Structure analyses  and expression pattern  of the ERF transcription factor family in Coffea arabica
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Abstract

Members of the ERF Family of Transcription Factors play an important role in plant development and  gene expression that regulates responses to biotic and abiotic stress. This work identified 36 ERF family genes in Coffea arabica within the AP2/ERF full domain, using the EST-based genomic resource of the Brazilian Coffee Genome Project. The ERF family genes were classified into nine of the ten existing groups through phylogenetic analysis of the deduced amino acid sequences and comparison with the sequences of the ERF family genes in Arabidopsis. In addition to the AP2 domain, other conserved domains were identified, typical of members of each group. The in silico analysis and expression profiling showed high levels of expression for libraries derived from tissues of fruits, leaves and flowers as well as for libraries subjected to water stress. These results suggest the participation of the ERF family genes of C. arabica in distinct biological functions, such as control of development, maturation and responses to water stress. The results of this work imply in the selection of promising genes for further functional characterizations that will provide a better understanding of the complex regulatory networks related to plant development and responses to stress, opening up opportunities for coffee breeding programs. 
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Introduction

With an annual worldwide production of 143.4 million sacks of grains in 2015/2016 (ICO 2016), coffee is an important agricultural commodity cultivated in more than 80 countries, which represents a significant source of income mainly for developing tropical countries (Pay, 2009). Brazil is the largest world producer and, together with Vietnam and Colombia, accounts for more than 50% of the world production (ICO 2016).  Among the 124 identified species, only two are economically important: Coffea arabica and Coffea canephora (Hamon et al., 2015). The world market shares for these two species are 70% and 30%, respectively. 
During their life cycle, crops are exposed to various biotic and abiotic stresses that limit their growth, development and production (Wang et al., 2003; Yu et al, 2016). To survive in stress conditions, plants have developed a complex molecular signaling network (Fujita et al., 2006; Lakhwani et al., 2016). Gene regulation by transcription is one of the main control points of biological processes in which Transcription Factors (TFs) play a central role (Sharma et al., 2010; Yamasaki et al., 2013). 
The transcription factors belonging to the Ethylene Responsive Factor (ERF) family are part of the AP2/ERF superfamily, which also contains the AP2 and RAV families and consists of about 60-70 amino acids involved in DNA binding (Riechmann et al., 2000). The ERF family proteins contain a single AP2 domain and the AP2 family proteins contain two repeated AP2 domains (Jofuku et al., 1994). In addition to the single AP2 domain, the RAV family proteins contain a B3 domain that is a DNA-binding domain (Kagaya et al., 1999; Nakano et al., 2006). The ERF family is further divided into two subfamilies: the ERF and the CBF/DREB (Jofuku et al, 1994; Sakuma et al., 2002; Nakano et al., 2006).
Generally, the ERF family genes are partially involved in responses to biotic stress by recognizing the cis-acting sequence AGCCGCC, known as GCC-box (Hao et al., 1998; Licausi et al., 2010). The CBF/DREB subfamily genes play a crucial role on the plant responses to abiotic stress by recognizing the dehydration responsive element (DRE) with a central motif A/GTCGAC (Shinozaki, 1994; Thomashow, 1999; Shinozaki, 2006). The roles of the ERF and CBF/DREB proteins on the development and response to biotic and abiotic stresses in different plant species have been widely studied. Combining molecular genetic approaches, a series of ERF family regulatory genes involved in different metabolic pathways have been examined, including those related to drought (Dubouzet et al., 2003; Yamaguchi and Shinozaki, 2006; Mawlong et al., 2014; Yu et al., 2016), salinity (Dubouzet et al., 2003, Fu et al., 2007), low temperatures (Yang et al, 2005; Qin et al, 2007; Du et al, 2016), and diseases (Gutterson and Reuber, 2004; Charfeddine et al., 2015). In addition to responses to diverse stress types, the ERF family genes are also involved in the development of roots (Banno et al., 2001), germination (Pirrello et al., 2006; Yoong et al., 2016), and development and maturation of fruits (El-Sharkawy et al., 2009; Zhang et al., 2016).
Transcription Factors of the ERF subfamily and the CBF/DREB subfamily were identified in diverse plant species, including arabidopsis (Liu et al., 1998; Sakuma et al., 2002; Nakano et al., 2006), rice (Nakano et al., 2006; Sharoni et al., 2011), cotton (Jin and Liu, 2008; Champion et al., 2009), soybean (Zhang et al., 2008), poplar (Wang et al., 2016), grape (Zhuang et al., 2009; Licausi et al. 2010), corn (Zhuang et al., 2010), tomato (Sharma et al., 2010), apple (Zhuang et al., 2011), citrus (Ito et al., 2014) and banana (Lakhwani et al., 2016). Few studies on the characterization of the ERF family members in Coffea ssp were published (Lima et al., 2011). Bustamante-Porras et al. (2005) isolated the first ERF family member in C. canephora, whose expression is involved in processes of cell differentiation and fruit maturation. In C. arabica, no member of the ERF family was described until this moment. 
Research on genomics and transcriptomics in coffee has gained more prominence. The Brazilian Coffee Genome Project (Vieira et al., 2006; Mondego et al., 2011) has been developed to investigate the coffee characteristics through complementary DNA sequencing (cDNA). This database has a set of 265,889 expressed sequence tags (ESTs) from different tissues, different developmental stages and different environmental conditions for C. arabica, C. canephora and C. racemosa. Therefore, the aim of this work was to identify and characterize possible ERF transcription factors in C. arabica from the ESTs database of the Brazilian Coffee Genome Project. 

