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This study performs the energy analysis of a real industrial building, 
located near Naples (South Italy). The used approach includes three 
phases: development of the energy model, model calibration based on 
monitored data and optimization of photovoltaic (PV) integration. Moni-
tored data provide the monthly overall electricity demands of the facility 
for different years, while the load factors of industrial devices are not 
available. Thus, the assessment of hourly and daily trends of electricity 
demands and internal heat loads is not possible from monitored data. In 
order to solve such issue, the energy model of the building is developed 
under EnergyPlus environment, taking account of the existing PV system 
too. A genetic algorithm is run by coupling EnergyPlus and MATLAB® 
to properly calibrate the hourly load factors of the devices in order to 
achieve a good agreement between simulated and monitored values of 
monthly electricity demands. Finally, the installation of further PV panels 
is investigated to optimize the photovoltaic integration with a view to 
cost-effectiveness. The robustness of the optimization process is ensured 
using the calibrated energy model, which provides reliable hourly values 
of building electricity demand. Results show that the electricity produced 
by the additional PV panels is around 160 MWh per year, while the pay-
back period is around 10 years demonstrating the financial viability of PV 
integration.
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1. Introduction

Buildings are responsible for about 36% of total 
world energy consumption and for about 40% 
of CO2-equivalent emissions[1]. At EU level, the 

situation is similar[2]. For this reason, one of the main 
routes to follow in order to preserve the world we live in 
is the sustainable development of the building sector, with 
the aim of reducing both polluting emissions and energy 
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consumption. As mentioned, a large share of the latter is 
due to building facilities, from residential to industrial 
ones. The optimization of building energy performance 
is crucial to pursue sustainability. That is why, many 
countries have embarked on a common path for decades, 
in order to reduce the environmental impact of the 
building sector[3][4][5][6]. For the same reason, over the 
last decades, there have been several studies focused on 
building energy modeling, calibration and optimization[7]

[8], using different approaches, methodologies and 
optimization algorithms, in particular, numerical 
evolutionary ones, such as genetic algorithms[9][10], particle 
swarm optimization[11][12], and ant colony optimization[13]

[14]. Indeed, evolutionary algorithms are particularly 
suitable for building optimization problems, since reliable 
whole-building performance simulation tools usually 
do not provide continuous and differentiable objective 
functions, thereby rendering the use of analytical/
classical optimization methods[15][16] extremely difficult. 
Definitely, the robustness of the optimization procedure is 
strictly related to the accuracy of the developed building 
energy model, which should be properly calibrated – 
based on real data – to provide reliable outcomes[17]. 
Therefore, the optimization success strongly depends on 
the accuracy in model development and calibration. In 
other words, modeling (and thus simulation), calibration 
and optimization are fundamental inter-dependent aspects 
when addressing building energy performance[18]. 

In 2005, Wright & Alajmi (2005) investigated the 
robustness of a genetic algorithm (GA) search method 
in solving an unconstrained building optimization prob-
lem[19], concluding that it is possible to find near-optimum 
solutions with a competitive (low) number of building 
performance simulations. In 2011, Banos et al., proposed 
a review of the state of the art in matter of computa-
tional optimization methods applied to renewable and 
sustainable energy systems[20], showing that the number 
of research papers using optimization methods to solve 
renewable energy problems had increased dramatically in 
recent years. The study concluded that the use of heuristic 
approaches, Pareto-based multi-objective optimization 
and parallel processing are promising research areas in 
the field of renewable and sustainable energy. In 2012, 
Heo et al. focused on the calibration of building energy 
models[21]. They introduced a probabilistic methodology – 
based on Bayesian calibration – supporting large scale in-
vestments in buildings’ energy retrofit. This methodology 
permits to assess the risks associated with each of the ret-
rofit options considered. In 2015, Ascione et al. proposed 
a new methodology for cost-optimal analysis by means 
of the multi-objective optimization of building energy 

