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ABSTRACT

Diabetic retinopathy (DR) remains a leading cause of preventable blindness worldwide, with its burden most acute in

resource-limited settings where access to specialist care and advanced diagnostic tools is restricted. Early detection is vital

to mitigate vision loss, yet most state-of-the-art deep learning models demand high computational resources, hindering

deployment in such environments. This paper proposes and validates a lightweight convolutional neural network (CNN)

for DR detection that balances diagnostic accuracy with computational efficiency. Using a balanced dataset of 4217

retinal images, the model achieved an accuracy of 81.1%, a macro F1-score of 0.8125, an inference time of just 12 ms

per image, and a compact 11 MB model size. To ensure robustness, we conducted comparative benchmarking against

widely used architectures. ResNet, GoogLeNet, and VGGNet, demonstrating that while these deeper models achieved

higher accuracy (up to 88.7%), they required significantly larger memory footprints and slower inference speeds. By

contrast, the lightweight model maintained competitive performance while being substantially more efficient. These results

establish the proposed model as particularly well-suited for low-resource healthcare environments, including mobile health

platforms, telemedicine applications, and rural clinics lacking high-end infrastructure. Beyond technical contributions, this

work addresses a critical gap in the literature by explicitly validating lightweight CNNs as feasible, scalable, and equitable
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1. Introduction

Diabetes mellitus is a chronic condition characterized

by prolonged hyperglycemia resulting from inadequate in-

sulin production or utilization. Among its many complica-

tions, diabetic retinopathy (DR) is one of the most severe,

threatening vision and often leading to blindness if not de-

tected early. According to the National Institute of Diabetes

and Digestive and Kidney Diseases (NIDDK) [1], DR is the

leading cause of blindness among working-age adults, af-

fecting approximately one in three diabetic patients [2]. This

burden is not confined to developed nations but is rising

globally, with prevalence increasing alongside the diabetes

epidemic [3].

The challenge of DR lies in its stealthy onset and lim-

ited treatment options. Early symptoms are often absent,

meaning patients may remain unaware of disease progres-

sion until significant retinal damage has occurred [4]. Further-

more, while available treatments can slow progression, they

cannot cure the disease, making early detection essential [5,6].

Advances in medical imaging and artificial intelligence (AI)

have revolutionized DR screening, enabling automated, accu-

rate, and scalable diagnostic tools. Techniques such as deep

learning (DL) have demonstrated ophthalmologist-level per-

formance in classifying retinal images [7,8]. The approval of

AI-based diagnostic tools by regulatory bodies such as the

FDA underscores their clinical potential.

The diagnosis of diabetic retinopathy (DR) has received

considerable attention in recent years, with deep learning

(DL) methods emerging as powerful tools for medical im-

age analysis. Several demonstrated that convolutional neu-

ral networks (CNNs) can achieve high diagnostic accuracy

across DR severity levels. For example, Gao et al. [9] and

Lam et al. [10] reported strong sensitivity and accuracy us-

ing CNN-based classifiers, while Gulshan et al. [11] achieved

ophthalmologist-level performance using an Inception-v3

architecture trained on a large dataset These works confirm

the feasibility of AI-driven screening in clinical practice.

However, a key limitation in most of these approaches

is their computational intensity. Models such as ResNet,

GoogLeNet, and VGGNet, though accurate, require signif-

icant memory, GPU resources, and long inference times.

As pointed out by Shrestha & Mahmood (2019) [12], this

restricts their applicability in low-resource or mobile health-

care settings, where access to high-end hardware is limited.

Furthermore, many models are designed with a focus on

performance metrics only, with less emphasis on practical

deployment considerations such as model size, latency, and

interpretability.

Recent literature highlights the growing need for ef-

ficient and lightweight architectures that strike a balance

between diagnostic accuracy and computational feasibility.

Lightweight CNNs are increasingly being explored for mo-

bile vision tasks, drone detection, and embedded AI sys-

tems [13,14], yet their potential for medical diagnosis in under-

resourced environments remains underexplored.

This study addresses that gap by developing a

lightweight CNN model for early DR detection, designed

to achieve competitive performance with minimal computa-

tional overhead. Through comparative benchmarking against

established architectures (ResNet, GoogLeNet, VGGNet),

this research demonstrates the balance between accuracy,

efficiency, and real-world applicability, highlighting the po-

tential of lightweight models to enhance equitable access to

AI-driven healthcare.

2. Materials and Methods

2.1. Dataset

The dataset used for this study was compiled from mul-

tiple publicly available sources including IDRiD, Ocular

Recognition, and HRF, totaling 4217 images across four cat-

egories: normal, DR, cataract, and glaucoma. This balanced

composition ensured fair training and testing without major

class imbalance. The division into 50% training, 30% vali-
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dation, and 20% testing sets provided a rigorous evaluation

strategy.

