
30

Journal of Computer Science Research | Volume 01 | Issue 02 | July 2019

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jcsr.v1i2.1239

Journal of Computer Science Research

http://ojs.bilpublishing.com/index.php/jcsr

ARTICLE

AgamottoEye: Recovering Request Flow for Cloud Systems via Log
Analysis

Jie Lu1　Feng Li2　Lian Li1*
1. SKL of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, University of Chi-
nese Academy of Sciences, China
2. Institute of Information Engineering, Chinese Academy of Sciences, China

ARTICLE INFO ABSTRACT

Article history
Received: 23 May 2019
Accepted: 29 June 2019
Published Online: 30 July 2019

Cloud applications are implemented on top of different distributed sys-
tems to provide online service. A service request is decomposed into
multiple sub-tasks, which are dispatched to different distributed systems
components. For cloud providers, monitoring the execution of a service
request is crucial to promptly find problems that may compromise cloud
availability. In this paper, we present AgamottoEye, to automatically con-
struct request flow from existing logs. AgamottoEye addresses the chal-
lenges of analyzing interleaved log instances, and can successfully extract
request flow spread across multiple distributed systems. Our experiments
with Hadoop2/YARN show that AgamottoEye can analyze 25,050 log
instances in 57.4s, and the extracted request flow information is helpful
with error detection and diagnosis.

Keywords:
Cloud applications
Log analysis
Request flow

　

*Corresponding Author:
Lian Li,
SKL of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, University of Chinese Academy of
Sciences, China;
Email: lianli@ict.ac.cn

1. Introduction

As we now enter into the cloud era, more and more
applications are moving from local to cloud settings.
These modern cloud applications are implemented

on top of various distributed systems. A service request is de-
composed into multiple sub-tasks, which are then dispatched
to different components of various distributed systems. The
different components across multiple systems interact with
each other to render a service.

Request flow [10] depicts the detailed work-flow in pro-
cessing a user request, which consists of causally-related
activities across multiple components of distributed systems.
Precise request flow information is useful for many import-
ant use cases, including anomaly detection [5], performance
tuning [11], and system understanding [3]. For cloud providers,

monitoring the request flow of a service request is crucial to
promptly find problems that may compromise cloud avail-
ability.

We develop AgamottoEye, a new tool to automatically
recover request flow from existing logs. Compared to those
approaches which instrument and trace cloud applications to
construct request flow [9], the log-based approach is non-in-
trusive, and can be easily adopted. Our one-year long study
of manually tracing different distributed systems using
Xtrace [6] also shows that there frequently exists log points
around the manually instrumented trace point.

To automatically construct request flow from existing
logs, AgamottoEye addresses the following challenges:

(1) Interleaved log instances. Cloud applications can serve
thousands of user requests in parallel, and log messages from
different requests are interleaved in log files. Furthermore, a

31

Journal of Computer Science Research | Volume 01 | Issue 02 | July 2019

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jcsr.v1i2.1239

request is decomposed into multiple subtasks, and asynchro-
nous operations among different subtasks can interleave log
messages differently. How to identify log messages for a par-
ticular subtask or user request is necessary, but challenging.

(2) Request flow spread across multiple systems. Cloud
applications are built on top of multiple distributed systems,
where each system may consist of hundreds of software
components and thousands of nodes. For example, the cloud
computing framework Hadoop2 consists of 3 sub-systems,
the computing framework Hadoop Map-Reduce, the distrib-
uted resource management system YARN[12], and the distrib-
uted file system HDFS[4]. Hence, a simple user request can
spread across multiple systems, involving hundreds of nodes
and components.

An illustration Example

Figure 1. A simplified request flow extracted from Hadoop2/
YARN

Note: Each square represents an event, identified by a runtime log instance.
Each edge is labelled with a corresponding latency to represent casual rela-
tion between events. In this example, the user submit a map/reduce job. As
a result, a job attempt task is launched. The job attempt task is then divided
into a set of sub-tasks. The job attempt succeeds when all subtasks finish and
the job is finished.