performance[22]. The optimization procedure was based on 
the coupling between MATLAB®[23] and EnergyPlus[24] by 
implementing a GA and supported the evaluation of prof-
itable and feasible packages of energy efficiency measures 
applied to buildings. Thermal comfort was also taken into 
account as constraint and, finally, a ranking of the retrofit 
measures based on the intervention priority was estimated 
by identifying the most cost-effective and energy-efficient 
measures. In 2016, Royapoor and Roskilly performed the 
calibration of a 5-storey office building EnergyPlus model 
using energy and environmental data, collected through 
environmental sensors and a weather station[25]. According 
to the American Society of Heating, Refrigerating, and 
Air-conditioning Engineers (ASHRAE) guideline 14-
2014[26], the model was calibrated to achieve Mean Bias 
Error (MBE) values within ± 5% and Cumulative Vari-
ation of Root Mean Square Error (CV(RMSE)) values 
below 10%. In the same vein, in 2017, Hong et al. carried 
out the calibration of a building energy model by using 
an optimization algorithm to minimize the CV(RMSE), 
set as objective function[27]. A similar approach was used 
by Lara et al., who compared the results obtained through 
the brute-force approach and an evolutionary optimization 
method adopted with the aim to calibrate an educational 
building model located in the North of Italy[28]. In 2017, 
Fan and Xia implemented a multi-objective optimization 
model for energy-efficiency building envelope retrofit 
with rooftop photovoltaic systems[29]. The optimal solu-
tions were characterized as concerns economic indicators 
too, e.g., net present value and payback period, in order 
to support the decision-makers. In the same year, Cacabe-
los et al. proposed a novel building calibration approach, 
which consisted into dividing the building into several 
sub-models and calibrating them separately[30].  The results 
of the multi-stage calibration showed really good agree-
ment as for energy consumption and temperature trends 
with lower values of MBE and CV(RMSE) on both hour-
ly and monthly basis compared to standard calibration 
methodologies. Very recently, in 2019, Gao et al. investi-
gated the different levels of data transformation between 
building information modeling (BIM) and building energy 
simulation process, including geometry (step 1), material 
(step 2), space type (step 3), thermal zone (step 4), space 
load (step 5), and HVAC system (step 6)[31]. The accuracy 
in data transformation is fundamental in achieving a reli-
able building energy model using the increasingly wide-
spread BIM platforms. In recent times, the efforts for im-
proving building energy efficiency are often focusing on 
renewable energy source systems, especially solar ones, 
given the high cost-effectiveness that such technologies 
ensure compared to the past. In 2019, Venkateswari and 
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Sreejith presented a comprehensive review on the factors 
affecting the efficiency of a solar photovoltaic (PV) cell, 
focusing on employed materials, maximum power point 
tracking (MPPT) techniques and devices used for DC-
AC conversion[32]. In this regard, silicon is widely used as 
cell material because of its abundant availability and low 
cost. However, several promising multi-junction solar cell 
technologies ensure significantly higher values of energy 
efficiency and good economic indicators. Al-Addous et 
al. investigated the influence of weather conditions on PV 
power production and proposed reliable experimentally 
derived models to assess PV actual efficiency as a func-
tion of different temperature and radiation[33]. In addition, 
El Baz et al. focused on the development of a model that 
was capable to accurately assess the output power of a 
PV system according to the weather forecasts[34]. Van der 
Meer et al. studied the probabilistic forecasting of a resi-
dential PV power generation by means of the application 
of Gaussanian Processes[35]. Camilo et al. investigated the 
economic profitability of different PV system configuari-
ons and concluded that storage systems are not a profitable 
solution, because the investments required are too high, 
despite the cost reduction produced, thus, the injection of 
the surplus into the grid is more convenient[36]. 

To this background, the proposed study concerns en-
ergy modeling, calibration and optimization through a 
comprehensive approach, which addresses a real indus-
trial building located near Naples (South Italy). The aim 
is to develop a reliable building energy model in order to 
perform a robust optimization of photovoltaic integration. 
The methodology used includes three phases, as detailed 
in the following section: development of the energy mod-
el, model calibration based on monitored data and optimi-
zation of photovoltaic integration.

2. Methodology
The methodology used includes the following three 

phases:
I. Development of the energy model of the investigated 

industrial building, including all devices used for industri-
al processes; 

II. Model calibration by means of the implementation 
of a genetic algorithm and the comparison of simulated 
data with real monitored data;

III. Optimization of the photovoltaic integration with 
the aim of minimizing global costs.

2.1 Energy Model Development
Firstly, the well-known graphical interface Design-

Builder is used in order to realize the geometrical model 
of the industrial building and its subdivision into thermal 
zones[37]. It is fundamental to properly define the stratigra-

phy of the different elements constituting the envelope of 
the building, because they strongly affect the heating and 
the cooling demand. 

Consequently, the dynamic energy simulator Energy-
Plus is used for the development of the energy model of 
the building, since it ensures high accuracy and detail in 
modelling[24]. Great attention should be paid to the defini-
tion of:

1. the usage profiles for each thermal zone – i.e., the 
hourly schedules of occupation, people activity, clothing 
resistance, and so on;

2. the typology and the availability of the HVAC sys-
tem; 

3. the typology of the photovoltaic generator and its 
size.

Once the building model has been defined, EnergyPlus 
is used to run simulations. In order to do so, it is important 
to properly set the main boundary conditions of the simu-
lations. These latter are described as per follows: 

• Conduction Transfer Functions as heat balance algo-
rithm; 

• six timestep per hour; 
• 20 maximum iterations for the HVAC system. 
Finally, to run the dynamic energy simulations proper 

climatic data are necessary. The ones used are those of 
the authoritative ASHRAE IWEC[38] and are encoded in 
a proper “.epw” weather file, available at the EnergyPlus 
online database[39].

2.2 Energy Model Calibration
The model calibration is fundamental to achieving the 

schedules related to industrial devices’ operation and load 
factors over a typical year. The accurate modeling of such 
devices is fundamental to obtaining reliable outcomes 
from simulations because the devices strongly affect 
building electricity consumption and internal heat loads, 
and thus cooling demand. In this regard, energy models of 
buildings can be very complex and contain a large number 
of input data. The accuracy of an energy model, especially 
when it comes to calibration, depends on the user’s ability 
and experience in defining the input data. These param-
eters must, in fact, lead to a model whose energy perfor-
mance reflects as closely as possible to the measured ener-
gy performance of the existing building being calibrated. 
The high number of input data that are required for the 
definition of a detailed thermal energy model makes the 
calibration a problem with an undefined number of solu-
tions. The most typical approach used in the calibration of 
a model is the empirical one, based on the modification of 
the parameters “by trial and error” based on experience[40]. 

