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A glasshouse experiment was conducted to determine the effects of ele-
mental sulfur (S) applications on soil acidity, the solubility of soil iron, 
and the uptake of iron (Fe) by corn (Zea mays L.). Soil samples were 
treated with four rates of sulfur and incubated for 0, 20, and 40 days be-
fore corn plantation. While one unit increase in S application rate corre-
sponded to a soil pH decrease of approximately 1.52 units, the solubility 
of the Fe was significantly increased. Fe concentrations in leaves and 
stems increased as soil pH decreased from 7.03 to 5.42, but further soil 
acidification decreased Fe concentrations in plant tissues. Overall, apply-
ing S at a rate of 0.5 g S kg-1 soil may to enhance corn performance by 45 
percent while posing minimal risk to groundwater or crops.
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1. Introduction

Micronutrient availability in soils depends on soil 
chemical factors, such as soil acidity and miner-
alogy [1, 2]. Iron deficiencies in plants generally 

occur in calcareous and alkaline soils, in which high pH de-
presses the solubility of iron (Fe) and zinc (Zn) and decreases 
nutrient uptake by plant roots [3]. Applying elemental sulfur 
to these soils can increase iron solubility and uptake but may 
also acidify the soil rhizosphere. For every pH unit decrease, 
there is a corresponding increase in the solubility of Fe and 
Zn by a factor of 10 to 1000 [4]. Elemental sulfur is especially 
useful as a soil amendment because it is ready availability 
and acidulates at a gradual rate [5]. Elemental sulfur acidulates 
soil as microbial and chemical oxidation convert it to sulfuric 
acid over time [6]. It has been reported that applying sulfur 
above adequate concentrations may improve iron use effi-

ciency in wheat [7].
Applications of elemental sulfur are likely to be improve 

yields in crops grown under severe iron limitations. It was 
found that high elemental sulfur supply increased the Fe con-
centrations in shoots, and that concentrations of iron and sul-
fur in leaves were significantly correlated, irrespective of iron 
availability in nutrient solution. Increased sulfur availability 
may stimulate iron accumulation via increases in methionine, 
which in turn facilitates the production of elevated levels of 
phytosiderophores and nicotianamine [7].

There are contrasting reports on the effects of elemental 
sulfur applications on soil pH and nutrient availability [8-10]. 
As previously noted, applications of elemental sulfur have 
been found to decrease soil pH and increase nutrient solubil-
ity [14, 15, 16], while some studies have found that nutrient solu-
bitliy decreased in acidified soils [11-13]. The increased release 
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of soil nutrients from unavailable to available pools could 
be due to soil pH changes as reported by Ye et al. (2011) and 
Ye et al. (2010) [15, 16]. They also showed that plant nutrient 
availability increased due to soil pH reductions caused of S 
applications, and that the mobile fraction of soil heavy metals 
increased in more acidic soils. The displacement of cations 
from the exchange complex on clay minerals and soil organ-
ic matter occurs via hydrogen ions, and the ion solubility and 
oxidation state are strongly affected by soil acidity [17].

Because soils vary in their responses to elemental sulfur 
applications [18], it is necessary to find an optimal application 
rate for each one. While the general effects of elemental sul-
fur applications on soil micronutrient release was elucidated 
by Karimizarchi et al. (2016) [19], the specific impacts of 
elemental sulfur applications on soil acidity, iron solubility, 
and iron uptake by plants in the Bintang Series soils have 
not been studied. Our objective is to quantify the effects of 
elemental sulfur on the uptake and distribution of iron in corn 
(Zea mays L.) growing in acidified Bintang Series soil. 

2. Material and Methods

The Bintang Series soil was amended with 0.0, 0.5, 1.0 and 
2.0 g S kg-1soil and incubated for 0, 20 and 40 days before 
corn plantation. The corn plants were grown for 45 days 
under glasshouse conditions. Soil samples were retrieved at 
the planting and harvesting stages and were subjected to nu-
trient analysis. In addition, corn leaves, stems and roots were 
analyzed separately to determine the nutrient content of each 
part. 

2.1 Soil Characterization and Site Description  

Soil samples were collected from the surface horizon (0-20 
cm) of Bintang Series soil. Collections were made in Bukit 
Bintang, Perlis, Malaysia (6° 31ʹ 01.61ʹʹ N, 100° 10ʹ 12.43ʹʹ 
E). The collection area was under natural vegetation and its 
soils were derived from limestone parent materials (Karimi-
zarchi et al., 2014a). The soil samples were air-dried, ground 
to a particle size of < 2 mm, and shaken for 30 minutes on a 
reciprocal shaker. The samples were then rested for 24 hours 
before soil pH and electrical conductivity were measured in a 
soil-water suspensions (10 g soil to 25 ml deionized water). 

