybrid

damage and failure approach, addressing micro-matrix crack-

ing and inter-ply damage [1]. However, accuracy issues and

data dependency limited its effectiveness, requiring precise

definitions for accurate predictions. Despite advancements,

these studies face limitations, such as accuracy issues due

to assumptions in mathematical models and difficulty ap-

plying concepts to complex systems and multiple failure

modes. A physics-based model combining short beam shear

test and DIC with ABAQUS FE-based failure models was

used to study delamination prediction in IM7/8552 carbon

epoxy laminates [120]. The study correlated failure model

predictions with the test data, focusing on locating rather

than predicting damage. The results leaned more towards

cracking than delamination. The potential ofANN and neuro-

fuzzy system (NFS) in predicting pipe failure rates using pipe

diameter, age, length, pressure and depth was investigated

in a water distribution network of a city in Iran [121]. In this

study, a more realistic and accurate prediction was obtained

by ANN when compared with multivariate regression and

NFS. Comparison was carried out utilizing probabilistic neu-

ral network (PNN) and speed up robust features (SURF)

and CNN and prediction accuracy was higher than 99% [122].

Although the proposed diagnostic study is a good indica-

tion that it can be extended to prognostic analysis, it has a

limitation in that it requires GPU hardware (necessitating

higher computational cost) to reduce training time, and it

cannot predict when input data out of the training domain

encounters the sensors.

In general, most predictive models emphasize predict-

ing mechanical properties while others emphasize predicting

structural and equipment failures. Most of the multi-physics

models, such as shear lag, analytical, fiber bundle models,

and their generalizations, fracture mechanics-based models,

and numerical micro-mechanical models, predict mechanical

properties. In contrast, a combination of experimental and

machine learning models predicts structural and mechanical

failure such as buckling, fatigue, fracture, wear and creep.

Studies show that both mechanical properties and failure

modes of polymer composites can be predicted using ana-

lytical models and numerical simulations over a wide range

of length and time scales. For a known load, estimating

mechanical properties can be used to infer mechanical per-

formance. That means, for a known load, developing an

accurate mechanical property prediction model is indirectly

related to the likelihood of mechanical failure. There is a

discussion of the relationships between cracking and stress

states that lead to cracking, as well as the potential for using

measurements of internal crack growth to quantitatively link

bulk material properties such as fracture toughness or dam-

age variables with cracking which could potentially provide

a physical basis for a scalar damage variable [123]. However,

quantitative relationships between crack parameters and bulk

material parameters remain elusive. In addition, a model de-

signed to predict a specific mechanical property or failure

13



Journal of Building Material Science | Volume 07 | Issue 02 | June 2025

has a limitation in being used for another property or failure.

There is no accurate predictive model used for universal me-

chanical properties. Although more emphasis was given to

physics-based, data-driven, and hybrid models, an attempt

was made to address both deterministic and probabilistic

failure modeling, which fall under the three major categories.

The probabilistic approaches such as the Weibul distribu-

tion, Monte-Carlo simulation, and Bayesian PDF provide a

more comprehensive understanding of material behaviour un-

der varying conditions and inherent uncertainties in loading

and materials, making them suitable for aerospace structural

design [92, 93, 95, 124, 125]; however, they require large data or

variability of engineering judgement and provide minimal

system condition insights.

4.1. Research Gaps

The implication of existing studies highlights that there

is a need formore comprehensivemodels, larger datasets, and

broader validation to address real-world complexities. De-

pendence on empirical data, material-specificmodels, dataset

restrictions, and loading conditions are the general limita-

tions of recent research studies. In general, Table 1 presents

the contributions and limitations of existing studies in areas

related to the mechanical properties and structural failure of

pseudo-ductile hybrid composites [69, 94, 96–98, 100–116].

Table 1. Some of the contributions and limitations of existing studies.

Authors Key Contributions Gaps/Limitations

Kazemian et al. [96] Reliable damage prediction in non-crimp fabric

composites using MAT58 and MAT54

Limited to uniaxial crash loading; lacks consideration

of multiaxial load

Naderpour et al. [69] Accurate compressive strength predictions using ANN,

GEP and GMDH

Accuracy issues are a concern since the study relies on

a limited dataset

Holmes et al. [97] Gaussian process regression for landing gear load

prediction

Requires validation with larger datasets and different

aircraft configurations

Hart-Smith et al. [98] Maximum strain failure models for FRPCs Relies on empirical data; experimental validation

