
17

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jcsr.v2i2.1765

Journal of Computer Science Research

http://ojs.bilpublishing.com/index.php/jcsr

ARTICLE

Mobile Software Assurance Informed through Knowledge Graph Con-
struction: The OWASP Threat of Insecure Data Storage

Suzanna Schmeelk1*　Lixin Tao2
1. St. John's University, United States
2. Pace University, United States

ARTICLE INFO ABSTRACT

Article history
Received: 23 March 2020
Accepted: 9 April 2020
Published Online: 31 May 2020

Many organizations, to save costs, are moving to the Bring Your Own
Mobile Device (BYOD) model and adopting applications built by
third-parties at an unprecedented rate. Our research examines software
assurance methodologies specifically focusing on security analysis cov-
erage of the program analysis for mobile malware detection, mitigation,
and prevention. This research focuses on secure software development
of Android applications by developing knowledge graphs for threats re-
ported by the Open Web Application Security Project (OWASP). OWASP
maintains lists of the top ten security threats to web and mobile applica-
tions. We develop knowledge graphs based on the two most recent top
ten threat years and show how the knowledge graph relationships can be
discovered in mobile application source code. We analyze 200+ health-
care applications from GitHub to gain an understanding of their software
assurance of their developed software for one of the OWASP top ten
mobile threats, the threat of “Insecure Data Storage.” We find that many
of the applications are storing personally identifying information (PII) in
potentially vulnerable places leaving users exposed to higher risks for the
loss of their sensitive data.

Keywords:
Cybersecurity
Secure software development
Penetration testing
Risk assessment

　

*Corresponding Author:
Suzanna Schmeelk,
St. John’s University, United States;
Email: schmeels@stjohns.edu

1. Introduction

Many organizations, to save costs, are moving to
Bring Your Own Mobile Device (BYOD) and
adopting applications built by third-parties at

an unprecedented rate. In these scenarios, organizations
may have a Mobile Device Management (MDM) system in
place, which help to lower cyber security risks by providing
remote wipe procedures, geo-location fencing, and other
security-minded features. However, MDM systems are not
yet focused on application-level security with a fine-level of
granularity. MDM systems currently may not monitor for
data loss prevention (DLP), or even standard web-applica-

tion vulnerabilities that a penetration tester would examine.
Therefore, in mobile application software development de-
sign choices, there can remain unmitigated higher risks.

As our world moves more-and-more to the edges with
mobile application development and the Internet of Things
(IoT), software assurance will have more requirements.
Since the storage and transmission of sensitive data is a
higher risk concern, it is optimal to detect related security
concerns early. In fact, recent regulatory changes are oc-
curring at unprecedented rates with adoptions of new laws
at local, national and international levels. Having a clearer
picture of security on our mobile devices is now an indus-
try necessity.

18

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

1.1 Problem Statement

Organizations around the world are adopting mobile tech-
nology and applications built by third parties at an unprec-
edented rate. This research examines software assurance
methodologies specifically through designing knowledge
graphs to inform security analysis coverage for the pre-
vention, mitigation and detection of mobile threats. This
research first examines current Android mobile application
static analysis software assurance techniques to discover
trends in analysis. Recent academic publications examine
the coverage and distribution of current Android static anal-
ysis for malware and other threat detection, mitigation, and
prevention challenges. Recent research has shown that soft-
ware assurance methodologies are adhoc and non-system-
atic. This research works to develop a unified model which
can be further extended as new cybersecurity concerns
develop and change over time. Finally, we examine 200+
mobile applications source code to understand their cy-
bersecurity software assurance designs with respect to the
OWASP Mobile Threat Two for “Insecure Data Storage.”

1.2 Review of Literature

Software assurance of mobile applications, specifically
informed through knowledge graph construction, requires
a literature background grounded in both (1) cybersecurity
ontology and knowledge graph construction and (2) mobile
software cybersecurity assurance and development. Both
domains are highlighted in the following subsections.

1.2.1 Cybersecurity Ontologies and Knowledge
Graphs

Ontologies and knowledge graphs are essential model
representations for communicating system information
resources to improve system understandings, usability and
durability. According to Allemang and Hendler [1], model
representations “help people communicate (p. 15),” “ex-
plain and make predictions (p.15)” and “mediate among
multiple viewpoints (p.15).” Models can be used “to help
us through the mess on the web (p. 16).”

Ontologies are defined, according to Goknil and To-
paloglu [2], to be, “a formal explicit description of concepts
in a domain of discourse, properties of each concept de-
scribing various features and attributes of the concept, and
restrictions of slots [4].” Lacy [5] states that, “ontologies
serve a similar function to a database schemas by provid-
ing machine-processable semantics of information sources
through collections of terms and their relationships. On-
tologies (e.g. [2])can be useful for software development to
make clear how systems should operate at a fundamental
level. Yu [3] discusses how ontologies are essential for

software development to understand how data should flow
and how the software should interact. Yu describes the
use of ontologies from the perspective of software devel-
opment through immense experience programming the
transportation systems of Delta Airlines.

Kafali et al. [8] reviewed known data breaches at entities
covered under the Health Insurance Portability and Ac-
countability Act (HIPAA). Their research goal was to help
measure the gaps between security policies and reported
breaches. They developed a systematic process based on
semantic reasoning and proposed a framework, known as
SEMAVER, for determining coverage of breaches by poli-
cies via comparison of individual policy clauses and breach
descriptions. They developed the ontology shown in Figure
1 (p. 532) as one of their research contribution. As can be
seen in this particular ontology, there are two relations, is-a
(represented by lines) and has-a (represented by arrows),
and twelve nodes in the ontology. After developing the on-
tologies, they worked with the SEMAVER framework to
create breach similarity and policy clause coverage scores
from data reported to the United States Department for
Health and Human Services Office of Civil Rights (US
HHS OCR), whom maintains a breach portal of open cases.