However, the dataset size, while sufficient for proof-

of-concept, remains modest compared to real-world clinical

scales. This limitation may explain the performance gap be-

tween the lightweight CNN and deeper models like ResNet,

which benefit from larger datasets. Future research should

expand this dataset to include diverse populations, imaging

devices, and longitudinal data to enhance generalizability

and early-stage detection capability.

2.2. Deep Learning Background

Deep learning (DL) is a subset of machine learning that

uses neural networks with multiple layers to model complex

data patterns. Convolutional Neural Networks (CNNs), in

particular, are effective in medical image analysis. CNNs in-

clude convolutional layers for feature extraction, pooling lay-

ers for dimensionality reduction, and fully connected layers

for classification. Transfer learning with pre-trained models

such as AlexNet, ResNet, and Inception has advanced DR

detection, though these models often require high computa-

tional resources.

2.3. Model Development

The design rationale for the proposed CNN emphasizes

simplicity and efficiency. Unlike conventional deep CNNs,

which contain dozens of layers and millions of parameters,

our approach incorporates fewer convolutional layers and

streamlined operations to ensure low computational demand.

2.3.1. Convolution Layers

Convolutional layers serve as the core components of

convolutional neural networks (CNNs). Their primary func-

tion is to conduct convolution operations on input data, effec-

tively drawing out features from the input image by moving

a filter, also known as a kernel, across it [13]. This feature

extraction allows the network to develop layered represen-

tations. During the convolution, the filter interacts with the

input data in an element-wise multiplication, followed by

summing up the results. This procedure, repeated across var-

ious locations, generates feature maps that encapsulate essen-

tial details across the image's spatial dimensions (Figure 1).

Figure 1. Visual Representation of Convolution layer.

The mathematical model [14] for a convolution layer is

depicted in Equation (1):

(I ∗ k)ij =
∑

m

∑
n
Im,n. ki−m, j−n + B (1)

Where:

(I*k)ij is the result of the convolution.

I is the input array of the image.

k is the filter

B is the bias term associated with the filter

2.3.2. Max Pooling Layer-r

In our examination of down-sampling techniques

within Convolutional Neural Networks (CNNs), we turn our

attention to the max pooling layer. This layer significantly

contributes to reducing the spatial dimensions of the input

volume, a process fundamental in lessening computational

demands while ensuring the retention of critical informa-

tion [14]. Max pooling operates by isolating the maximum

value from a designated set of values within the input, ef-

fectively summarizing the most prominent features within a

predetermined window, termed the pooling size. The simplic-

ity of this procedure belies its efficacy in compressing spatial

dimensions without sacrificing key data points. The opera-

tional mechanism of the max pooling layer is encapsulated

by Equation (2) [14]:

MaxPooling(I)i,j = maxm,n Ii × poolsize +m,j× poolsize + n

(2)

Where:

I is the input feature map to the MaxPooling layer.

Iij is the element of the input feature map at the ith row

and jth column.

poolsize: The size of the window over which the Max-

Pooling operation is performed.

m, n: iteration over the pooling window, where m

ranges from 0 to poolsize-1, and n ranges from 0 to poolsize-

1.

MaxPooling(I)i,j is thee output value of the MaxPool-

ing operation at the position (I,j) in the output feature map.
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2.3.3. Flatten Layers

These layers are used to convert data from a multi-

dimensional structure, like a matrix, into a one-dimensional

vector [15]. Usually, this was carried out before the data was

forwarded to fully connected layers fully linked levels. By

reshaping the data, the flatten operation unwraps the dimen-

sions into a single vector. The flatten layer converts a matrix

input into a one-dimensional array, see Equation (3).

Flatten(I) = [I1,1, I2,2, . . . .., Im,n] (3)

Where:

I: Represents the input to the flatten layer, typically

a multi-dimensional array or matrix derived from previous

layers in the network.

Iij: Denotes the element located at the ith row and jth

column within the multi-dimensional input matrix I.

m represents the total number of rows, and n represents

the total number of columns in the multi-dimensional input

matrix I.

Flatten(I): The output of the flatten operation, which is

a one-dimensional array containing all the elements of the

input matrix I, sequenced in row-major order.

2.3.4. Dense Layers

Dense layers, also known as fully connected layers,

establish connections between every neuron in both the pre-

ceding and following layers [16]. These layers play a crucial

role in identifying broad patterns and making definitive pre-

dictions. They operate by applying an activation function

to the input data, adjusting for biases, and multiplying by

weights. This methodology allows the network to decipher

complex relationships and make predictions based on the

features it has identified.

Dense(X) = Activation(
∑

i(Xi×Wi) + B) (4)

2.3.5. Optimizer

Adam was selected for its efficiency in handling sparse

gradients; learning rate scheduling was applied to balance

convergence speed and precision.

In our implementation, the ReLU activation function

is employed across all instances barring the terminal dense

layer. For the concluding layer, a softmax function is utilized

to ensure compatibility with the categorical cross-entropy

loss metric, underscoring the adaptability of our approach to

diverse computational requirements.