required

Getahun et al. [94] ANN for predicting tensile-compressive strength of

concrete with rice husk ash

Accuracy concern due to limited dataset; requires

validation

Rahimi et al. [100] Failure prediction using ANSYS and Fortran-90 FE

program

Dependent on specific failure criteria; lacks

generalizability

Seon et al. [101] Non-linear FEM for delamination prediction in thick

composites

Limited to a specific material configuration

Cuntze et al. [102] Theoretical failure prediction using Puck’s and Cuntze’s

failure models

Relies on empirical data; experimental validation

required

Peng et al. [103] Novel shear-lag model (SLM) for tensile behavior

prediction

Excludes interfacial sliding; limited applicability

Khan et al. [104] Residual strength prediction using ANN, SVM and

functional networks

Accuracy concerns due to limited datasets

Alessio et al. [105] Aluminum-CFRP interface performance evaluation Requires validation with different configurations and

stress states

Ghalehbandi et al. [106] FEM for thermo-mechanical fatigue behavior prediction

for steel

Limited to specific material properties

Aranda et al. [107] Damage mechanism investigation in hybrid composites

using finite fracture mechanics

Limited to specific composite configurations

Zhang et al. [108] Advanced damage mechanics model for magnesium alloy

sheet forming

Limited to specific material configurations

Yang et al. [109] Stress-strain behavior prediction using CNN and principal

component analysis

Model robustness depends on dataset size

Cheng et al. [110] Delamination behavior prediction using cohesive zone

models

Needs testing for new material configurations

Sun et al. [111] FEM for ductile adhesive failure prediction in FRPC

laminates

Excludes interfacial debonding

Deng et al. [112] Novel infrared thermography for rock fracture prediction The current technique is affected by noise

Zhang et al. [113] Fault prediction using neural networks and dynamic

cuckoo search

Relies on a specific dataset

Ahn et al. [114] Residual stress and distortion prediction in Ti-6Al-4V

welding

Dependent on specific material configurations and

parameters

Tura et al. [115] Tensile strength prediction using ANN and neuro-fuzzy

techniques

Relies on a specific dataset

Kayiran et al. [116] Stress prediction using Chebyshev pseudo-spectral

method

Lacks broader applicability due to limited scope
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4.2. Challenges

Several challenges face existing studies in the area of

model-based mechanical property and structural failure pre-

diction of pseudo-ductile hybrid composites. Physics-based

models require individual models for each failure mode and

struggle to capture poorly understood phenomena. Although

physics-based models are detailed, they are computation-

ally expensive and time-consuming [78]. Overestimations

and errors usually occur when researchers try to reduce com-

putational costs. Cohesive zone models and VCCT face

issues such as computational divergence, unstable delamina-

tion propagation, and sensitivity to mesh refinement, despite

being effective for simulating damage. Explicit/implicit algo-

rithms in software like ABAQUS have been used to address

these limitations to some extent [84]. Hashin’s stiffness re-

duction method and Lemaitre model have been expanded

as a damage modeling technique but remain constrained in

scope [83]. Commonly used analytical approaches, such as

shear lag, variational, and stress transfer methods, and FEM-

based methods, such as RVE and PUC, are limited to specific

conditions, including uniaxial tensile loading and cross-ply

laminates [79]. MLAs and other data-driven models offer a

potential alternative but require extensive failure data. Ma-

terial anisotropy, non-locality, and interfacial bonds (ssuch

as Van der Waals forces) are some of the challenges that

complicate the accuracy of data-driven models [117].

4.3. Future Perspectives

Despite the challenges mentioned, some studies, such

as the work of Zhou et al., have achieved high prediction

accuracy, suggesting practical applicability [119]. However,

further advancements in physics-based models, data-driven

models and hybrid models are expected from researchers

and industrialists to improve computational efficiency, accu-

racy and applicability across diverse material behaviors and

loading scenarios. By combining the strengths of physics-

based models and data-driven models, the hybrid approach

addresses uncertainties in material behavior and operational

conditions, focusing on improving SHM, enhancing predic-

tion accuracy, reducing computer run time, and minimizing

aerospace catastrophic failures.

5. Conclusions

Researchers have developedmodels to predict mechani-

cal properties and failure, enhancing PM. Recent trends focus

on improving predictive models, each with its merits and

limitations: (1) Most predictive models have limited to the

specific type of fiber reinforced polymer composites and face

accuracy issues due to dependency on input parameters and

boundary conditions; (2) The models do not correlate dam-

age progression with changes in mechanical properties over

time or under different environmental conditions, impacting

durability and performance; (3) Studies have not confirmed

whether certified polymer-based composite components for

load bearing structures exist in commercial aircraft, rather

than just generalizing the trend of using these composites

for fuel efficiency. (4) Additionally, a model designed to

predict a specific mechanical property or failure has limita-

tions in being applied to another property or failure. There is

no accurate predictive model used for universal mechanical

properties. Therefore, this review highlights future research

directions and challenges, indicating the implications of exist-

ing studies, and offers insights beneficial to both the research

and industrial communities.
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