Figure 1 illustrates a simplified request flow extract-
ed by AgamottoEye from Hadoop2/Yarn [12]. Each square
represents an event, uniquely labelled by a log instance.
Events logging a same ID variable are grouped togeth-
er to form a subtask, e.g., job_1520652966474_0001.
A subtask may be further divided into sets of subtasks,
e.g., task_15-20652966474_0001_m_00000… task_15-
20652966474_0003_m_00000. The job finishes when all its
three subtasks finishes.

Figure 2 shows the request flow of a particular subtask
in Figure 1. Note that the events in Figure 1 are in Hadoop2
Map-Reduce/Yarn, and the events in Figure 2 are from a dif-
ferent system HDFS.

At last, Figure 3 presents a hierarchical view of the dif-
ferent tasks when processing a user request. Each task is
associated with a unique ID variable, and values of ID vari-

ables are used to identify distinct task instances. Tasks are
connected if their associated ID variables are printed in a
same log statement. The ratio (1:1 or 1:n) denotes the ratio
between number of task instances. For example, in Figure1,
the same attempID value is printed in multiple log instances
with distinct taskID values. Hence, the ratio between the two
subtasks are 1:n, suggesting an attempID task instance is de-
composed into multiple taskID task instances. On the other
hand, the ratio between taskID and fileID is 1:1, suggesting a
1 to 1 mapping between the two tasks.

Figure 2. A simplified request flow of the subtasks in
Figure 1

Figure 3. Relation between tasks in Figure 1

32

Journal of Computer Science Research | Volume 01 | Issue 02 | July 2019

Distributed under creative commons license 4.0

The above figures illustrate the detailed request flow of
a service request at different granularity. They can be an-
alysed manually for system understanding and profiling.
Alternatively, such information can be combined with ex-
isting tools (e.g., Spectroscope[10]) to automatically detect
anomalies.

2. Implementation

Figure 4. Overview of AgamottoEye

We implement AgamottoEye in Wala [8] via a series of
sub-analyses (Figure 4). Communication analysis per-
forms static analysis on the source code to identify these
events sending messages to other components. These
events will be handled by corresponding subtasks. Log
analysis analyzes log instances and maps them to statical-
ly identified communication events. ID analysis groups
events together into subtasks, according to the logged ID
variable values. HB analysis computes the causal-relation
between events using a customized happen-before model
for distributed systems.

Casually-related events are connected together in the
generated request flow.

(1) Communication analysis. We consider three types
of communication events in distributed systems: thread
creation, RPC (remote procedural call), and event dis-
patch. Each communication event is identified with a cli-
ent side to send a request message, a server side method to
handle the request, and a logging pattern encoded in regu-
lar expressions to log the event. For example, the logging
pattern of the first event in Figure 1 is "Application (.*) is
submitted by user (.*)"

(2) Log Analysis. Log analysis maps log instances
to statically identified communication events, accord-
ing to their logging patterns. ID variable values in log
instances are extracted for further analysis. We use lu-
cene[1] to speed up log analysis. As in Figure 1, for the
first event, the logged ID variable values are "applica-
tion_15206242966474_0001" and "user1".

We regard a variable as an ID variable if it is wrapped
in the request, and printed by a log in the request handler
method. Figure 5 gives an example. The client side set
the ID value as a field of the request object (line #5-9 in

Figure 5). The request handler method (server side) de-
composes the request (its formal parameter), to get appli-
cationID (line #14-18 in Figure 5), which is then printed
in log statements (line #21 in Figure 5). Hence, Agamot-
toEye regards a variable as an ID variable if it is derived
from formal arguments of a request message hander meth-
od, and is printed in log statements.

(3) Id analysis. ID analysis groups log instances togeth-
er according to their associated ID variable values. Note
that here we consider the logged ID values only, even
if the log statements print different variables. As such,
we avoid precisely analyzing the dependences between
logged variables, to statically determine whether they
refer to the same variable or not. Tasks are related if their
associated ID values appear in a same log instance, as
shown in Figure 3.