The steps of a correct calibration can be delineated as 
follows:

DOI: https://doi.org/10.30564/jcr.v1i1.830
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• Step 1: Develop an initial model of the investigated 
system with input data based on experience, expertise and 
consistency with the real system;

• Step 2: Perform an iterative procedure to improve the 
developed model in order to minimize error indicators, 
denoted as calibration indices, achieved by comparing 
the model outputs with real data or outputs provided by 
another validated (and thus reliable) model. This iterative 
procedure can be carried out “by trial and error” or by 
using optimization algorithms. In this latter case, the ob-
jective function to be minimized is provided by the men-
tioned error indicators. The proposed methodology uses a 
genetic algorithm for this purpose. 

• Step 3: When a stop criterion is satisfied the iterative 
procedure stops and the calibrated model is achieved.

The mentioned calibration indices (i.e., error indica-
tors) are generally achieved by comparing outputs related 
to energy consumption, because the real values are gene-
rally known from the building bills. For example, Pan et 
al. used data on electricity consumption from the sub-me-
ter to calibrate the internal loads of the energy model of a 
high-rise commercial building in Shanghai[41]. Therefore, 
calibration methodologies generally consider monthly 
data related to electricity consumption to assess the error 
indicators of the developed model. This information is 
generally available for most buildings, though not all. 
Concerning the used metrics for calibration indices, the 
proposed methodology refers to ASHRAE Guideline 14-
2014[26] by assessing the Mean Bias Error () and the Coef-
ficient of Variation of Root Mean Square Error (), which 
are defined by equations (1) and (2), respectively:

                                      (1)

                                                     (2)

where: 
• Ii is the simulated energy consumption of the ith 

month; 
• yi is the measured energy consumption of the ith 

month; 
• m is the number of months, set equal to 12 because a 

whole year is considered.
According to ASHRAE Guideline 14[26], when the ab-

solute values of the MBE and the CV(RMSE) are smaller 
than 5% and 15% respectively, the model can be consid-
ered to be well-calibrated. 

As mentioned, the iterative improvement of the energy 
model is performed by running a genetic algorithm (GA), 
as shown in Figure 1. The aim is to calibrate the schedules 
related to industrial devices’ operation and load factors. 
The objective function (F) to be minimized is the abso-

lute difference (dEE) between the simulated electricity 
consumption and the real monitored one (F=dEE). The 
decision variables are provided by the hourly load factors 
of industrial devices during a typical working day. They 
are encoded by the vector of bits x. The GA stops when 
it is achieved a maximum number of generations (gmax), 
i.e., iterations. After that, the MBE and the CV(RMSE) 
are assessed according to equations (1) and (2), because 
the model can be considered calibrated if these values are 
lower than 5% and 15%, respectively.

The GA conducts a smart search within the solution 
domain, since it permits to investigate only a limited num-
ber of solutions, which are chosen by the optimization 
engine. In particular, the evolution, i.e., improvement, of 
a population of  individuals (i.e., solutions) is performed, 
through successive generations (i.e., iterations) according 
to the processes of selection, mutation and crossover[42]

[43]. The logic improvement is the minimization of the 
objective function. The GA allows to strongly reduce the 
computational effort compared to an exhaustive search 
or a “trial and error” procedure. In this study, most GA 
parameters take the same values employed by Ascione et 
al in 2016 and 2017[42][43]. Regarding the population size s 
and the number of generations  , they should be properly 
set, as the reliability of the results and the computational 
time are crucially affected by them. Ascione et al. assessed 
that reliable s values are included in the range 2-6 times 
the number of decision variables[42] – in this study, it is set 
equal to 4 – whilst reliable  values are 10-100 generations 
– in this study, it is set equal to 30.

Figure 1. Flowchart of the Genetic Algorithm Implement-
ed for Model Calibration
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2.3 Optimization of Photovoltaic Integration
In this phase, the optimization of the photovoltaic (PV) 

integration is performed by considering the existing PV 
system, installed on the building roof. The energy model 
calibration, performed in the previous phase, is essential 
in order to achieve a robust optimization. 

Initially, the existing photovoltaic system is accurately 
modeled under EnergyPlus environment, in order to have 
a simulated PV electricity production as close as possible 
to actual monitored data. 

Then the PV integration is optimized in order to 
achieve cost-optimality, i.e., the minimization of global 
costs. 