Material and Methods

Identification of ERF family genes in Coffea arabica
In order to isolate the ERF family genes in C. arabica, searches on the Brazilian Coffee Genome Database (http://bioinfo03.ibi.unicamp.br/cafe/) were performed using the AP2 domain of the Solanum lycopersicon ERF4 protein (GENBANK: AAO34706), with the BlastP software (Altschul et al., 1997). More than 265,889 ESTs sequences are available in this database, which were obtained from forty three cDNA libraries, most of them of C. arabica. The cDNA was obtained from different tissues of the coffee plant (leaves, roots, flowers, seeds, fruits, among others) in different stages of development and subjected to various stress conditions (Vieira et al., 2006; Mondego et al., 2011). In order to increase the chances to identify new ESTs, searches were also performed using the following keywords: ERF, Ethylene Response Factor and EREBP. The sequences were compared with other sequences deposited in GenBank database using the BlastX and the BlastP programs (National Center for Biotechnology Information - NCBI - http://www.ncbi.nlm.nih.gov), in order to confirm their identity. The deduced sequence of amino acids of each contig was obtained by the ORF Finder software (Open Reading Frame Finder - NCBI -https://www.ncbi.nlm.nih.gov/orffinder/). The first collected sequences that presented incomplete AP2 domain or incorrect ORFs were excluded from analysis. The protein sequences of the AP2 domain were aligned by the Clustal Omega algorithm version 2.0.3  (Sievers et al., 2011).

Phylogenetic analysis

The AP2 domain was aligned by the Clustal Omega algorithm version 2.0.3 (Sievers et al, 2011). The phylogenetic tree was constructed using the neighbor-joining (NJ) method with pair-wise deletion by the MEGA software version 6.06 (Tamura et al., 2013). To test the reliability of the analysis 1,000 replicates of bootstrap were used. 

Determination of conserved motifs

The identification of conserved motifs outside of the highly conserved AP2 domain was performed in protein sequences of C. arabica using the Clustal Omega algorithm version 2.0.3  (Sievers et al., 2011) and Meme Suite version 4.11.2 (http://meme-suite.org/tools/meme), with the following parameters: ideal size: 6-80 amino acids; any number of repetitions for motifs and maximum number of motifs = 25. The resulting motifs were verified in the databases of NCBI (http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and PROSITE (http: //www.expasy.org) to verify their significance.

Gene Expression profiling by electronic Northern Blot

The analysis of in silico qualitative gene expression profiling was performed by the Northern Blot technique.  The frequency of reads in each library was normalized according to Lima et al. (2011). The e-Northern Blot was performed using Genesis software, version 1.7.5.

Results 

Identification of the ERF Family Genes and Phylogenetic Relationships between the ERF Family in C. arabica and Arabidopsis