Figure 1. HIPAA Breach Ontology (p. 532) from Kafali et
al. [8]

Knowledge graphs communicate information with a dif-
ferent representation than an ontology. An ontology formally
describes the types, properties, and interrelationships between
entities. A knowledge graph is a collection of entities where
the types and properties have values declared for them, and
where the relationships between them are connected. In a
knowledge graph, the nodes are the types and properties and
the edges are the relationships between nodes.

K. Patel, I. Dube, L. Tao, and N. Jiang [6] recently
published work in this domain proposing minimal syn-
tax extension to the OWL Web Ontology Language for
declaring custom relations with special attributes and
applying them in knowledge representation. Their work
presents additions to the OWL API for the declaration,
application, and visualization of custom relations. The re-
search paper outlines revisions and additions to the ontol-
ogy editor Protégé so its users can visually declare, apply,

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

19

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

and remove custom relations according to their enriched
OWL syntax. Their work describes the modification to the
OWLViz plugin for custom relations visualization also
known as knowledge graphs.

1.2.2 Cybersecurity Software Assurance

Industry relies on three pivotal vulnerability discourse
frameworks developed independently by MITRE and the
National Institute of Standards and Technology (NIST).
MITRE maintains the developer specific taxonomy, the
Common Weakness Enumeration (CWE) [8], and the mal-
ware specific taxonomy, the Common Attack Pattern Enu-
meration and Classification (CAPEC™) [9]. NIST main-
tains the developer specific condensed taxonomy, the Bug
Framework (BF) [10]. These frameworks attempt to unify
the industry into standardizing vulnerability language;
however, industry and research communities can still
disagree with vulnerability specifics such as actual ‘fault’
problem sources or effects. Similarly, library designers
and users can also disagree on exact implementation re-
quirements interpretations. Many industry tools rely on
these MITRE and NIST frameworks to convey vulner-
ability details to software engineers. These frameworks
are designed to answer questions pertaining to describing
malware or developer techniques.

Current static analysis research on mobile applications
is adhoc and quite non-systematic. Four major domains of
research exist from a unifying utility perspective, as de-
scribed by Schmeelk [11], Schmeelk [12], Schmeelk and Aho

[13], and Schmeelk, Yang, and Aho [14]. In general, research
exists for software assurance methodologies including
detecting vulnerabilities during development, detecting
malware at large, detecting specific application behavior
in a sandbox, and sanitizing/re-packing applications.

Schmeelk [11], Schmeelk [12], Schmeelk and Aho [13], and
Schmeelk, Yang, and Aho [14] showed that the mobile static
analysis research can be further categorized into five main
security domains: confidentiality (C), integrity (I), availabil-
ity (A), generalizable (e.g. many different items occurring
at once), and other polyhedral (i.e. security concerns related
to the CIA (confidentiality, integrity, and availability) triad
but at a higher-level such as leaving secret keys hard coded
in an application, improper certificate validation, etc.).

Schmeelk’s [12] research showed that only a few Android
software assurance static analysis research papers fit into
the NIST BF’s six current classes, as seen in Figure 2. The
static analysis meta-research also raised questions about
five findings that may be of the BF four main elements of
a bug: causes, attribute, consequences and sites of bugs.
Schmeelk [11,12] showed that some of the meta-research
matched in both the MITRE and NIST framework, such

as: IEX (matching CWE-200: Information Exposure),
CRY (matching CWE-310 CATEGORY: Cryptographic
Issues), AUT (matching CWE-441: Unintended Proxy or
Intermediary), PTR (matching CWE-476: NULL Pointer
Dereference), WOP (matching CWE-597: Use of Wrong
Operator in String Comparison), and ARG (matching
CWE-628: Function Call with Incorrectly Specified Ar-
gument). Schmeelk [12] discussed differences between the
MITRE CWE analysis and the NIST BF analysis. The re-
search found that there are currently some non-overlapping
categories (i.e. CWE-798: Use of Hard-coded Credentials,
CWE-835: Loop with Unreachable Exit Condition (’Infinite
Loop’), CWE-500: Public Static Field Not Marked Final,
CWE-561: Dead Code, and CWE-272: Least Privilege Vi-
olation) between the two taxonomies. Schmeelk [11,12] noted
that the non-matching CWE comparisons may not directly
map into NIST BF as individual classes.

Figure 2. The fraction of NIST BF categories researched
in Android analysis across the publications as presented in

Schmeelk [12]

2. Methodology/Methods

This research contributes an examination of mobile appli-
cation security through the construction of a knowledge
graph for the current OWASP Top 10 Mobile Threat 2
“Insecure Data Storage.” The knowledge graph contribu-
tion links threats from the two most recent major OWASP
Mobile Top 10 Threat releases, 2014 and 2016, to show
changes in time and to help determine security changes
over time. Currently, only the NIST BF has built any
graphical representation to inform further software assur-
ance analysis. Our developed OWASP specific high-level
graphical representation shows potential vulnerabilities
such as the insecure storage of sensitive data, which de-
pending on how the mobile software code is utilized, can
occur heavy fines for the mismanagement of sensitive per-
sonal identification information (PII).

This research then contributes to how specific mobile
device source code, specifically Android in this research,
can be useful to informing static analysis. In addition, de-
veloping such a knowledge graph can be further extended

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

20

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

over time as cybersecurity evolves and changes. In this
research we focus on source code analysis; however, the
knowledge graph can be extended to include byte code
patterns or entirely other mobile device application lan-
guages, such as Swift, JavaScript, and C/C++.

In our final contribution, we analyze 200+ healthcare
Android applications source code from GitHub to learn
what, if any, security concerns are being developed into
their source code. Static analysis can be employed to en-
sure proper source code management of personally iden-
tifying information and other sensitive data. Some of the
applications analyzed collect highly sensitive information
such a body weight, body signals (e.g. blood pressure,
temperature), mental health measurements, obgyn mea-
surements, among other sensitive information. Specifical-
ly, in this research, we analyzed applications for compo-
nents of the constructed-knowledge graphs, confidentiality
and integrity of their sensitive information.