The Global Cost (GC) of a durable good is composed 
by the purchase cost, by all the necessary expenses 
supported for its use during its useful life, as well as by 
the residual value that the good possesses at the end of 
its useful life. The assessment of the global cost aims 
in assisting decision makers in choices regarding the 
opportunity to invest in the process building, considering 
the phases of conception, construction, building 
management. The useful life of a building can be divided 
into three main phases:

• Initial phase: from programming the intervention up 
to his realization;

• Intermediate phase: phase of occupation and manage-
ment of the building;

• Final phase: demolition or sale of the property.
The structure of the global cost is also closely connect-

ed to these three phases, as stated by the European Union 
guidelines[4][44]:

GC=AF* RC+ IC- IN- RV     (3)

where:
• AF is the annuity factor. It is used to calculate the 

present value of any future cash flow until the year “n”, 
taking into account the discount rate “a” – usually, set 
equal to 3%[4][44]. Furthermore, the AF is assessed by the 
following equation (4):

                                       (4)

• RC is the annual running cost;
• IC is the initial cost. It is the fund needed to start up 

the “business”;
• IN is the incentive that usually the Governments give 

to the stakeholders in order to make certain “businesses” 
more affordable. In this case it was assumed equal to 0;

• RV is the residual value. It is the value after deprecia-

tion, which is the book value of the asset. This value, in 
this study, was assumed equal to 0 for precautionary rea-
sons, because RV is calculated from now to 20 years and 
for this reason it is close to 0.

Another critical element in the calculation of the global 
cost is represented by the useful life (n) of the building. 
Usually, differential useful lives are considered depending 
on the different building types, the different technological 
subsystems or the subject performing the analysis. In this 
study, the calculation period is assumed equal to 20 years 
as recommended for non-residential buildings by EU 
guidelines[4][44].

For a complete analysis of the investment regarding the 
enhancement of the photovoltaic system, besides global 
cost savings, further meaningful financial indices are 
assessed to support the decision maker: SPB, DPB and 
NPV.

The simple payback period (SPB) is the length of time 
required to recover the cost of an investment. It is an 
important determinant of whether to undertake the invest-
ment, and can be assessed according to equation (5).

                                                (5)

The discounted payback period (DPB) is similar to the 
SPB, but it takes account of discounted (and not constant) 
cash flows, therefore it is higher than SPB and provide a 
more reliable metric of the investment profitably. It can be 
assessed according to equation (6):

                                           (6)

A general rule to consider when using the discounted 
payback period is to accept projects that have a payback 
period shorter than the target timeframe. 

3. Description of the Case Study
The considered case study is an industrial building 

(Figure 2 and Table 1), a metalworking plant, located near 
Naples (South Italy). The gross floor area of the building 
is about 4800 . The glazing area represents about 5% of 
the floor area and about 10% of the external wall area. 
The plant consists of three blocks: 

• the first one is divided in two floors and it is occupied 
by the offices and the production line; 

• the second one is a one-storey block, used for the 
warehouse and the workshop; 

• the last one was recently purchased and it is a shed 
that will soon be put into operation as workshop and to 
extend the production line.

DOI: https://doi.org/10.30564/jcr.v1i1.830
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Figure 2. Rendering of the Investigated Building

Table 1. Overview About the Case Study

Case study

Location District of Naples

Category Industrial building

Gross Floor Area 4800  

Conditioned Floor Area 1700 m2

Levels 2

Level Height 4 m

Thermal Zones 27

Glazing Area 235 

In the first block, each storey has an internal height of 
4 m and are connected by a staircase. There are windows 
on all the facades with the aim to achieve the total build-
ing windows’ surface (i.e., about 235 ). The geometrical 
model of the building has been realized with the graphical 
interface DesignBuilder®[37]. It has been subdivided in 
several thermal zones, which are different from its real 
subdivision in zones. In fact, a thermal zone is a part of 
the building that has a sufficient spatial uniformity in the 
temperature (and possibly in the humidity) of the air and 
for which there is a single and common predetermined 
value of the controlled variable (temperature and, pos-
sibly, set-point humidity). In addition, a thermal zone 
has the same type of occupation and intended use, and is 
served for the purpose by a single type of system, or by 
two complementary types. In this building, 27 thermal 
zones can be identified: in the first block, 10 are located 
at the first storey and 12 at the second one; in the storage 
area, there are 4 thermal zones; finally, the third block is 
supposed to be constituted by only one thermal zone (the 
shed). In order to conduct an accurate dynamic simulation, 
it is necessary to accurately define the geometry model 
and all the time-schedules concerning the end-use of each 
thermal zone as well as the operation parameters of the 
HVAC (heating, ventilation and air conditioning) systems. 

The present study addresses only the first building 

block because the second one is characterized by very low 
and occasional energy consumption, while the third one 
has no energy consumption at all as it is an empty space, 
as mentioned previously.

Regarding the energy model, it is very important 
to consider the elements that have the highest energy 
consumption of the whole facility. Therefore, the con-
sumption related to the chiller for space cooling and to 
the machines of the production line were assessed, other 
than the lights. A diesel fuel boiler is present as a heating 
system. However, as the main aim of this study concerns 
the economical convenience of a PV integration, the die-
sel consumption related to the heating system – which is 
negligible compared to the other consumption voices – is 
not considered. Thus, it is supposed that fan coils are used 
only for cooling. The building is equipped with an electric 
air-cooled chiller, which has a nominal coefficient of per-
formance (COP) equal to 3.14.  It is important to outline 
that not all the thermal zones are equipped with elements 
of the HVAC system.

In the firm there are 63 industrial devices, divided as 
follows: most devices relating to the production line are 
located at the groundfloor, while the rest of the devices are 
situated in the warehouse; these, however, are manual ma-
chines. The most extended thermal zone is the “spark ero-
sion” one, situated at the groundfloor. As expected, as this 
is the biggest zone with the highest number of machines, 
it is, consequently, the zone with the greatest energy con-
sumption.