The in silico analysis comprised a data mining process within the Coffee Genome Project Database to identify the ERF family members in C. arabica. For this, the reads that possibly encode the AP2 domain in C. arabica were selected. The search by keywords and through the AP2 domain of ESTs enabled the identification of 38 Transcription Factors encoding ERF proteins. Among these 38 possible ERFs, it was observed that only 36 ERF proteins contained a full AP2 domain, while the other 2 ERFs contained only a part of the AP2 domain and, therefore, were excluded from analysis. The identity of the ERF proteins in C. arabica, with their homologs in Arabidopsis, varied from 63-90% (Table 1). The conservation of the sequence in comparison with arabidopsis was higher in the Group X members, varying from 75-90%. Lower values were observed in the Groups III (65%) and VI (63%). 
A phylogenetic reconstruction was obtained from the identification of 122 ERFs in Arabidopsis, previously described by Sakuma et al., (2002). The phylogenetic tree was constructed by the neighbor-joining technique using the 58-59 sequences of amino acids of the AP2 domain in C. arabica and Arabidopsis. The ERF sequences are highly conserved between species. It favored the distinction of the 10 main groups, named as Groups I-X by Nakano et al., (2006). According to Figure 1, the comparative analysis of the phylogenetic tree for Arabidopsis and C. Arabica grouped a high number of identified sequences in C. arabica (22.22%, 8 sequences of 36) together with the arabidopsis sequences belonging to the Groups VII and IX. In C. arabica, a lower amount of proteins was grouped into the ERFs of the Arabidopsis belonging to the Groups I and VIII (13.89%, 5 sequences), followed by the Groups III and IV (8.33%, 3 sequences). The ERF groups with fewer members in C. arabica were X, II and VI (5.56%, 2.78% and 2.78%; related to the sequences 2, 1 and 1, respectively). No member of C. arabica was found in the Group V and in the Sub-Groups VI-L and Xb-L. These two sub-groups are characterized in Arabidopsis by a low homology in the C-terminal region of the AP2/ERF domain (Champion et al., 2009). 
The ERFs were divided into two subfamilies based on similarity of the amino acids sequences. It was identified 12 putative ERFs as members of the DREB subfamily (Groups I, II, III and IV), in comparison with 57, 40, 75 and 58 in Arabidopsis, grape, poplar and rice, respectively. It was identified 24 encoding genes within the ERF subfamily (Groups VI, VII, VIII, IX, X) in comparison with 65, 82, 134 and 87 in Arabidopsis, grape, poplar and rice, respectively. The organization of the ERF family genes in C. arabica is showed in Table 2 along with the comparative distribution of Arabidopsis, grape, poplar and rice.
In order to study the phylogenetic relationship between the ERF family genes of C. arabica and Arabidopsis, multiple analyses were realized with the alignment of the deduced sequences of amino acids of the AP2 domain. The alignment indicated that the residues Gly-4, Arg-6, Glu-16, Trp-28 and Gly-30 are completely conserved among all proteins within the ERF family in C. arabica and Arabidopsis. In addition, more than 95% of the ERF family members contain the conserved residues Arg-8, Gly-11, Ile-17, Arg-18, Arg-26, Leu-29, Ala-38, Ala-39, Asp-43 and Asn-56. As previously demonstrated by Sakuma et al. (2002), the ERF gene subfamily include two main residues of amino acids, the alanine (A) at position 14 and the aspartate (D) at position 19, which possibly contribute to a functional activity of binding to GCC-box in many ERFs. The CBF/DREB family contains a valine (V) and a glutamic acid (E) at positions 14 and 19, respectively. In the DREB subfamily, all genes present the conserved residue Valine14 and, at position 19, the genes CaERF01-05 contain 1 Leucine (L) and the genes CaERF06-12 contain 1 Glutamic Acid (E). The C-terminal region of the AP2/ERF domain of the CaERF34 protein showed low homology with the region of consensus with other genes (Figure 2). This region corresponds to the half of terminal α-helix (Allen et al, 1998), which includes the highly conserved residues Asp-43 and Asn-57. In general, the ERF family showed significant similarity to the remaining domain. 