Figure 4. Identify ID Variables

(4) HB analysis. With the task graph, AgamottoEye
uses the logged values to map each log instance in the
corresponding request flow. AgamottoEye computes the
happens-before (HB) relation between log instances as
follows: A. If the corresponding log points of two log
message belong to the same task, the log points execution
order determines the HB relation, B. if the log instance of
one static communication event always occurs before the
log instance of another static event at runtime, there exist
HB relation between two static communication events.

After HB analysis, AgamottoEye creates nodes for
each log instance. Nodes are connected if there exists HB
relation between them. We refine the graph by removing
transitive edges, and finally we have the request flow like
the Figure 1.

3. Applications

We have used AgamottoEye to extract request flow
automatically from Hadoop2/Yarn. It costs about 345.532

DOI: https://doi.org/10.30564/jcsr.v1i2.1239

33

Journal of Computer Science Research | Volume 01 | Issue 02 | July 2019

Distributed under creative commons license 4.0

secs in total, to analyze 539,085 lines of code and 25,050
log instances. Most of the time are spent in analyzing the
source code, including 52.52% of the time to build the call
graph. Only 57.444 secs(16.62%) are spent in analyzing
logs. This suggests that AgamottoEye is efficient enough
to monitor request flow online, since only the new gener-
ated logs need to be processed.

In addition to generate the graphs (Figure 1 to Figure
3) for manual inspection, we also experimented wheth-
er the extracted request flow information can be helpful
with automatic bug diagnosis. In this experiment, we use
Spectroscope [10] to compare request flows generated from
AgamottoEye, to detect anomalies.

Figure 6. Two types of anomalies that Spectroscope can
finds. The messages in (a) are the same as the normal

work-flow. The messages of (b) are different.

Extend Spectroscope: Spectroscope detects anomalies
by comparing request flows with the normal request flow
(obtained via profiling). It can detect two types of anoma-
lies: response anomaly and structural anomaly, as in Fig-
ure 6. Response anomaly is the case when the latencies on
one or more edges become abnormally larger, e.g., the b->d
edge in Figure 6(a). Structural anomaly denotes the case
when some edges or nodes are added or lost in abnormal
request, e.g., the node h and edge d->h in Figure 6(b). To
detect structural anomaly, spectroscope classifies request
flows into different clusters and compares two clusters
to find abnormal structure edges. Spectroscope detect re-
sponse anomaly by comparing request flows in the same
cluster. Currently, Spectroscope uses depth-first search to
get the string represent for each request flow, and request
flows are classified according to their string representa-
tion. For example, the string representations for request
flow in Figure 6 (a) and (b) are “abdfce" and abdhc",
respectively. However, in our experiments, the generated
request flow always have slight differenced even if we run
the same workload in the same environment.

Hence, in our experiments, we use hierarchical cluster-
ing [7] to replace the origin clustering strategy. Our exper-
iments shows that hierarchical clustering can effectively
tolerate such slight changes and are able to detect anomaly

with good precision.
Input: Our workload is WORDCOUNT of Hadoop2/

YARN. We have run this workload for ten times in a three
nodes cluster concurrently to generate normal requests.
We also generate the abnormally request flows by : (1)
randomly injecting sleep to simulate physical machine
slowdown or network traffic delay. This will generate the
response anomaly like Figure 6(a); (2) randomly injecting
node crash events to simulate hardware failure. This will
generate the structural anomaly like Figure 6(b); and (3)
reproducing the bug MAP-REDUCE-3228[2] which will
lead to request hang. This will generate both response and
structural anomaly.

Result: AgamottoEye can successfully construct the
request flows for all above inputs. We have compared the
three types of abnormal request flow with the normal re-
quest flows using our extended Spectroscope. For the first
type, Spectroscope can correctly point out which edge
becomes slow. For the second type, Spectroscope can suc-
cessfully identify recovery and missing edges introduced
by node crash. For the third type, Spectroscope can pin-
point the three edges related to the bug. The experimental
results demonstrate the precision of request flows generat-
ed by AgamottoEye.

4. Related Works

Sambasivan et al. [9] summarize how to generate request
from from end-to-end tracing techniques. The tool lprof

[15] generates the request flow for each thread. Stitch [14]
maps all logs to their corresponding request flow, but did
not compute the causal relation between them. Cloudseer
[13] uses an automaton to depicts a task workflow, which
is built from existing logs and can be used to monitor re-
quest status online. AgamottoEye differs with the above
work and automatically generates the request flow across
multiple systems.