2.1 OWASP 2014 M2 Insecure Data Storage (IDS)

The OWASP 2014 Mobile Threat 2 is “Insecure Data Stor-
age.” In our knowledge graphs of, seen in Figure 3, we
label this threat as M2_Insecure_Data_Storage. Insecure
data storage (IDS) can potentially lead to data compromise
or the propagation of malware [15]. Our knowledge graph is
based on industry best practices and industry news reports.

Figure 3. Our Knowledge Graph for OWASP 2014 M2
Insecure Data Storage

From an application level, storing data insecurely can
potentially resultFrom storing data in a vulnerable loca-
tion. The resultFrom relation is necessary to describe risk
associated with storing data in a vulnerable location. As
such, it is not an isA relationship, which indicates hierar-
chy. Risk is traditionally measured using a likelihood and
impact model [16]. In such a model, the likelihood is the
probability of threat being exploited along with the under-
lying impact, if exploited, to the end users, organization(s)
and potential customers.

Android offers at least four locations to store data: in-
ternal file storage, external file storage, shared preferences,
and databases [17]. Common VulnerableLocations on mobile
devices are (i.e. isA) shared spaces [18]. All of the android

data storage locations are shared spaces under certain con-
ditions. SharedSpaces are vulnerable to all CIA concerns
since multiple applications have access to information
stored in this space by default [18]. Common shared spaces
are (i.e. isA) MemoryCards and are (i.e. isA) DefaultSet-
tings. On onA RootedDevice they are (i.e. isA) application
Databases and (i.e. isA) AppSandbox. Android has speci-
fied that an external storage MemoryCard isA SDCard [18].

Table 1. Android Java Code for File Storage [23]

/* Checks if external storage is available for read and write */
public boolean isExternalStorageWritable() {
 String state = Environment.getExternalStorageState();
 if (Environment.MEDIA_MOUNTED.equals(state)) {
 return true;
 }
 return false;
}

/* Checks if external storage is available to at least read */
public boolean isExternalStorageReadable() {
 String state = Environment.getExternalStorageState();
 if (Environment.MEDIA_MOUNTED.equals(state) ||
 Environment.MEDIA_MOUNTED_READ_ONLY.equals(state)) {
 return true;
 }
 return false;
}

public File getPublicAlbumStorageDir(String albumName) {
 // Get the directory for the user's public pictures directory.
 File = new File(Environment.getExternalStoragePublicDirectory(
 Environment.DIRECTORY_PICTURES), albumName);
 if (!file.mkdirs()) {
 Log.e(LOG_TAG, "Directory not created");
 }
 return file;
} …

Table 1 shows the Android Java code for storing a file. Spe-
cifically, the method call to write a file to external file storage
can be analyzed by first identifying the external storage home
directory using the Android API call getExternalStoragePub-
licDirectory. Additionally, the file can have basic permission
set during creation. The developer can calculate the integers
directly to set permissions when a file is opened. In addition,
the Android API offers fixed standard values stored in the API
Context Interface. Four standard API examples are as follows:
MODE_PRIVATE, MODE_WORLD_READABLE, MODE_
APPEND, and MODE_WORLD_WRITEABLE. In either case,
static analysis can detect risky file permissions at different stat-
ic analysis granularities. There are at least two definitions de-
batably used in the field-at-large for static analysis tools. First,
if a tool is complete, it will never report false positives; but, it
may result in “false negatives.” Second, if a tool is sound, it
will never miss any violations; but, it may result in “false posi-
tives.”

First, with a source code one-pass text analysis, static
analysis can determine if any risky Context API values [19]

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

21

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

are used within the application (e.g. locating the external
storage home directory (i.e. getExternalStoragePublic-
Directory), or any public API Context values). This tech-
nique is neither sound nor complete. Second, a complete
static analysis technique could be employed by using a
context-sensitive control flow analysis examine every
potential Android API call to class methods where a file is
opened for writing. This technique would identify every
risky methodology for writing a file using the Android
API. Third, to improve the soundness from the second
technique, data flow analysis could be employed to help
determine if sensitive data may, in fact, be stored into the
file by employing data propagation and taint analysis stat-
ic analysis techniques.

Android specifies at least two types of default settings

[20]. DefaultSettings are (i.e. isA) User Default Settings
or Shared Preferences. SharedPreferences are just plain
XML files in an application directory on internal storage

[21]. Table 2 shows an example of accessing the Shared
Preferences. Static analysis on the source code can identi-
fy the type of Shared Preferences employed on the code.

First, with a source code one-pass text analysis, static
analysis can determine if any risky context API values [19]

are used within the application. This technique is neither
sound nor complete. Second, a complete static analysis
technique could be employed by using a context-sensitive
control flow analysis examine every potential Android API
call where SharedPreferences methods are accessed for
writing. This technique would identify every risky meth-
odology for writing a file using the Android API. Keep in
mind that complete static analysis technique guarantees no
“false negatives.” Third, to improve the soundness from the
second technique, data flow analysis could be employed to
help determine if sensitive data may in fact be stored into
the file or used by the application for configuration after
retrieving information from the SharedPreferences.

Table 2. Android Java Code for Shared Preferences [22]

Context context = getActivity();
SharedPreferences sharedPref = context.getSharedPreferences(
 getString(R.string.preference_file_key), Context.MODE_PRIVATE);

Another SharedSpace isA Database onA rooted device
in the Android API is SQLite [24]. This database may have
tables, which may not have permissions correctly set to
restrict access to only the files for which they are privi-
leged. The Android API offers fixed standard values stored
in the API context interface. Five standard API permission
examples are as follows: MODE_PRIVATE, MODE_
WORLD_WRITEABLE, MODE_ENABLE_WRITE_
AHEAD_LOGGING, MODE_WORLD_READABLE or
MODE_NO_LOCALIZED_COLLATORS. In addition, on

a rooted device the Database is entirely exposed to any
application on the device.