Distribution of conserved motifs 

In general, the regions in Transcription Factors outside the DNA-binding domain contain important domains that are involved in transcription activities as the protein-protein interactions, which may be involved in nuclear localization (Liu et al., 1999). Such functional domains are often conserved among members of a subgroup within large families of transcription factors in plants. Probably these motifs are sharing the same functions (Kranz et al., 1998; Reyes et al., 2004; Nakano et al., 2006).
In order to relate the putative ERFs in C. arabica to biological functions, other conserved motifs (CM) outside the AP2/ERF region were investigated on the deduced sequences of amino acids. Most members of the same group shared one or more motifs outside the AP2 domain (Figure 3). For instance, the Group I comprises 5 ERFs (CaERF01-05) and contain 5 conserved motifs (Figure 3). Except CaERF05, the members of this group contain the CMI-1 and CMI-2 motifs in the C-terminal region. The CaERF06 gene belonging to the Group II, unique member identified in this work, contains the CMII-1motif in the C-terminal region, adjacent to the AP2 domain. Belonging to the Group III are the CaERF07-09 genes, which contain the CMIII-1 motif in the C-terminal region. In addition to the CMIII-1 motif, the CaERF08 gene contains CMIII-2 and CMIII-4, the last identified as the LWSY conserved motif in the OsDREB1A/B/C and AtCBF3/DREB1A (Dubouzet et al., 2003). The CaERF09 represents the CMIII-6 and the CMIII-7 motifs. In the Group IV (CaERF10-12) only the CMIV-2 motif was found in the CaERF10 and CaERF11 genes. The CMIV-2 motif includes a putative nuclear localization signal (Liu et al., 1998).
The CaERF13 gene, unique of the Group VI, has two proteins that share the CMVI-1 and CMVI-2 conserved motif on the N-terminal region. The Group VII was firstly described by Tournier et al., (2003) and is characterized by the presence of one highly conserved motif in the N-terminal region (MCGGAII/L). Within this group, 8 members were found in C. arabica. The EAR motif (CMVIII-1) (ERF associated with amphiphilic repression) was found in members of the Group VIII, in the ERFs CaERF22 and CaERF23, which also contain the CMVIII-2 motif. The Group IX is composed by 8 genes (CaERF27-34). The CaERF27-30 genes contain only the CMIX-3 motif while the CaERF32 gene contains only the CMIX-2 motif. The CMIX-2 and CMIX-3 motifs are putative acidic regions that may function as a transcription activation domain (Fuijimoto et al, 2000). The CMIX-3 motif corresponds to a conserved sequence that was referred previously to a DMLV motif (Gutterson and Reuber, 2004). In addition to the CMIX-3, the CaERF32 gene contains the CMIX-5 and CMIX-6 motifs that are probably a MAP kinase phosphorylation site, located at the C-terminal region of the protein (Fujimoto et al., 2000). The Group X is represented by the CaERF35 and CaERF36 genes. The members of this group contain one CMX-1 conserved motif in the N-terminal region, such as the CaERF35, whereas the CaERF36 presents no conserved motif. 

In silico gene expression profiling of the transcription factors of the ERF family in Coffea arabica

In order to assess the differences among  transcripts of different tissues or organs, the ERF expression profiling was obtained in silico by e-Northen in the C. arabica libraries. High levels of expression were observed in libraries derived from tissues of fruits, leaves and flowers (Figure 4). The ERFs of the cDNA libraries from the tissues subjected to different types of stresses were also detected, however, with fewer transcripts than those from the tissues of diverse parts of the plant and different stages of development. Transcripts were detected in the majority of the evaluated libraries for the ERFs CaERF20, CaERF21 and CaERF23. However, the majority of the 36 transcription factors of the ERF family were detected in specific libraries, showing that they are tissue-specific. This is the case of CaERF03, CaERF08, CaERF12, CaERF18, CaERF22, CaERF26, CaERF31 and CaERF36, which are expressed only in fruits. On the other hand, the CaERF03, CaERF08, CaERF12, CaERF18, CaERF22, CaERF26, CaERF31 and CaERF36 genes are expressed only in flowers, leaves and roots. Expression profiling in libraries subjected to water stress were observed for CaERF06, CaERF07, CaERF11, CaERF21 and CaERF23; the first three ERFs showed a higher expression in this library.