2.2 Plant Growth and Management 

Seeds of the sweet corn cultivar Masmadu were provided 
by the Malaysian Agricultural and Development Research 
Institute [19]. Seeds were germinated in laboratory conditions 
and after 24 hours were transplanted into plastic pots 30 cm 
in diameter and 50 cm in height. Each pot contained 10 kg of 
Bintang Series soil and received three plants. After one week 
the plants were thinned to one. Seedlings were grown for 45 

days in a greenhouse located at the University Putra Malaysia 
(UPM). Each pot was weighed every day, and the soil mois-
ture content was adjusted to 90 percent of field capacity. The 
plants were irrigated daily. Chemical fertilizers were applied 
at rates recommended by MARDI [20], including 40 kg K2O 
per ha in the form of muriate of potash, 60 kg P2O5 per ha in 
the form of triple superphosphate, and 120 kg N per ha in the 
form of urea.

2.3 Soil and Plant nutrient Extraction and Determi-
nation

Since buffered extractants may interfere with the effect of 
sulfur on nutrient solubility, the available fraction of soil 
nutrients were extracted using calcium chloride [16, 21]. Soil 
solutions were centrifuged for approximately 15 minutes at 
3000 rpm and were then filtered. Plant parts, including root, 
shoot and leaf tissues, were separately washed with dionized 
water, dried at 65 °C, and weighed. The tissues were then 
ground, ashed in a muffle furnace at 480 °C for 10 hours, and 
dissolved in diluted acid [21]. ICP-OES (Perkin Elmer, Optima 
8300) was used to determine nutrient concentrations.

2.4 Statistical Analysis 

The relationships between soil properties and plant traits 
were analyzed using various regression models (p = 0.05) 
in Sigmaplot software. Differences among treatments were 
analyzed using ANOVAs in SAS 9.1, and Duncan’s test at α 
= 0.05 was used to identify significance differences among 
treatment means. 

3. Results and Discussion

Soil pH was affected by both the rates and timing sulfur ap-
plications (Table 1). For example, the pH values of soil sam-
ples incubated for 40 days after being amended with sulfur 
at rates of 0.5, 1.0, and 2.0 g sulfur per kg soil decreased a 
background value of 7.51 to 6.66, 5.45 and 4.80, respective-
ly. Plant growth stages also had a significant effect on soil pH 
(Table 1).

Table 1. Effect of elemental Sulfur application rates (G S 
kg-1 soil) and timing on soil pH

Sulfur 
rate

Soil pH

At planting At harvest

0 20 40 Mean 0 20 40 Mean

0 7.51Aa 7.44Aab 7.42Ab 7.45Aa 6.99Aa 6.92Aa 6.88Aa 6.93Ab

0.5 7.26Ba 6.75Bb 6.66Bb 6.89Ba 6.30Ba 6.23Ba 6.34Ba 6.29Bb

1 7.22Ca 6.27Cb 5.45Cc 6.31Ca 5.35Ca 5.27Ca 5.17Ca 5.26Cb

2 7.34Ca 5.44Db 4.80Db 5.86Da 3.90Db 3.86Db 4.06Da 3.94Db

Mean 7.33Aa 6.48Ab 6.08Ac 5.63Ba 5.57Ba 5.61Ba
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Averaged across time, soil pH for sulfur application 
rates of 0.0, 0.5, 1.0 and 2.0 g kg-1 soil decreased from 7.45, 
6.89, 6.31 and 5.86 at planting to 6.93, 6.29, 5.26 and 3.94 
at harvest, respectively. The relationships of soil pH to 
incubation time and growth stage suggest oxidation of ele-
mental sulfur occurs gradually and that an incubation time 
of 20 days was not enough for time the elemental sulfur to 
oxidize completely. There was no significant difference in 
soil pH among incubation times for all sulfur application 
rates at harvest (Table 1). This indicates that the elemental 
sulfur had been totally oxidized to sulphate at harvest un-
der conditions of this experiment.