Table 3 shows Android application code for interacting
with the Android SQLite database using the Android API
[24]. First, with simple source code one-pass text analysis,
static analysis can determine if any risky context API
values are used within the application. This technique is
neither sound nor complete [19]. Second, a complete static
analysis technique could be employed by using a con-
text-sensitive control flow analysis examine every poten-
tial Android API call where the database access methods
are accessed for writing. This technique would identify
every risky methodology for creating a table using the
Android API. Keep in mind that complete static analysis
technique guarantees no “false negatives” from an An-
droid API perspective. If a developer were to import data-
base code not native to the Android API, the static analysis
would need to be updated accordingly. Third, to improve
the soundness from the second technique, data flow anal-
ysis could be employed to help determine if sensitive data
may in fact be stored into the database or retrieved from
the database to be used for application configuration.

Table 3. Android Java Code for SQL Lite Database [24]

public class FeedReaderDbHelper extends SQLiteOpenHelper {
 // If you change the database schema, you must increment the database
version.
 public static final int DATABASE_VERSION = 1;
 public static final String DATABASE_NAME = "FeedReader.db";

 public FeedReaderDbHelper(Context context) {
 super(context, DATABASE_NAME, null, DATABASE_VERSION);
 }
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(SQL_CREATE_ENTRIES);
 }
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion)
 {
 // This database is only a cache for online data, so its upgrade policy is
 // to simply to discard the data and start over
 db.execSQL(SQL_DELETE_ENTRIES);
 onCreate(db);
 }
 public void onDowngrade(SQLiteDatabase db, int oldVersion, int
newVersion)
 {
 onUpgrade(db, oldVersion, newVersion);
 }
}
// Gets the data repository in write mode
SQLiteDatabase db = mDbHelper.openDatabase(File, SQLiteData-
base.OpenParams)
// Create a new map of values, where column names are the keys
ContentValues values = new ContentValues();
values.put(FeedEntry.COLUMN_NAME_TITLE, title);
values.put(FeedEntry.COLUMN_NAME_SUBTITLE, subtitle);
// Insert the new row, returning the primary key value of the new row
long newRowId = db.insert(FeedEntry.TABLE_NAME, null, values);

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

22

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

Another SharedSpace in Android onA RootedDevice
isA ApplicationSandbox [20]. The relationship onA is
needed to show that the ApplicationSandbox becomes
a SharedSpace once a devices is rooted and not before.
A rooted device is not in itself a SharedSpace. Thus, the
relationship is not hierarchical. Both the ApplicationSand-
box and SharedStorage may have (i.e. hasA) file(s) on
them. In either case, files stored in the location are vul-
nerable if they are without proper FileBasedEncryption
(FBE). The without relation is necessary as FBE is not
(i.e. isA) a hierarchal relationship. If this File is without
File Based Encryption (FBE), it is then vulnerable to use
by other Android applications as it is in a default common
space [18]. The relationship without is important to show a
missing property for secure data storage.

Application developers can choose to specify where
they prefer that their application is installed. Android
currently permits developers to specific applications to
PreferInstallation entirely onto external storage. This is
a popular choice when applications are extremely large.
Applications can be stored on external storage, a Shared-
Space, by specifying the string android:installLocation
attribute in the application manifest [25]. A static analysis
of the application manifest can detect this storage choice
in simply a string analysis of the manifest. Applications
stored entirely in SharedSpace are subject to more con-
cerns than internal applications. The device can further
be rooted; however, rooting is an entirely separate con-
cern.

In summary, we have identified at least six sub-areas
where the static analysis of developer Android applica-
tion source code can be examined for standard risky An-
droid API calls which are subjects to the risk of OWASP
Mobile Threat 2 is “Insecure Data Storage” (MD_IDS).
The threat of insecure data storage (IDS) can potentially
lead to data CIA compromise or the propagation of mal-
ware. The standard Android API calls include reading
and writing from the internal file storage, external file
storage, shared preferences, prefer installLocation, data-
bases, and the underlying stored files themselves. As our
cybersecurity knowledge expands, so to can our knowl-
edge graph. This dynamic representation provides a stan-
dardized methodology to reason about mobile software
assurance.

2.2 OWASP 2016 M2 Insecure Data Storage (IDS)

The OWASP 2016 Mobile Threat Two is “Insecure Data
Storage” (M2_ Insecure_Data_Storage), as seen in Figure
4. IDS can potentially lead to data compromise of sensi-
tive data or the unauthorized data access.

Figure 4. Our Knowledge Graph for OWASP 2016 M2
Insecure Data Storage

According to the OWASP 2016 Mobile Threat cat-
egories [26], we built the 2016 threat resultsFrom either
OWASP_2014_M2_Insecure_Data_Storage or, since
the M4 category disappeared in 2016, results From
OWASP_2014_M4_Unintended_Data_Leakage. There-
fore, the 2016 category of threats is simply a composite of
two former OWASP 2014 threats M2 IDS and M4 “Unin-
tended Data Leakage.” The beauty of the knowledge graph
representation development over time helps build a threat
landscape map of the field to show how prior analyses re-
flect with current cybersecurity analyses and trends. This
graphical information is extremely valuable especially if
examining how code changes or drifts with time or exam-
ining earlier analyses after potential data breach insurance
claim reports. Furthermore, the graphical representation
can be transformed into many different OWL languages to
furthermore enable cybersecurity in the semantic web.

3. Results

We analyzed the source code of 200+ Android health-
care applications hosted on GitHub. In our mobile appli-
cation analysis, we detected what, if any, secure coding
artifacts are present for the OWASP 2016 Mobile Threat
2 “Insecure Data Storage.” The artifacts chosen for this
analysis were based on our Section 2 knowledge graph. In
all the healthcare applications, the data collected is con-
sidered sensitive or personal identifying information (PII)
since it can be attached to certain device specific identifi-
ers such as IMEI or IMSI.

Figure 5. Application seeking permission to be stored on
external storage

First, our research found some case specific issues such
as the application listed at https://github.com/doneill123/
HealthyHabitsProject/blob/master/app/src/main/Android-

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

23

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

Manifest.xml. This particular application both requests to
be entirely installed on external storage (most likely for the
removal of space constraint issues) and requests permission
to write to external storage, as can be seen in Figure 5. The
specific Google guidance on installing applications entirely
on the external storage is seen in Figure 6.