4. Results and Discussion
4.1 Calibration

In order to have a reliable energy model of the 
building, the proper calibration of the operation of the 
industrial devices of the production line is fundamental. 
Unfortunately, there is no data on the manufacturability on 
a monthly basis of the devices because the facility works 
on commission, thus it is very difficult to establish a 
precise energy consumption for each device. Therefore, as 
explained in Methodology, a calibration process making 
use of the coupling between the dynamic energy simulator 
EnergyPlus and the optimization engine MATLAB® is 
used in order to evaluate the schedules of load factors 
for such devices. More in detail, a genetic algorithm is 
implemented in MATLAB® to identify the combination 
of load factors that month by month assures the lowest 
difference in terms of electricity consumption between 
the simulation results and real monitored data related 
to 2017. Table 2 compares real monitored data of the 
electricity consumption of industrial devices for 2017 and 
2018 against simulated outputs of the calibrated model, 
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reflecting very good model consistency with real data. 
Table 2. Electricity Consumption of Industrial Devices: Simulated Outputs of 

the Calibrated Model vs Real Monitored Data of 2017 and 2018

Month

Electricity demand

Simulated
data

[kWh]

Real data
of 2017
[kWh]

Discrepancy:
Simulated vs 

Real 2017

Real data
of 2018
[kWh]

Discrepancy:
Simulated vs 

Real 2018

January 112’352 112’303 0.044% 120’406 -6.69%

February 103’794 103’723 0.068% 109’731 -5.41%

March 106’449 106’349 0.094% 121’411 -12.32%

April 105’016 104’915 0.096% 117’637 -10.73%

May 116’824 116’745 0.068% 132’896 -12.09%

June 126’866 126’819 0.037% 134’868 -5.93%

July 134’076 133’994 0.061% 147’477 -9.09%

August 121’603 121’576 0.022% 113’676 6.97%

September 116’511 116’487 0.021% 124’731 -6.59%

October 113’744 113’736 0.007% 119’956 -5.18%

November 113’008 112’894 0.101% 114’147 -1.00%

December 117’962 118’016 -0.046% 119’822 -1.55%

Total 1’388’205 1’387’557 0.047% 1’476’758 -6.00%

Table 2 shows the measured values   of electricity con-
sumed by the facility, around 100 MWh per month, and 
compares them with the result of EnergyPlus simulation 
making use of the optimal combination of load factors for 
the industrial devices. Differences are very low, especially 
for 2017, which means that the model has been properly 
calibrated.

Overall, in 2017, the electricity required is around 1’388 
MWh. The non-linearity of the electricity demand, which 
is due to the fact that the firm does not work in series but 
works on commission, leads to a non-linearity of the en-
ergy values   required month by month. In fact, the devices 
of the production line do not work every day, every hour 
and with the same work shifts, but there are variations 
of processing day by day depending on the requests. As 
mentioned, the load factors of each machine are obtained 
by means of an optimization process making use of a ge-
netic algorithm, which provides the processing coefficient 
of each device. The load factors of each device are very 
low. In fact, they are generally equal to 0.30 or 0.40, and 
in some cases, they are 0.00. In few cases, peaks of 0.80 
or 0.90 are reached. This is due to the main feature of the 
company that works on commission, therefore this does 

not allow to have a calibration linearity. Furthermore, each 
process requires an alternate use of several devices, which 
is why the load coefficients are often low, since a single 
product to be processed is subject to a machining chain (eg, 
turning, milling, erosion, etc.).

The results of the simulation are compared with 
the measured data for 2018 too, in order to evaluate 
the goodness and the robustness of the calibration. 
Table 2 shows that electricity consumption has slightly 
increased compared to the previous year, probably due 
to a change in processing fees and the implementation of 
new processing industrial devices. In fact, in 2018 it is 
noted that on average the monthly values settle around 
110/120 MWh and a total of 1’477 MWh per year. It is 
possible to note an increase of around 10% compared to 
the previous year. This involves a greater variation than 
the simulated values even if they are always very low 
percentages around 3-4%. Here, too, it can be noted, for 
example, that in July the demand for electricity is around 
148 MWh, while for other months it is around 30 MWh 
less, demonstrating that the industrial devices do not work 
linearly month by month but are dependent on customer 
requests.

4.2 Photovoltaic Integration
On the main surface of the first block, the facility pres-

ents a photovoltaic system on a surface of approximately 
1710 . This photovoltaic system has a peak power of 
224.64 kWp and is connected to the electricity grid, Enel, 
in medium voltage (MT). The plant is made of monocrys-
talline silicon panels with peak power of 150 W per panel, 
maximum power point voltage of 18.5 V, maximum pow-
er point current intensity of 8.62 A, open circuit voltage of 
22.75 V, short circuit current intensity of 8.62 A, module 
efficiency of 15%, panel surface around 1 m2.