The relationship between sulfur rate and soil pH was 
modelled in order to predict the effects of elemental sulfur 
additions to Bintang Series soils (Figure ‎1). The rela-
tionship between soil pH and sulfur application rate was 
linear at the time of harvest, when soil pH values ranged 
from 6.94 to 3.94. For each unit increase in the rate of 
elemental sulfur application, the soil pH decreased by 
approximately 1.52 units. When averaged across three 
sample dates, the soil pH values were 7.03, 6.29, 5.26 and 
3.94 for sulfur application rates of 0.0, 0.5, 1.0 and 2.0 g 
S kg-1 soil, respectively. The relationship between S appli-
cation rates and soil pH change is of special interest and 
needs to be studied for each specific soil. A previous study 
found that the relationship between S application rate and 
soil pH was best described using an exponential model, in 
which applications of 4 tons of S ha-1 decreased soil pH 
from 7.0 to 4.8, while applications of 12 tons of S ha-1 fur-
ther decreased soil pH to only 4.2 [22].

pH = 6.94 - 1.52 S
R2 = 0.98** 

S application rate (g S kg-1 of soil)

0.0 0.5 1.0 1.5 2.0 2.5
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Figure 1. Soil pH changes in response to elemental sulfur 
application rate

Sulfur applications decreased soil pH and may affect 
the release of soil Fe, so the correlation between soil nu-
trient availability and soil pH was studied. A significant 
correlation of -0.60** was found between soil pH and soil 
iron. Decreasing soil pH increases the release of soil Fe. 
This agrees with the general consensus on the positive ef-
fect of soil acidification on soil Fe solubility [23, 24, 25].

3.1 Soil acidity and Fe Solubility 

The bioleaching of soil nutrients as a function of elemen-
tal sulfur application rate and timing in Bintang Series soil 
was elucidated (Table ‎2). Additionally, since the acidity 
produced by oxidation of elemental sulfur in soil is known 
to increase the solubility of micronutrients [26], the rela-
tionship between soil pH and Fe release for Bintang Se-
ries soil was quantified (Figure ‎2). There is no significant 
change in extractable Fe due to incubation days at plant-
ing at each sulfur rate (Table ‎2). Application of elemental 
S at 1 and 2 g kg-1 significantly increased extractable Fe 
only at incubation days of 20 and 40. For instance the 
concentration of Fe at 40 days of incubation significantly 
increased from 0.11 mg kg-1 in unamended soil to 0.21 
and 0.24 mg kg-1 in soils treated with 1 and 2 g S kg-1 soil, 
respectively. The extractability of Fe also was signifi-
cantly affected by growth stage. For instance, averaged 
across timing, the concentration of Fe increased around 4 
times from planting to harvest for highest sulfur applica-
tion rate. The efficacy of elemental sulfur applications to 
reduce soil pH and increase soil Fe availability has been 
previously documented [26]. Our data are in agreement 
with these results and showed that applications of elemen-
tal sulfur decreased soil pH (Table 1). At the same time, 
decreasing soil pH from 7 to 5 only slightly affected the 
soil Fe concentration. However, under the conditions of 
our experiment, further pH reductions increased Fe solu-
bility in Bintang Series soil (Figure ‎2). This is in line with 
the observations of other researchers [23], who reported low 
soil Fe solubility even under very acidic conditions [23].

Fe = 0.18 + 1.2/(1+(pH/3.97)46.92)
R2 = 0.83**
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Figure 2. Soil Fe concentration as a function of soil pH

Our data was fitted with non-linear regression model, 
in which Fe Concentration = 0.18+1.2/(1+(pH/3.97))46.92, 
R2= 0.83**. The relationship between –Log (Fe Concen-
tration) and soil acidity was fitted with a linear regres-
sion model, in which pFe = 0.25 pH - 0.78, R2= 0.75**. 
Although this function is similar to the stability diagrams 
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for Fe as function of pH that were developed by Khan and 
Mazid (2011) [24], in which Log Fe2+ = 15.75 - (pe + pH) 
- 2pH. However, we found that each unit decrease in soil 
pH corresponded to a 0.25 unit increase in Log(Fe Con-
centration), while Lindsay [23] found the each unit decrease 
in soil pH corresponded to a 2 unit increase in Log(Fe 
Concentration). This difference in the observed rate of Fe 
concentration change due to soil pH reduction can be at-
tributed to differences in soil properties, as well as the as-
sumptions that were considered, between the two studies.