Secondly, we found overall through a string analysis
that 70 applications of 203 applications requested per-
missions to write to external storage, which is unsecured
shared space among all the applications on a devices.
Of these 70 applications only 9 applications employed
either the Android or Oracle crypto packages indicating
immediately that 64 applications will qualify for higher
risk management methodologies as they are requesting
permissions to store data on non-private shared spaces
without considering the C and I in the CIA-triad.

Figure 6. The Google documentation guidance for install
location

Overall, we found that 99 of the 200+ Android source
code applications potentially either directly store informa-
tion in known vulnerable device shared spaces, or store
information in vulnerable locations only if the device is
rooted. Rooting a device comes with entirely different
risk-levels as not too many end users choose to root their

devices since it can potentially violate service plans,
among other concerns. Risk related to rooting devices can
further be explored during additional research.

Our analysis for IDS can be seen in Table 4. Column
W indicates that the string analysis found that the ap-
plications requests to write external storage. Column S
indicates that a string analysis of the application binary
components (e.g. dex or jar files buried within the applica-
tion) detected strings preferring external storage. Similar-
ly, Column P indicates that a string analysis of the source
code shows evidence that the source code manifest is
requesting the application be preferred to be installed en-
tirely on external storage, through the string “android:in-
stallLocation="preferExternal.” Once the application is
itself installed on external storage, different application
risks are introduced. Column X shows the applications
which access SharedPreferences. Our string analysis
showed that only one application of 200+ applications
accesses SharedPreferences, but they were accessed with
Mode_PRIVATE (e.g. “SharedPreferences sharedPref
= getActivity(). getPreferences (Context.MODE_PRI-
VATE);” which lowers the risks unless the device is root-
ed. Column D indicates the applications which access the
built in Android SQLite database. Column B indicates the
applications binary files may access the built in Android
SQLite database. The database is by default private unless
the device is rooted.

Table 4. 200+ Healthcare GitHub Application Analysis Results for Potential IDS Risks

Github Link GitHub Description W S P X D B

2 https://github.com/citiususc/calendula An Android assistant for personal medication management https://
citius.usc.es/calendula/ W D

3 https://github.com/Flaque/quirk A GPL Licensed Cognitive Behavioral Therapy app for iOS and
Android https://quirk.fyi W

10 https://github.com/gojuukaze/health-
go a android pedometer app (Android pedometer) W

16 https://github.com/scoute-dich/Quit-
Smoking

Android app to help smokers to quit smoking. Three fragments
organized with tabs: overview, health and diary. W D B

17 https://github.com/medic/medic-an-
droid

A native Android container for Medic Mobile's Community Health
Worker mobile application W

19 https://github.com/chiefg13/Skin-
HealthChecker

SkinHealthChecker App detects possible melanoma skin cancer
using OpenCV and Android camera. W P D B

37 https://github.com/BaiyuY/An-
droidAppPCLink Android App connect with health measure devices and MySQL W P

58 https://github.com/rjbailey/mystatus An Android app that provides self-management tools to users with
chronic health conditions. W D B

65 https://github.com/umaranis/health-
book

An open source Android app for helping cancer patients to keep
track of their medical history and condition. W D B

20 https://github.com/Get-Siempo/siem-
po-android-app

Siempo Android Launcher - Smartphone interface for mental health
and wellbeing http://getsiempo.com W D

23 https://github.com/nutritionfactsorg/
daily-dozen-android

Keep track of the foods that Dr. Greger recommends in his NYT's
best-selling book, How Not to Die with this Android app https://

play.google.com/store/apps/de…
W D

27 https://github.com/bholagabbar/Au-
rumHealthApp

An Android App for Rural Healthcare developed for the RTBI
Hackathon Finals https://play.google.com/store/apps/de… W B

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

24

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

30 https://github.com/EyeSeeTea/malar-
iapp

Android app to help with health center assessments (development
repository) W D

34 https://github.com/cqlzx/health-man-
agement PHMS Android Application W

40 https://github.com/sages-health/sag-
esmobile-common

Android library common to sages-health mobile Android compo-
nents W

45 https://github.com/kudrom/
HealthWalk Appication android mobile systems W D

47 https://github.com/Health4TheWorld/
Health4TheWorld-android Android App for Health4TheWorld W D

52 https://github.com/McFlyWYF/
HealthManager

Android Course Design --- Health Management Based on Heart
Disease W D

56 https://github.com/ibisTime/xn-
health-android Health e purchase android W D

59 https://github.com/cupcaketees/Pock-
etFitness

An android application assisting in health and fitness goals and
lifestyle W

66 https://github.com/psin007/Healthy-
Maternity Android application to help rural pregnant women W

68 https://github.com/Ethanator/Mobile-
Health

Data are collected from Google Glass, Moto 360, and Android
phone to offer a glimpse into the user's daily activity. W

73 https://github.com/norim13/ri-
os-mais-ldso

Website and Android app for river health monitoring and mainte-
nance W

74 https://github.com/chennanni/diabe-
tes-control-app an android app to manage users' health data W

77 https://github.com/CMPUT-
301F18T21/DoctorPlzSaveMe An Android app for keeping track of health issues W

87 https://github.com/simonaMarkova/
HealthQuest-android android W

90 https://github.com/aiwac-health-
group/HealthRobot Android project W D

96 https://github.com/mohamedel-
hadi123/HealthCare1 Framework Android W D

103 https://github.com/ShizuoZ/RUPacer
A health android app using pedometer to count daily and weekly
steps. Users can log in via Facebook Account and compete with

friends in Leaderboard.
W D

109 https://github.com/TobiasReich/
HealthTracker Health Tracker app for Android W D

111 https://github.com/BevoLEt/Health-
Care_Application HealthCare Android Application W

117 https://github.com/kitaice/
HealthClassifier android app with decision tree classifier W

118
https://github.com/sinanelveren/
Smart-Healthband-Bilek-Partner-

Bil396-Project
ESP32 based smart healtband and Android application project. W D B

126 https://github.com/malkio/happyfit an android health app http://maxmenthol.bitbucket.org W D B