5. Conclusion

In this paper we propose AgamottoEye, a new tool to re-
cover request flow from existing logs. AgamottoEye pre-
cisely analyzes interleaved log instances and can process
request flow spread across multiple distributed systems.
Our experimental results show that the generated request
flow can help developers to diagnose and detect anoma-
lies.

References

[1] http://lucene.apache.org/
[2] MR AM hangs when one node goes bad.
 h t tps : / / i s sues .apache .o rg / j i r a /b rowse /MA-

DOI: https://doi.org/10.30564/jcsr.v1i2.1239

34

Journal of Computer Science Research | Volume 01 | Issue 02 | July 2019

Distributed under creative commons license 4.0

PREDUCE-3228
[3] Paul Barham, Austin Donnelly, Rebecca Isaacs, and

Richard Mortier. Using Magpie for request extraction
and workload modelling.. In OSDI, 2004, 4: 18.

[4] Dhruba Borthakur et al. HDFS architecture guide.
Hadoop Apache Project, 2008, 53.

[5] Yen-Yang Michael Chen, Anthony J Accardi, Emre
Kiciman, David A Patterson, Armando Fox, and Eric
A Brewer. Path-based failure and evolution manage-
ment, 2004.

[6] Rodrigo Fonseca, George Porter, Randy H Katz,
Scott Shenker, and Ion Stoica. X-trace: A pervasive
network tracing framework. In Proceedings of the
4th USENIX conference on Networked systems de-
sign & implementation. USENIX Association, 2007,
20–20.

[7] Anil K Jain and Richard C Dubes. Algorithms for
clustering data, 1988.

[8] T.J. Watson Libraries.
 https://github.com/wala/WALA
[9] Raja R Sambasivan, Rodrigo Fonseca, Ilari Shafer,

and Gregory R Ganger. So, you want to trace your
distributed system? Key design insights from years
of practical experience. Technical Report. Technical
Report, 2014. CMU-PDL-14.

[10] Raja R Sambasivan, Alice X Zheng, Michael De
Rosa, Elie Krevat, Spencer Whitman, Michael
Stroucken, William Wang, Lianghong Xu, and Greg-
ory R Ganger. Diagnosing Performance Changes by

Comparing Request Flows.. In NSDI, 2011, 5: 1.
[11] Benjamin H Sigelman, Luiz Andre Barroso, Mike

Burrows, Pat Stephenson, Manoj Plakal, Donald Bea-
ver, Saul Jaspan, and Chandan Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure.
Technical Report. Technical report, Google, Inc,
2010.

[12] Vinod Kumar Vavilapalli, Arun C Murthy, Chris
Douglas, Sharad Agarwal, Mahadev Konar, Robert
Evans, Thomas Graves, Jason Lowe, Hitesh Shah,
Siddharth Seth, et al. Apache hadoop yarn: Yet anoth-
er resource negotiator. In Proceedings of the 4th an-
nual Symposium on Cloud Computing. ACM, 2013,
5.

[13] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin,
Hui Zhang, and Guofei Jiang. Cloudseer: Workflow
monitoring of cloud infrastructures via interleaved
logs. In ACM SIGPLAN Notices, 2016, 51. ACM:
489–502.

[14] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and
Michael Stumm. Non-Intrusive Performance Pro-
filing for Entire Software Stacks Based on the Flow
Reconstruction Principle.. In OSDI. 2016, 603–618.

[15] Xu Zhao, Yongle Zhang, David Lion, Muhammad
Faizan Ullah, Yu Luo, Ding Yuan, and Michael
Stumm. lprof: A Non-intrusive Request Flow Profiler
for Distributed Systems.. In OSDI, 2014, 14: 629–
644.

DOI: https://doi.org/10.30564/jcsr.v1i2.1239

	_Hlk3711487
	_Hlk3711541
	_GoBack
	_Hlk3820149
	OLE_LINK3
	OLE_LINK4
	_GoBack