The roof on which the system is built is flat and for 
the installation of the modules an inclined structure of 5° 
(Tilt) has been built and oriented to the south to optimize 
the production of the plant itself. The modules are firmly 
anchored to aluminum structures attached to concrete sup-
ports resting on the roof. The PV generator consists of 864 
photovoltaic modules, eight string inverters each of which 
has two independent MPPT (Maximum Power Point 
Trackers). Three strings are connected to each MPPT of 
each inverter and each string is composed of 18 modules 
connected in series. 

The existing PV system produced around 305 MWh 
in 2017 and 285 MWh in 2018, and this electricity was 
self-consumed with 0% injected into the network. Table 
3 shows the electricity production of the existing photo-
voltaic plant by comparing simulated outputs against real 
monitored data of 2017 and 2018.
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Table 3. Electricity Production of the Existing Photovoltaic Plant: Simulated 
Outputs vs Real Monitored Data of 2017 and 2018

Month

Electricity production of existing Photovoltaics

Simulated
data

[kWh]

Real data
of 2017
[kWh]

Discrepancy:
Simulated vs 

Real 2017

Real data
of 2018
[kWh]

Discrepancy:
Simulated vs 

Real 2018

January 10’865 11’758 7.59% 10’758 0.99%

February 14’498 12’544 15.58% 10’411 39.26%

March 23’076 21’205 8.82% 19’400 18.95%

April 28’663 32’224 -11.05% 31’669 -9.49%

May 38’582 39’547 -2.44% 33’600 14.83%

June 38’057 40’833 -6.80% 38’700 -1.66%

July 40’578 41’211 -1.54% 39’678 2.27%

August 36’084 37’026 -2.54% 32’076 12.50%

September 26’307 27’667 -4.92% 28’089 -6.34%

October 19’409 22’894 -15.22% 18’854 2.94%

November 11’888 11’937 -0.41% 11’667 1.89%

December 9’640 7’907 21.92% 9’723 -0.85%

Total 294’920 306’753 -3.86% 284’625 3.62%

The electricity production of the PV system depends on 
some factors, which can explain the difference between 
years 2017 and 2018:

• the sun radiation is clearly the main factor affecting 
electricity production and it is not the same for all years;

• the temperature makes the difference and affects the 
yield. The optimal temperature is generally estimated at 
around 25 °C. In this case the classic photovoltaic pan-
el has the best conditions to produce energy. Excessive 
overheating or an insufficient level of ventilation causes a 
proportional decrease in production;

• the presence of dust and dirt on the modules hinders 
the full receptivity of the solar irradiation on the photovol-
taic cells;

• the passage, or worse the constant presence, of sha-
dows during the day. A typical example is the shade of 
chimneys, antennas or trees that can cover part of the pa-
nels during the day, hindering the efficiency of the entire 
system.

During the summer months, the production of the 
PV system is higher than winter months because the 
days present more hours of sun. It is possible to see that 
there is a low difference between the values related to 
the measured production and to the simulated one. The 

percentage absolute difference (%) is around 3-4% for 
both 2017 and 2018. The simulated value of PV electricity 
production, as shown in Table 3, is placed right in the 
middle between the data of 2017 and 2018.

The electricity production of the existing PV system 
is lower than facility electricity demand, given the high 
values of energy demands by industrial devices and space 
cooling equipment. Thus, the study addressed the optimi-
zation of a further PV integration with a view to cost-op-
timality. Indeed, the enhancement of the PV system can 
be highly cost-effective given the huge values of facility 
electricity consumption.

The new PV panels have the same characteristics of 
existing ones and are installed on the building roof with 
the same orientation and tilt angle. Different sizes are 
considered in terms of coverage of the non-occupied roof 
surface (around 830 m2) by photovoltaics, set equal to:

• around 25% coverage of roof area, corresponding to 
210 panels and to a peak power of 31.5 kWp;

• around 50% coverage roof area, corresponding to 400 
panels and to a peak power of 60 kWp;

• around 75%, corresponding to 600 panels and to a 
peak power of 90 kWp; 

• around 100%, corresponding to 825 panels and to a 
peak power of 123.75 kWp.

The panel numbers have been chosen in order to ensure 
complete strings. The financial benefits of PV integration 
are assessed in terms of global cost reduction. In order 
to investigate the sensitivity to investment cost variation, 
two values are considered for PV purchase cost, i.e., 1200 
€/kWp (case A) and 1700 €/kWp (case B), respectively, 
according to current market prices.

For example, Figure 3 shows the PV productions of 
both the existing PV system and the integrated one, which 
takes into account the cover of 100% of the roof area. 

Figure 3. Monthly Electricity Production of PV Panels 
Covering the 100% of the Non-occupied Roof Area

The performance of PV integration covering the differ-
ent percentage of the roof area considered in Tables 4, 5, 6 
and 7 – i.e., 25%, 50%, 75% and 100%, respectively – by 
reporting:

• the electricity production of existing PV systems;
• the electricity production of PV integration;
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• total electricity production of PV;
• electricity sold to the grid.
The electricity production of existing PV system is re-

ported in each of the following summentioned tables, in 
order to make any comparison clearer for the readers.
Table 4. Production of PV Panels Covering the 25% of the Non-occupied Roof 

Area

Month
Electricity pro-

duction of existing 
PV [kWh]

Electricity 
production of PV 
integration [kWh]

Total Electricity pro-
duction of PV [kWh]

Electricity sold 
to the grid 

[kWh]