127 https://github.com/gameloser/Burn-
ing-Fat Android Project - Health & Fitness W D

133 https://github.com/KourdacheHous-
sam/HealthContentManager Application Android de gestion de patients W D B

134 https://github.com/swe-team-c/
HealthCareApplication An android application for health care W

136 https://github.com/carlyonmdsol/
HealthVaultAndroidExample Cleaned up Android Health Vault Example W D B

142 https://github.com/CrystalRanita/Ba-
byHelper Health care tool using OpenCV on android platform W

143 https://github.com/timchenggu123/
SaveMi

A health monitoring Android app. Winner of Waterloo EngHack
2019 W

160 https://github.com/siddharthsujir/
Health-Buddy An Android application for health conscious android user W D

161 https://github.com/SayeedAbid/
HealthMonitorApp A personal health monitoring system with android studio and java W D

162 https://github.com/doneill123/
HealthyHabitsProject Mobile app on Android Studio for final year project W S

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

25

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

166 https://github.com/charlesmastin/
healthnotifier-android HealthNotifier Android Client W

171 https://github.com/danielCantwell/
Fit-Friend Health & Exercise app for Android W B

175 https://github.com/serkansorman/
LogMe-Android-App Smart Health Band Android App https://logmewristband.github.io W

179 https://github.com/xiangxianzui/
Health-Android-Client Android client of "HEALTH" app W D

180 https://github.com/Ramonrune/
nhs-patient NFC Health System Patient Android W D B

183 https://github.com/yourSylvia/
HealthAssistant

An Android APP for exercise reminder, user activities tracking
report, exercise videos and health forum. W D

189 https://github.com/AtifMahmud/
HealthWatch

An Android to work in conjunction with a heart rate tracking wear-
able. W

194 https://github.com/MujtabaBinKha-
lid/lifeline An android health , fitness application. W

196 https://github.com/apoorvsarang10/
HealthilyApp

Android health related app which incorporates Fragments, Firebase
Authentication, Firebase Firestore, Notifications and Accelerome-

ter.
W

197 https://github.com/aarjan/An-
droid-apps A set of android apps W X

202 https://github.com/NgJun/bHealth_
Android_SouceCode Android Code W

21 https://github.com/farhan071024/
HealthCareApp Health Care Android Application S

91 https://github.com/tarsd/HealthGuru Android App P D B

147 https://github.com/steepmountain/
HealthSync Android Application that displays data from Samsung S Health P B

192 https://github.com/neil007m/
HealthApp

Android app that records a user's symptoms and various informa-
tion about it. P D B

1 https://github.com/YahyaOdeh/
HealthWatcher

Android Application that can estimate Heart rate, Blood pressure,
Respiration rate and Oxygen rate from only the camera of the

mobile
D

4 https://github.com/Qingbao/Health-
CareStepCounter A step counter on Android platform D B

70 https://github.com/mpatel136/Life-
Pulse Android Health App D

18 https://github.com/alexnanrick/health Basic health app for Android D

26 https://github.com/MD4N1/Wire-
less-E-Health-Monitor

Wireless E-Health Monitor is monitoring medical sensors monitor-
ing using Arduino Duemilanove or similar, USB Host Shield, USB
Bluetooth dongle and medical sensors data from Arduino is sent to
Wireless E-Health for Android Smartphone/Tablet through USB

Bluetooth Dongle that attached in Arduino,

D

36 https://github.com/vjitendra/Pan-
Health_Personal_Health_Records developed by Neha (Android) D B

49 https://github.com/manueljeffin/My-
Health Health Monitoring Android app D

55 https://github.com/gudigundla/Per-
sonalHealthCheck

An Android app named Personal HealthCheck. It helps track all
your personal medical needs like health care appointments (i.e.

Doctor, Dentist, Physio, reoccurring blood work etc). Even recur-
ring events like Prescription Taking reminders. (i.e. Heart medicine
every day at 10:00 am, Cholesterol medicine Monday/Wednesday/

Friday 7:00 pm), tasks lik… https://play.google.com/store/apps/
de…

D B

57 https://github.com/ankit1414/Fitvit Fitvit is an android application focused on the health and fitness of
the users. D

64 https://github.com/ruifeng2357/Fit-
nessApp

This is an Android & iPhone app for own health state can record,
analysis and share using mobile app D

71 https://github.com/justiceamoh/Asth-
maGuard Android App for Dartmouth COSC 169: Mobile Health D

82 https://github.com/shvmshukla/
Healthify-NearByHospitals-

An android application which uses google map api and helps us to
find nearby hospitals. Also, it displays detailed information about

those hospitals(viz no of doctors,no of beds, contact no etc.)
D

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

26

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

84 https://github.com/rr016/HealthOut
Android app that allows users to input health metrics; this data

is used to compare and graph the user's progress toward's his/her
goals.

D

89 https://github.com/
JANGYONGSEONG/healthNotes android application D

94 https://github.com/w771854332/
health_android health_android D

98 https://github.com/Alphacoder221/
HealthApp-AyurVeda Android HealthApp D

99 https://github.com/KiraSensei13/
HealthyGrill HealthyGrill Android Mobile Application D

100 https://github.com/AnkitKiet/Health-
Care Android app with Firebase D

101 https://github.com/SRatna/
HealthyNepali Android health related application D

108 https://github.com/kelooy/HealthDi-
agnostics Android app | Patients data storage https://github.com/kelooy D

110 https://github.com/KieronMoorcroft/
HealthMonitor An Android Health Monitor App D

115 https://github.com/KuznetsovaAnas-
tasiia/HealthyCafe An android app for the cafe staff D

116 https://github.com/verma-ady/Health-
Litmus Android App for www.healthlitmus.com D

121 https://github.com/NiallMcCann96/
Health-App An Android Health App D

124 https://github.com/PabloPicassoft/
MyMediCare Android Health Measurement App D

132 https://github.com/woolver/CYBA-
Weight android app for health D

138 https://github.com/neelmehta247/
Hack4Health

RemindMe is an Android app that helps Alzheimer's patients multi-
task in their day to day life. D