Discussion

Transcription factors are the principal regulators of biological factors and emerged as a powerful tool to manipulate complex metabolic pathways (Grotewolda, 2008). Using these proteins on plant breeding programs involves knowledge on their role in gene regulatory networks. The ERF family of transcription factors presents a highly conserved element including the AP2/ERF domain, responsible by the DNA binding activity and important to plant development (Ohta et al., 2001; Sakuma et al., 2002, Cao et al., 2006). Nakano et al., (2006) have systematically studied the phylogeny, the structures and the conserved motifs of the ERF family in Arabidopsis and rice. In order to obtain more information on this family in C. arabica, this present work identified and analyzed 36 possible ERF proteins from the EST database in C. arabica, which is available at the Brazilian Coffee Genome Project (Vieira et al., 2006; Mondego et al., 2011). 
The AP2 conserved domains of Arabidopsis were used to group their homologs in C. arabica. The majority of the sequences in C. arabica are grouped into Groups VII and IX followed by the Groups I and VIII. Only few sequences were grouped into Groups III, VI, X, II and VI. However, the Group VII represents about 4.1% of the family in Arabidopsis (Nakano et al, 2006), 2.46% in grape (Licausi et al., 2010), 9.56% in Poplar (Wang et al., 2016) and 10.34% in rice (Nakano et al., 2006). This group represents more than 22% of the proteins containing the single AP2 domain, found in the Coffee Genome database. In this work, from the ten main groups identified in the ERF family in Arabidopsis, nine occurred in C. arabica. Therefore, the methodology used by Nakano et al, (2006) is applicable in this species. The presence of the majority of groups and subgroups in the two dicot species, as well as in monocot species suggests that many of the genes predate the divergence between monocotyledonous and dicotyledonous (Sharma et al., 2010). On the same way, some groups and subgroups are present in only one specie, for instance, the Groups XI-XIV occur only in the ERF family in rice, excluding Arabidopsis and other dicot species. It suggests that these groups have evolved or were lost in a certain species after divergence (Zhang et al., 2008).  
Despite the great number of ESTs already analyzed, the number of ERFs found in C.  arabica was lower than in Arabidopsis and rice, which contain 122 and 129 ERF family members, respectively (Nakano et al., 2006). Zhang et al, (2008) showed that although soybean has a large genome (1.115 Mb), the structure and phylogeny of the AP2/ERF superfamily was similar to Arabidopsis and rice. The same was observed in complete genomes as poplar (Wang et al, 2016) and grape (Zhuang et al., 2009). C. arabica is an allotetraploid species (2n=4x=44) formed by a recent (about 1 million years) natural hybridization between the diploid species: C. eugenioides and C. canephora (Lashermes et al., 1999; Clarindo and Carvalho, 2009). Because the sequencing and annotation of the C. arabica genome is still incomplete and the sequences containing only a part of the AP2 domain are excluded, it is difficult to predict the size of the ERF gene family in this species. However, it tends to be similar in size to other plant organisms. 	Comment by Giuliano Degrassi: Please check if this is correct
The structural analysis revealed that all EFR proteins contain conserved Ala-14 and Asp-19, whereas the DREB proteins contain Val-14 and Glu/Leu-19. The comparative analysis of the amino acids residues of the ERF/AP2 domain in C. arabica with the ERF family proteins in Arabidopsis showed that the AP2/ERF domains were well conserved between the two species. These conserved amino acids probably play an important role in the ERF gene family, where they can be involved with different ways of contact with DNA. According to Allen et al (1998), the AP2/ERF domain recognizes the DNA by the conserved residues arginine and tryptophan, located into β-sheets. The Ala-37 in the ERF domain plays an important role in the stability of the ERF domain or DNA binding to the DRE element or GCC-box (Liu et al. 2006).
The transcription factors generally contain conserved domains that are outside the DNA binding domain, but functionally important (De Bodt et al., 2003; Arora et al., 2007). The distribution of the specific motifs into proteins belonging to the specific groups of the phylogenic tree was also observed for the ERF proteins in C. arabica, which demonstrated structural similarities within the same subgroup. The majority of the ERF sequences identified in C. arabica share one or more motifs outside the AP2 domain with their homologs in Arabidopsis, such as in rice and soybean (Nakano et al., 2006; Zhang et al., 2008). For instance, Ohta et al., (2001) identified an EAR motif (ERF related to amphiphilic repression), which works as a repression domain. The EAR motif of conserved sequence, (L/F)DLN(L/F)xP, identified in this present work as CMVIII-1, is found in the C-terminal regions of the Group VIII. This motif was already identified in various repressors, including ZAT7, 10, 12, ERF3, AUX/IAA, NIMIN1, HSI2, SUPERMAN (Arabidopsis), NRR (rice), ZFT1 (tobacco) and ZPT2-3 (petunia), which play different roles - from the plant development to stress tolerance (Tiwari et al., 2004; Hiratsu et al., 2004; Kazan, 2006). Currently the DEAR1, a DREB protein containing the EAR motif, appeared as a protein repressor of binding to dehydration responsive element, which mediates responses to biotic and abiotic stresses (Tsutsui et al., 2009). The CMIV-2 motif in the N-terminal region could work as a nuclear localization signal (NLS) (El Kayal et al., 2006). Recently, it has been considered essential in Arabidopsis that CBF1 bind to DNA, since it is indispensable for transcriptional activity (Canella et al., 2009). A putative nuclear localization signal (KRKRK) was identified in ERF proteins (Van Raemdonck et al., 2005, El-Sharkawy et al., 2009). The comparative analysis of the conserved motifs in C. arabica and Arabidopsis suggests that the protein functions were conserved and diverged during the evolution of the ERF gene family. Sharma et al., (2010) showed that some motifs are specific in spermatophytes whereas many motifs have been identified in non-vascular plants, bacteria, fungi and animals. The presence of these conserved motifs in evolutionarily different organisms indicates that they play an important functional role, while specific motifs in spermatophytes may have later evolved to fulfill specific functions.