January 10’865 1’613 12’478 0

February 14’498 2’133 16’631 106

March 23’076 3’342 26’418 164

April 28’663 4’048 32’711 780

May 38’582 4’891 43’743 2’137

June 38’057 5’083 43’140 3’199

July 40’578 5’271 45’849 1’120

August 36’084 4’680 40’764 1’477

September 26’307 3’562 29’869 293

October 19’409 2’697 22’106 64

November 11’888 1’731 13’619 0

December 9’640 1’431 11’071 0

Total 294’920 40’482 335’402 9’340

Table 5.  Production of PV Panels Covering the 50% of the Non-occupied Roof 
Area

Month
Electricity pro-

duction of existing 
PV [kWh]

Electricity 
production of PV 
integration [kWh]

Total Electricity pro-
duction of PV [kWh]

Electricity sold 
to the grid 

[kWh]

January 10’865 3’072 13’937 0

February 14’498 4’062 18’560 240

March 23’076 6’365 29’441 445

April 28’663 7’710 36’373 1’386

May 35’852 6’586 45’168 3’388

June 38’057 9’681 47’738 4’479

July 40’578 10’039 50’617 2’128

August 36’084 8’915 44’999 2’475

September 26’307 6’785 33’092 752

October 19’409 5’137 24’546 239

November 11’888 3’297 15’185 0

December 9’639 2’724 12’364 0

Total 294’916 74’373 369’293 15’633

Table 6.  Production of PV Panels Covering the 75% of the Non-occupied Roof 
Area

Month
Electricity pro-

duction of existing 
PV [kWh]

Electricity 
production of PV 
integration [kWh]

Total Electricity pro-
duction of PV [kWh]

Electricity sold 
to the grid 

[kWh]

January 10’865 4’608 15’473 0

February 14’498 6’092 20’590 563

March 23’076 9’548 32’624 1’041

April 28’663 11’565 40’228 2’319

May 38’582 11’244 49’826 5’136

June 38’057 14’521 52’578 6’379

July 40’578 15’059 55’637 3’236

August 36’084 13’372 49’456 3’548

September 26’307 10’178 36’485 1’377

October 19’409 7’705 27’114 559

November 11’888 4’946 16’834 4.1

December 9’640 4’086 13’726 0

Total 294’920 112’924 407’844 24’162

Table 7.  Production of PV Panels Covering the 100% of the Non-occupied 
Roof Area

Month
Electricity pro-

duction of existing 
PV [kWh]

Electricity 
production of PV 
integration [kWh]

Total Electricity pro-
duction of PV [kWh]

Electricity sold 
to the grid 

[kWh]

January 10’865 6’335 17’200 5

February 14’498 8’377 22’875 1’139

March 23’076 13’129 36’205 2’017

April 28’663 15’903 44’566 3’728

May 38’582 16’485 55’067 7’456

June 38’057 19’967 58’024 8’819

July 40’578 20’706 61’284 4’539

August 36’084 18’387 54’471 4’796

September 26’307 13’995 40’302 2’296

October 19’409 10’594 30’003 1’111

November 11’888 6’801 18’689 39

December 9’640 5’618 15’258 0

Total 294’920 160’297 455’217 35’944
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Concerning the 25% PV coverage, the electricity pro-
duction increases of around 40 MWh per year and the 
sold electricity is around 9 MWh per year. Considering 
the existing PV system, the production capacity complexi-
vely rises to 335 MWh per year. During warm months, 
the integration system guarantees an electricity production 
between 4-5 MWh per month, while during the rest of the 
year its production is between 0 and around 3 MWh per 
month. Finally, the sold energy is equal to 2-3 MWh per 
month in warm periods, while it assumes values included 
between 0 and 1 MWh per month for the rest of the year. 

When the PV integration covers the 50% of roof area, 
the electricity production increases of around 74 MWh per 
year and the sold electricity is around 16 MWh per year. 
Overall, a production of 369 MWh per year is achieved. 
Considering exclusively the PV integration system, this 
latter produces around 9-10 MWh per month during the 
warmer period, while its production is included between 
3 and 7 MWh per month for the rest of the year, with the 
exception of April, when the electricity production has a 
peak equal to around 8 MWh. Concerning the sold energy, 
it is possible to observe that it reaches about 3-4 MWh per 
month in the warm months and values   between 0 and 2 
MWh per month in the other months. 

Concerning the 75% PV coverage, the electricity pro-
duction increases of around 113 MWh per year and the 
sold electricity is around 24 MWh per year. Considering 
the existing PV system, the production capacity complexi-
vely rises to 408 MWh per year. During warm months, the 
integration system permits to produce around 15 MWh 
per month. Finally, the sold energy is equal to 5-6 MWh 
per month in the warm period, while it assumes values 
included between 0 and 3 MWh per month for the rest of 
the year. 

In conclusion, when the PV integration covers the 
100% of roof area, the electricity production increases 
of around 160 MWh per year and the sold electricity is 
around 36 MWh per year. In this case, a total production 
capacity of 455 MWh per year is achieved, reaching with 
the second plant about 20 MWh per month in the warm 
months and 6-16 MWh per month during the rest of the 
year. The sold energy is equal to 7-8 MWh per month du-
ring the warmer period, while it is included between 0 and 
4 MWh per month for the rest of the year. Finally, such 
PV integration can reduce (to close to zero) the electricity 
taken from the grid by supporting the facility self-sustai-
nability. 