141 https://github.com/chinnatan/Healthy Advanace app android D

152 https://github.com/prabhnoor15/
HealthFit this is the android studio project for "Health Fit" D

163 https://github.com/Abdullah-Naveed/
HealthChain-Android Android App for Final Year Project - Health Chain D

167 https://github.com/zhning12/
Health-Record Android Individual Project. D

169 https://github.com/kenny0202/Sim-
pleHealthPlan Android App D

170 https://github.com/marcgilbert01/
ContactsSimpleApp Android test for "Babylon Health" D

187 https://github.com/SuciuCalin/Proj-
ect_09_HealthyRoutineTracker

Habit Tracker App - Udacity Android Basics Nanodegree by Goo-
gle D

198 https://github.com/nvrocks/MobiDoc
This is a health care android application which determines the

disease suffered by the patient on the basis of symptoms entered by
him/her.

D

199 https://github.com/jnoga1996/
healthy-eating Android app for PUM18 course D

201 https://github.com/Nolthicha/Health_
Care_For_Diabetes Project Android Silpakorn University D

81 https://github.com/kevm66/4thYear-
Project_Happy Happy - Mental Health Android App B

43 https://github.com/engai/FitKit An Android health app for CSE 110 B

107 https://github.com/rizwan95/Health-
Chilli Android application for healthchilli.com B

119 https://github.com/qianzch/NowSleep It's time for bed! Now Sleep! [Android App] B

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

27

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

4. Discussion

In this section, we report on how our results reflect the
current state of research in the field and make suggestions
for future research. First, we summarize the relations we in-
troduced in our knowledge graph discussions and report on
how the static analysis of the 200+ Healthcare Applicatons
informs the cybersecurity of protecting personal identifying
information (PII). Lastly, we dicuss future work.

4.1 Introduced Knowledge Graph Relations

In the knowledge graphs, which we introduced for the
OWASP 2014 and the OWASP 2016, we introduced four
relationships (i.e. hasA, onA, resultsFrom, and without)
for software assurances and re-applied the isA relationship
from standard ontologies.

Table 5. Relations Introduces in Mobile Threat Knowl-
edge graph

• isA – Standard ontology hierarchy
• hasA – An optional attribute which could cause further analysis.
• onA – The concern is relevant to certain constraints.
• resultsFrom – The cause of the concern under investigation.
• without – Missing a property related to the security.

With time these relationships will be kept constant to
provide consistency; however, they may become deprecat-
ed as cases further evolve.

4.2 Static Analysis Detection

Static analysis is one methodology to inform secure soft-
ware development. Even though there are infinite ways
to write a computer program, some applications rely on
the standard Android API help analysis engines to detect
software assurance concerns. Currently cybersecurity best
practices rely entirely on the software architect(s) and
software developer(s), quality assurance team(s), so pen-
etration tester(s). Most standard compliers do not yet in-
form on cybersecurity concerns. In fact, compiler design-
ers can argue that cybersecurity is not responsibility of the
compiler. Since the cybersecurity domain is changing at
an unprecedented rate, it is nearly impossible for any soft-
ware architect, software developer, quality assurance team
member or penetration tester to detect every possible se-
curity concern in real-time. Developing knowledge graphs
to inform on software assurance patterns within code help
to standardize the overall software assurance process and
to catch cybersecurity issues at any point of the secure
software development lifecycle.

4.3 Future Work

The knowledge graph created in this research connecting

the OWASP 2014 and the OWASP 206 mobile threats for
mobile security is among the first known public software
assurance knowledge graphs. Future research includes
crowd sourcing the knowledge graphs so that the world
can continue to develop and detect vulnerabilities as they
are discovered. In addition, a knowledge graph can aid se-
curity analysts and penetration testers in their analysis of
1st party and 3rd party applications which are being inte-
grated daily into facilities around the world (e.g. medical,
schools, banks, etc.). The knowledge graphs can indicate
risk and other important metrics to inform organizations
as they make important technology adoption and redesign
decisions.

Another area for future research is to develop a lower
level code-specific knowledge graph at either the source
code or byte-code levels to inform further program anal-
ysis. These knowledge graphs would be similar to the
NIST BF to inform all of the specific lower-level coding
patterns which can lead to the higher-level mobile threats.

All future knowledge graph construction can be imple-
mented within program analysis tools, application stores
(e.g. Google Play, iTunes, etc.) and mobile device man-
agement platforms to detect potentially problematic code.
Since the people on our planet are moving to mobile and
application-dependent services, our security needs to fol-
low their trends especially in legally regulated sectors.

Finally, the agnostic knowledge graph representations
can be further built to inform other code analysis such as
iOS applications, which are currently mainly developed in
Swift or Objective-C, or even applications developed en-
tirely with front-end languages such as JavaScript, Node.
js, PHP, Elm, among others.

5. Conclusion

Organizations across the world are moving to mobile
devices following BYOD strategies as well as utilizing
third-party applications. Currently very little research
exists into building overall cybersecurity frameworks to
inform software assurance at any level (development,
forensics, penetration tests). To date, most research is
adhoc leaving risk assessments completely different
by different parties as no unifying guidance exists for
mobile application software assurance. Our research
starts filling the industry and research gap by developing
knowledge graphs for the widely-used OWASP threat of
Insecure Device Storage. Our knowledge graph reflects
the changes to the threats over the years, helping cyber-
security experts to identify changes. After working to de-
velop these knowledge graphs, we show how the knowl-
edge graphs could be used to inform software assurance
static analysis by connecting the graphs with Android

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

28

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

source code. Lastly, we analyze the source code for 200+
Android applications from GitHub. These applications
fall into the domain of healthcare applications; thus, they
collect very sensitive personal identifying information
(PII). We found that many applications request permis-
sions to write sensitive data to external storage devices
and a few applications (perhaps due to their size) are
coded to prefer to be stored on external drives entirely.
As these known external drives are shared among all the
applications on the device, we can see that our source
code has now give the application higher risks for keep-
ing the CIA of sensitive data. As more and more laws are
developed, we can further develop our knowledge graphs
for the community to consistently identify risks of how
the source code manages sensitive data.