3.2 Fe as an Immobile Nutrient in Corn 

Our data showed that the relationship between elemental 
sulfur application rates and leaf Fe concentrations fol-
lowed a non-linear quadratic regression model (Y = 61.5 
+12.58 X-5.85 X2 R2=0.67*). While increasing elemental 
sulfur application rates to 2 g S kg-1 soil increased soil Fe 
concentrations (Table 2), leaf Fe concentrations increased 
at an elemental sulfur application rate of 1 g S kg-1 soil 
and decreased at an elemental sulfur application rate of 2 
g S kg-1(Figure 3). The same trend was found for Fe con-
centration in the corn stem and root (Figure 3). This re-
flects the fact that corn actively but not passively controls 
Fe absorption from the soil solution. Our finding is in line 
with the Marschner (2012) [1], who stated that both passive 
and active mechanisms function in Fe transport across 
plant cell membranes. In addition, there were differences 
in Fe concentration in different parts of the corn plants. 
While the Fe concentrations in roots ranged from 500 to 
1500 mg kg-1, Fe concentrations in stem and leaves ranged 
from 30 to 42 and 59 to 69 mg kg-1, respectively (Figure 
3). This observation is in agreement with the results of 
Barker and Pilbeam (2007) [25], who reported that Fe is an 
immobile element in corn. The highest concentration of 
leaf Fe, 69 mg kg-1, occurred in leaves at the two inter-
mediate sulfur application rates, and a comparison of Fe 
concentrations in our corn plants to shoot values (50-300 
mg kg-1) [25, 1] accepted as adequate shows that Fe was not 
toxic under the conditions of our experiment.

Table 2. Soil Fe changes in response to elemental Sulfur 
timing (0, 20, and 40 days application before planting) 

and application rates (g S kg-1 soil) at planting and at har-
vest.

Sulfur 
rate

Soil Fe (mg kg -1 soil)
At planting At harvest

0 20 40 Mean 0 20 40 Mean

0 0.21Aa 0.14BCa 0.11Ba 0.15BCa 0.14Ba 0.16Ba 0.13Ba 0.14Ba

0.5 0.14Aa 0.12Ca 0.09Ba 0.12Cb 0.17Ba 0.17Ba 0.14Ba 0.16Ba

1 0.12Aa 0.18Ba 0.21Aa 0.18ABa 0.25Ba 0.18Bb 0.20Bb 0.21Ba

2 0.15Aa 0.25Aa 0.24Aa 0.21Ab 0.94Aab 1.17Aa 0.54Ab 0.88Aa

Y=61.5+12.58X-5.85X2
R

2

= 0.67*
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Figure 3. Relationship of elemental sulfur application rate 
and iron concentration in different parts of corn

3.3 Corn Performance as a Function of Fe Con-
centration 

There was no significant relationship between leaf dry 
weight and leaf Fe concentration. Leaf Fe concentrations 
ranged from 60 to 75 mg kg-1 (Figure 3), while the rec-
ommended range of corn leaf Fe concentrations range 
from 50 to 300 mg kg-1 [1]. However, there is a significant 
relationship, Y = 19.3⁄((1+((X-37.6)/5.4)2)), R2 = 0.695**, 
between Fe concentrations in stem and stem dry weight. 
According to this model, the maximum performance of 
corn, 19.3 g pot-1, was obtained at Fe concentrations of 
37.6 mg kg-1 in the stem (Figure 4). Because maximum 
corn production, in terms of all leaves, stem and root 
weight, was not obtained at maximum Fe content, it can 
be concluded that the Fe was not the main limiting factor 
for corn growth under the conditions of our experiment. 
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Y = 19.3/(1+((X - 37.6)/5.4)2)
R2 = 0.65**
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Figure 4. Relationship between Fe concentration in corn 
and corn performance

4. Conclusion

As soil pH decreased by 1.52 units with each unit addition 
of elemental sulfur, it can be concluded that elemental 
sulfur is an appropriate means for lowering pH in Bin-
tang Series soils. In addition, our results demonstrated 
that extractable Fe was not significantly affected by soil 
acidification due to elemental sulfur application until soil 
pH decreased to approximately 4, at which point hydrous 
oxide precipitates, and applications of 2 g S kg-1 soil in-
creased the CaCl2 extractable Fe by 5.57 times. Moreover, 
our results showed that this increases in soil Fe solubility 
failed to increase Fe concentration in corn leaves, stem 
and root. In conclusion, applying of elemental sulfur at a 
rate of 0.5 g S kg-1 soil is recommended to improve corn 
performance by 45 percent while posing minimal risks to 
corn production and groundwater quality.
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