Table 8 shows the cost/financial analysis of the pro-
posed solutions by reporting the global cost saving com-
pared to the baseline for cases A (panel purchase cost of 
1200 €/kWp) and B (panel purchase cost of 1700 €/kWp). 

It is clear, for both scenarios, the cost-optimal solution is 
the 100% PV integration, which can yield a global cost 
saving between 134 k€ (case A) and 70 k€ (case B) during 
the facility lifespan, with simple payback (SPB) between 
7.3 and 10.4 years, discounted payback (DPB) between 8.4 
and 12.7 years. 

Table 8. Cost Analysis of New PV Panels

Roof
covering

Global Cost Saving
for Case A

Global Cost Saving
for Case B

100% 133.840 k€ 69.837 k€

75% 97.252 k€ 51.252 k€

50% 67.199 k€ 35.699 k€

25% 32.783 k€ 23.778 k€

5. Limitations and Further Developments
Despite the effectiveness of the calibration method, 

and the robustness of the results, which was confirmed by 
the comparison with the measured data related to the year 
2018 too, the study here proposed presents a limit.

The lack of data related to on-site measurements con-
cerning the energy consumption of each device and to the 
local weather conditions has obliged the authors to make 
some simplifications, in order to calibrate the energy mod-
el and investigate the cost-effectiveness of the PV integra-
tion for the firm. In usual conditions, the normalization of 
the bill consumptions would have been required as well 
as the use of on-site monitored weather data. However, 
the latter were unavailable, especially the productivity of 
each device, due to the fact that the company works on 
commission. For this reason, the only way to proceed was 
to calibrate the energy model based on typical weather 
conditions and by considering the energy consumptions 
reported on the bills. This operation was performed refer-
ring to the energy bills of the year 2017. As verification, 
the monthly energy consumption values assessed by the 
model were compared with the ones monitored the fol-
lowing year 2018. Being the main calibration indexes lim-
it values – evaluated on the yearly global energy perfor-
mance – respected also for this different year, the model 
was considered “calibrated”. This approach was adopted 
also for modelling and calibrating the existing PV system.

The unavailability of data concerning the piece produc-
tion of each device, and in turn, their individual electricity 
consumption, has obliged the authors to use the genetic 
algorithm, in order to estimate the load factors of each de-
vice. However, the assessed load factors could be different 
from the real one – if measured –, even if the global elec-
tricity consumption of the production site resulting from 
the energy simulations is approximately the same of the 
measured one. As further development, it would be inter-
esting to measure on site the load factors of the devices, if 
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possible, and, consequently, re-calibrate the energy model. 
In fact, with the re-calibrated model, it would be possible 
to investigate also the thermal comfort of the workers, 
because it would be known the exactly disposition of the 
internal gain sources, and so it would be also possible to 
optimize the operation of the HVAC (heating, ventilation 
and air conditioning) system, considering the thermal 
comfort and the running costs as objective functions. 

In addition, another interesting improvement that could 
be done to the energy model is the calibration of the CO2 
emissions and, more in general, of the environmental im-
pact – from the energy point of view. Once done, a genetic 
algorithm could be performed, in order to evaluate the op-
timal energy retrofit strategy for the firm, considering the 
cost-effectiveness and the environmental sustainability as 
main targets.

6. Conclusion
The study investigated the energy performance of an 

industrial building. The facility energy model was deve-
loped under EnergyPlus environment by considering all 
industrial devices, which deeply affect electricity consu-
mptions and cooling needs. Since the operation and load 
schedules of the devices were not available, an accurate 
calibration procedure was performed based on the imple-
mentation of an optimization genetic algorithm and on the 
comparison between simulated data and real monitored 
data concerning electricity consumption. The calibration 
procedure provided optimal results because the calibra-
ted model presented very low values of the calibration 
coefficients, i.e., error indicators, suggested by ASHRAE 
guideline 14-2014. Indeed, the MBE (mean bias error) 
was around 0.05% and the Coefficient of Variation of 
Root Mean Square Error (CV(RMSE)) was around 0.20%, 
whereas the limit values recommended by ASHRAE to 
have a calibrated model are 5% and 15%, respectively. 

After the model calibration, the integration of the ex-
isting photovoltaic (PV) system is investigated in order to 
achieve cost-optimality. Indeed, the facility is character-
ized by the huge electric loads, given the industrial devic-
es, and the existing PV system can be enhanced with high 
financial benefits. The study showed that the cost-optimal 
measures is the installation of a full-roof PV system, since 
this provide global cost savings I 20 years between 70 and 
134 k€ (depending on the purchase cost) with payback 
times around 10 years. 

Generally speaking, even if the results could appear 
quite obvious, it is important to remark that an accurate 
model calibration is always fundamental to achieve ro-
bust optimization results. In fact, having a well-calibrated 
energy model, even other energy retrofit measures con-
cerning the power system could have been easily taken 

into account, in order to reduce the environmental impact 
of the building. This could be another interesting point to 
investigate further.
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