References

[1] Allemang, D., Hendler, J.. Semantic Web for the
Working Ontologist: Effective Modeling in RDFS
and OWL. Morgan Kaufmann Publishers Inc., 2011.

[2] Goknil, A., Topaloglu, Y.. Ontological perspective
in metamodeling for model transformations. In Pro-
ceedings of the 2005 symposia on Metainformatics
(MIS ’05). New York, NY, USA: Association for
Computing Machinery, 2005: 7-es.

[3] L. Yu. A Developers Guide to the Semantic Web.
Springer Publishing Company, Incorporated, 2015.

[4] Noy, N., McGuinness, D.. Ontology development
101: A guide to creating your first ontology. Palo
Alto, CA, USA: Technical report at Stanford Knowl-
edge Systems Laboratory, 2001.

[5] Lacy, L. W.. OWL: Representing Information Using
the Web Ontology Language. Victoria, BC, Canada:
Trafford, 2005.

[6] Patel, I., Dube, I., Tao, L., & Jiang, N.. Extending
OWL to Support Custom Relations. 2015 IEEE
2nd International Conference on Cyber Security
and Cloud Computing. New York, NY, USA: IEEE,
2015: 494-499.

[7] Kafali, Ö., Jones, J., Petruso, M., Williams, L.,
Singh, M. P.. How good is a security policy against
real breaches?: a HIPAA case study. Proceedings of
the 39th International Conference on Software Engi-
neering. Buenos Aires, Argentina: IEEE Press, 2017:
530-540.

 DOI: 10.1109/ICSE.2017.55
[8] MITRE. Common Weakness Enumeration (CWE),

2020. Retrieved from:
 https://cwe.mitre.org/
[9] MITRE. Common Attack Pattern Enumeration and

Classification (CAPEC™), 2020. Retrieved from:

 https://capec.mitre.org/about/index.html
[10] NIST. Bug Framework (BF), 2020. Retrieved from:
 https://samate.nist.gov/BF/
[11] Schmeelk, S.. Where are we looking for security

concerns? Understanding Android Security Static
Analysis. Proceedings of the Future Technologies
Conference (FTC) 2019. San Francisco, CA: Spring-
er, 2019: 1-9.

[12] Schmeelk, S.. Where are we looking? Understand-
ing android static analysis techniques. In 2019 IEEE
International Conference on Services Computing.
Milan, Italy: IEEE, 2019.

[13] Schmeelk, S., & Aho, A.. Defending android applica-
tions availability. 2017 IEEE 28th Annual Software
Technology Conference (STC). Gaithersburg, MD:
IEEE, 2017: 1-5.

[14]Schmeelk, S., Yang, J., Aho, A.. Android malware
static analysis techniques. In Proceedings of the 10th
Annual Cyber and Information Security Research
Conference CISR ’15. New York, NY, USA: ACM,
2015: 51–58.

[15] OWASP.. Mobile Top 10 2016-M2-Insecure Data
Storage, 2018. Retrieved from owasp.org:

 h t tps : / /www.owasp .org / index .php/Mobi le_
Top_10_2016-M2-Insecure_Data_Storage

[16] NIST. Guide for Conducting Risk Assessments,
2012. Retrieved from:

 https://csrc.nist.gov/publications/detail/sp/800-30/
rev-1/final

[17] Google. Data and file storage overview. 2020. Re-
trieved from:

 https://developer.android.com/guide/topics/data/da-
ta-storage#db

[18] Google. Security Tips. 2020. Retrieved from:
 https://developer.android.com/training/articles/secu-

rity-tips
[19] Google. Context. 2020. Retrieved from:
 https://developer.android.com/reference/android/con-

tent/Context#openFileOutput(java.lang.String,%20
int)

[20] Rajab, A.. How to prevent database and shared pref-
erences from being hacked. 2017. Retrieved from
Stack overflow:

 https://stackoverflow.com/questions/47207420/how-
to-prevent-database-and-shared-preferences-from-
being-hacked

[21] User3898539. How the SharedPreferences works and
is it safe. 2014. Retrieved from Stack overflow:

 https://stackoverflow.com/questions/25373145/how-
the-sharedpreferences-works-and-is-it-safe

[22] Google.). Save key-value data. 2020. Retrieved from
developer.android.com:

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

29

Journal of Computer Science Research | Volume 02 | Issue 02 | April 2020

Distributed under creative commons license 4.0

 https://developer.android.com/training/data-storage/
shared-preferences

[23] Google Developers.. Saving Files. 2020. Retrieved
from stuff.mit.edu:

 https://stuff.mit.edu/afs/sipb/project/android/docs/
training/basics/data-storage/files.html

[24] Google.. Save data using SQLite. 2020. Retrieved
from developer.android.com:

 https://developer.android.com/training/data-storage/

sqlite
[25] Google.. Save files on device storage. 2020. Re-

trieved from developer.android.com:
 https://developer.android.com/training/data-storage/

files#java
[26] OWASP.. Mobile Top 10 2016-Top 10. 2020. Re-

trieved from owasp.org:
 h t tps : / /www.owasp .org / index .php/Mobi le_

Top_10_2016-Top_10

DOI: https://doi.org/10.30564/jcsr.v2i2.1765

	_Ref28276650
	_Ref28343975
	_Ref28340507
	_Ref28341589
	_Ref28343242
	_Ref28377519
	_Ref28428288
	_Ref28424764
	_Ref28443729
	OLE_LINK2
	_Ref28426944
	_Ref28427298
	_Ref28448997
	_Ref28428586
	_Ref28449335
	_Ref28449243
	_Ref28440501
	_Ref28442953
	_Ref28443216
	_Ref28449424
	_Ref28445768
	OLE_LINK1
	_Ref28448352
	_Ref28511514
	_Ref28512076
	_Ref28513238
	_Ref28516111
	_Ref28516097
	_Ref28516064
	_Ref28516155
	_Ref28516935
	_GoBack