2.4. Evaluation Metrics

Accuracy, macro F1-score, micro F1-score, and

weighted F1-score were used to assess performance. A con-

fusion matrix provided detailed insights into classification

strengths and weaknesses across the four categories.

3. Results

To validate the lightweight model’s performance,

comparative experiments were conducted against ResNet,

GoogLeNet, and VGGNet under identical training, valida-

tion, and testing conditions. This ensured fair benchmarking.

Table 1 highlights accuracy, F1-score, inference time, and

model size for all models.

Table 1. Performance Evaluation of the Lightweight Model vs Benchmarks.

Model Accuracy (%) F1-Score Inference Time (ms) Model Size (MB)

ResNet 88.7 0.887 35 234

GoogLeNet 85.2 0.852 28 96

VGGNet 84.5 0.845 45 528

Lightweight 81.1 0.8125 12 11

3.1. Model Performance

The proposed lightweight model achieved an accuracy

of 81.1%, macro F1-score of 0.8125, inference time of 12

ms per image, and a compact size of 11 MB. These results

indicate that although the model is shallower than ResNet,

GoogLeNet, and VGGNet, it maintains competitive perfor-

mance while drastically reducing computational demands.

3.2. Benchmarking Analysis

As shown in Table 1, deeper models such as ResNet

attained higher accuracy (88.7%) but at the cost of substan-
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tially greater model size (234 MB) and slower inference

speed (35 ms). In contrast, the lightweight CNN provides

a balanced trade-off, retaining diagnostic accuracy while

achieving a six- to ten-fold reduction in storage requirements

and significantly faster execution.

This distinction is critical for real-world applications,

where limited hardware resources constrain deployment. The

lightweight CNN can be deployed on Smartphones and edge

devices, supporting mobile screening applications in under-

served areas, the model goes beyond theoretical design and

validates its applicability in low-resource healthcare environ-

ments. This study strengthens the case for lightweight AI

models as a pathway to equitable healthcare access.

4. Discussion

As shown in Table 1, deeper models such as ResNet at-

tained higher accuracy (88.7%) but at the cost of substantially

greater model size (234 MB) and slower inference speed (35

ms). In contrast, the lightweight CNN provides a balanced

trade-off, retaining diagnostic accuracy while achieving a

six- to ten-fold reduction in storage requirements and sig-

nificantly faster execution. This distinction is critical for

real-world applications, where limited hardware resources

constrain deployment.

The lightweight CNN can be deployed on Smartphones

and edge devices, supporting mobile screening applications

in underserved areas, the model goes beyond theoretical

design and validates its applicability in low-resource health-

care environments. This study strengthens the case for

lightweight AI models as a pathway to equitable healthcare

access.

Contributions and Significance

These findings address a critical gap in the literature,

where most prior models have prioritized accuracy without

accounting for the constraints of real-world healthcare en-

vironments. It makes four main contributions: (i). Design

rationale: A lightweight CNN architecture optimized for

efficiency while retaining strong diagnostic accuracy. (ii).

Empirical validation: Comparative benchmarking against

established models, proving competitiveness in accuracy and

superiority in efficiency. (iii). Dataset insight: Careful use of

a balanced dataset demonstrates proof-of-concept feasibility,

while identifying the need for larger, more diverse datasets

in future research. (iv). Practical relevance: Demonstrated

suitability for low-resource clinical deployment, filling a key

gap in current DR screening research.

The significance of this contribution lies in its practical

applicability, the lightweight model’s compact size (11 MB)

and fast execution (12 ms per image) make it deployable

on smartphones, edge devices, and CPU-only systems. This

capability is indispensable for low-resource and underserved

settings, where access to advanced computing infrastructure

is limited. By directly validating the model’s efficiency and

demonstrating suitability for mobile health and telemedicine

applications, this research provides evidence that AI-driven

screening can be made accessible and equitable on a global

scale.

5. Conclusions

This study demonstrates that lightweight convolutional

neural networks (CNNs) can provide a practical and effective

solution for early diabetic retinopathy (DR) detection. By

benchmarking the proposed model against established archi-

tectures such as ResNet, GoogLeNet, and VGGNet, we have

shown that it achieves competitive accuracy (81.1%) and

strong F1 performance (0.8125) while dramatically reduc-

ing computational cost, storage requirements, and inference

time. Future work will focus on expanding dataset diversity,

optimizing the architecture through techniques such as quan-

tization and knowledge distillation, and validating the model

in clinical environments. Further efforts will also address

interpretability and ethical considerations to strengthen clini-

cian trust and ensure responsible deployment. conclusively,

this study establishes that lightweight AI models can bridge

the gap between high diagnostic accuracy and real-world

feasibility, offering a path toward scalable, affordable, and

inclusive diabetic retinopathy screening solutions. This con-

tribution not only advances the technical field but also aligns

with broader healthcare goals of accessibility, efficiency, and

global impact.
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