In this present work, 8 ERFs belonging to the Groups I, III, VI, VII, VIII, IX and X were expressed only in fruit libraries. Although the ERF transcription factors are regulated by a series of physical and chemical stimuli, many ERFs are responsive to ethylene, and therefore they may be involved in the maturation process of climacteric fruits. Tournier et al., (2003) demonstrated that the SlERF2, an ERF that binds to the GCC-box, plays an important role during the tomato maturation process. The same was observed by Yin et al., (2010) for different ERFs expressed during the kiwi maturation process. Pereira et al., (2005) showed that the autocatalytic production of ethylene in fruits of green C. arabica is very low; however, it increases considerably during the initial stage of ripening. Such observations demonstrate the climacteric nature of the maturation of C. arabica fruits and the importance of ethylene in this process. Bustamante-Porras et al., (2005) isolated an ERF gene (CoERF) in C. canephora, with expression during fruit differentiation and maturation. Comparing this CoERF (GENBANK: AY522505) with the CaERF17 in C. arabica, it shared 97% of identity and 98% of similarity. Given that C. canephora is one of the ancestors of C. arabica, the CaERF17 was expected to be expressed in fruits. However, reads were not found in fruits libraries for CaERF17. In allotetraploids, genes are expected to be present in two homologous forms, highly similar, but not identical (Petitot et al., 2008). The redundancy of genes can lead to gene silencing or functional divergence of duplicated genes (Chen and Ni 2006). Vidal et al., (2010) found that,  in some cases, apparently a homolog of C. canephora is recruited to be expressed in certain tissues, while C. eugenioides homologs are silenced. On this way, differences in expressions in C. arabica can be attributed to different sub-genomes of the ancestors of C. canephora or C. eugenioides. These genes may be good candidates for future characterizations that would help to understand regulation processes during development and maturation of fruits in Coffea ssp.
The majority of the ERFs have demonstrated an increase in plant tolerance to biotic and abiotic stresses (Park et al., 2001; Guo et al., 2004; Zhang et al., 2009). In this work, the ERFs CaERF06, CaERF07, CaERF11 presented high expression in libraries subjected to water stress. These genes belong to the DREB subfamily, which play an important role in plant tolerance to abiotic stress, recognizing the Dehydration Responsive Element (DRE), the core motif A/GCCGAC (Liu et al, 1998). Studies have showed that the overexpression of DREB genes in Arabidopsis activate the expression of several genes related to stress, thus improving the tolerance to drought, salinity and low temperature (Liu et al. 1998; Sakuma et al., 2006; Bouaziz et al., 2015). For example, the overexpression of the AoDREB gene of Asparagus officinalis L in transgenic Arabidopsis induced the expression of genes rd29A and COR15A, resulting in higher tolerance of transgenic plants to drought and salinity (Liu et al., 2010). On this way, these genes are promising for further studies that will help to understand the regulation mechanisms of the ERF family related to responses of C. arabica to different stresses. 
Previous works suggest the hypothesis that a group-specific expression profile are occurring. For example, from 8 genes belonging to the Group VII, 5 are expressed in fruits, where the ERFs CaERF14, CaERF15 and CaERF18 present a high relative expression. This group has been associated to fruit maturation. LeERF2 in tomato (Tournier et al., 2003), MdERF1 in apple (Wang et al., 2007), PsERF2a and PsERF2b in plum (El-Sharkawy et al, 2009) and AdERF10 and AdERF14 in kiwi (Yin et al, 2010) are proteins that are expressed during the maturation of fruits belonging to Group VII. The ripening induction was also related in the Group VIII in plum (El-Sharkawy et al., 2007) and grape (Licausi et al., 2010). Other works have demonstrated that members of the Group IX present induction of expression when subjected to diverse pathogen attacks. Constitutive overexpression of the AtERF2 of the IXa subgroup probably induced the gene expression of the PDF1.2 gene (Brown et al, 2003). On the same way, the overexpression of the AtERF1 gene in Arabidopsis, a homolog next to AtERF2, gives resistance to Botrytis cinerea, Sclerotinia sclerotiorum and Erysiphe orontii in Arabidopsis (Gutterson and Reuber, 2004). Anderson et al., (2010) demonstrated that the overexpression of the MtERF1-1 gene in roots of Medicago truncatula increased the resistance to Rhizoctonia solani, as well as to Phytophthora medicaginis. Thus, the genetic profile expression suggests a functional level of specialization for the investigated ERF Groups, although it is expected a high degree of overlapping functions in large plant genes families (Soltis et al., 2008; Semon and Wolfe, 2007). On this way, the presence of distinct expression profiles of the ERFs observed in C. arabica by in silico analysis may be associated to the phylogenetic distance among sequences, that is, the ERF phylogenetically related proteins have more similar patterns of expression than the divergent sequences.
The ERF gene family plays a crucial role in the development regulation, as well as in the responses to environmental stresses. With the sequenced transcriptome of C. arabica by a Brazilian consortium (Brazilian Coffee Genome Project), 36 ERFs were identified in C. arabica in this work, where 12 ERFs belong to the DREB subfamily and 24 to the ERF subfamily. The gene expression profiling showed high levels of expression in libraries derived from tissues of fruits, leaves and flowers as well as in libraries subjected to water stress. From the comparison of the homologs with other species, whose genome was sequenced together with expression profiles, it is suggested that the ERFs of C. arabica is involved in different biological functions that are mediated by ethylene, such as control of development, maturation and responses to water stress. C. arabica is a perennial species whose fruits have commercial value. Knowledge on the role of the ERF transcription factors in processes of development and maturation of this species opens opportunities for investments in plant breeding programs to increase the production and the coffee bean quality.
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Table 1 - Coffea arabica sequences with identity to ERF gene family in Arabidopsis thaliana.
	Arabidopsis thaliana

	
	
Coffea arabica


	Gene
	Gene
	 
	ERF
	Coverage (%)
	e-value
	Identity (%)

	AT1G78080
	RAP2.4
	
	CaERF01
	99
	1,00E-68
	81

	AT1G78080
	RAP2.4
	
	CaERF02
	97
	2,00E-63
	81

	AT1G78080
	RAP2.4
	
	CaERF03
	100
	2,00E-58
	80

	AT1G78080
	RAP2.4
	
	CaERF04
	100
	5,00E-62
	80

	AT1G78080
	RAP2.4
	
	CaERF05
	100
	2,00E-34
	81

	AT5G67190
	AtERF10
	
	CaERF06
	100
	3,00E-39
	74

	AT5G52020
	AtERF25
	
	CaERF07
	63
	8,00E-30
	71

	AT5G52020
	AtERF25
	
	CaERF08
	85
	6,00E-45
	65

	AT244940
	AtERF34
	
	CaERF09
	65
	6,00E-48
	77

	AT240340
	DREB2C
	
	CaERF10
	84
	9,00E-49
	68

	AT240340
	DREB2C
	
	CaERF11
	78
	8,00E-38
	70

	AT1G75490
	DREB2D
	
	CaERF12
	87
	3,00E-37
	69

	AT4G27950
	CRF4
	
	CaERF13
	71
	3,00E-30
	63

	AT3G16770
	ATEBP/RAP2.3
	
	CaERF14
	96
	8,00E-34
	72

	AT3G16770
	ATEBP/RAP2.3
	
	CaERF15
	93
	2,00E-29
	73

	AT3G16770
	ATEBP/RAP2.3
	
	CaERF16
	96
	2,00E-29
	68

	AT3G16770
	ATEBP/RAP2.3
	
	CaERF17
	62
	1,00E-28
	81

	AT3G16770
	ATEBP/RAP2.3
	
	CaERF18
	90
	6,00E-27
	81

	AT3G14230
	RAP2.2
	
	CaERF19
	99
	8,00E-33
	77

	AT3G16770
	ATEBP/RAP2.3
	
	CaERF20
	85
	8,00E-28
	77

	AT3G16770
	ATEBP/RAP2.3
	
	CaERF21
	96
	1,00E-27
	84

	AT3G15210
	AtERF4/RAP2.5
	
	CaERF22
	42
	3,00E-30
	74

	AT3G15210
	AtERF4/RAP2.5
	
	CaERF23
	41
	5,00E-30
	74

	AT1G50640
	AtERF3
	
	CaERF24
	82
	2,00E-42
	76

	AT5G44210
	ATERF9
	
	CaERF25
	97
	4,00E-30
	76

	AT1G28360
	ATERF12
	
	CaERF26
	68
	1,00E-26
	85

	AT4G17500
	AtERF1
	
	CaERF27
	75
	9,00E-53
	75

	AT4G17500
	AtERF1
	
	CaERF28
	86
	1,00E-44
	73

	AT4G17500
	AtERF1
	
	CaERF29
	79
	5,00E-52
	74

	AT3G23240
	ERF1
	
	CaERF30
	82
	4,00E-31
	73

	AT4G17490
	AtERF-6
	
	CaERF31
	97
	5,00E-42
	77

	AT4G17490
	AtERF-6
	
	CaERF32
	84
	4,00E-31
	78

	AT4G17490
	AtERF-6
	
	CaERF33
	93
	7,00E-34
	74

	AT3G23240
	ERF1
	
	CaERF34
	54
	2,00E-15
	73

	AT5G61890
	ABR1
	
	CaERF35
	94
	2,00E-33
	90

	At2G33710
	AtERF112
	 
	CaERF36
	49
	4,00E-28
	75







Table 2 – Number of genes in each Group of the ERF Family in C. arabica and in species whose genome was completely sequenced and size of the respective genomes.

	Family       Subfamily
	Group
	Arabidopsisa 
	Vitisb
	Poplarc 
	Ricea
	Coffea

	ERF                
	I
	10
	5
	8
	9
	5

	
	II
	15
	8
	51
	16
	1

	                   DREB
	III
	23
	22
	6
	27
	3

	
	IV
	9
	5
	10
	6
	3

	
	
V
	5
	11
	42
	8
	0

	
	VI
	8
	2
	20
	6
	1

	                
	VI-L
	4
	5
	-
	10
	0

	                 ERF
	VII
	5
	3
	12
	15
	8

	
	VIII
	15
	11
	39
	15
	5

	
	IX
	17
	40
	19
	18
	8

	
	X
	8
	10
	2
	12
	2

	
	Xb-L
	3
	0
	-
	3
	0

	Total ERFs
	
	122
	122
	209
	145
	36

	Genome Size (Mb)
	125
	487
	465
	430
	1.300


aNakano et al, (2006), bLicausi et al, (2010) and c Wang et al, (2016).
[image: Imagemárvore]
Figure 1 – Phylogenetic tree of the ERFs in C. arabica and arabidopsis. The amino acids sequences of the AP2 domain of 36 ERF genes of C. arabica and arabidopsis were aligned by Clustal Omega and the phylogenetic tree was constructed with MEGA 6.06 using the NJ method. (DREB subfamily: ○ - Group I, □ - Group II,  [image: Imagem1] - Group III, [image: Imagem2] - Group IV; ERF subfamily:  ▼- Group VI, ● – Group VII, ■  - Group VIII, ▲ – Group IX, [image: Imagem3] - Group X).


[image: Imagem12]
Figure 2 – Alignment of the AP2 domains from the ERF proteins of C. arabica. Dark and light blue shading indicates identical and conserved amino acids residues, respectively. The black bar and arrows represent the predicted α-helix and β-sheets regions, respectively. CaERF01-12 belongs to the DREB subfamily; CaERF13-36 belongs to the ERF subfamily.
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Figure 3 – Distribution of the conserved motifs in the ERF family in Coffea arabica. The motifs were identified in C. arabica and classified according to the classification proposed by Nakano et al, (2006). The position and order of the symbols corresponds to the actual conserved region in the protein sequence.
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Figure 4 – In-silico expression profiling of the ERFs in Coffea arabica. The number of reads was normalized in each library and values were represented by the relative expression scale. Libraries: AR1, LP1-Plantlets and leaves treated with araquidonic acid; BP1-Suspension cells treated with acibenzolar-S-methyl; CB1- Suspension cells treated with acibenzolar-S-methyl and brassinoesteroids; CL2-Hypocotyls treated with acibenzolar-S-methyl; CS1- Suspension cells treated with NaCl; EA1, IA1, IA2-Embryogenic calli; EB1-Zygotic embryo (immature fruits); EC1- Embryogenic calli from Coffea canephora; EM1, S13- Germinating seeds (whole seeds and zygotic embryos); FB1. FB2, FB4- Flower buds in different developmental stages; FR1, FR2- Flower buds + pinhead fruits + fruits at different stages; FR4- Fruits (Coffea racemosa); FV2- Fruits, stages 1, 2 and 2 (Coffea racemosa); CAI, ICI, PCI-Non embryogenic calli with and without 2, 4 D; LV4, LV5- Young leaves from orthotropic branch; LV8, LV8- Mature leaves from plagiotropic branches; NS1- Roots infected with nematodes; PAI-Primary embryogenic calli; RMI-Leaves infected with leaf miner and coffee leaf rust; RT3-Roots; RT5- Roots with acibenzolar-S-methyl; RT8- Suspension cells with stressed with aluminum; RX1- Stems infected with Xylella ssp.; SH1-Leaves from water deficit stresses plants (Coffea canephora); SH2-Water deficit stresses field (pool of tissues); SS1-Well-watered field (pool of tissues).
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