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After production of a steel product in a steel plant, a sample of the 
product is tested in a laboratory for its mechanical properties like yield 
strength (YS), ultimate tensile strength (UTS) and percentage elonga-
tion. This paper describes a mathematical model based method which 
can predict the mechanical properties without testing. A neural network 
based adaptation algorithm was developed to reduce the prediction error. 
The uniqueness of this adaptation algorithm is that the model trains it-
self very fast when predicted and measured data are incorporated to the 
model. Based on the algorithm, an ASP.Net based intranet website has 
also been developed for calculation of the mechanical properties. In the 
starting Furnace Module webpage, austenite grain size is calculated using 
semi-empirical equations of austenite grain size during heating of slab in 
a reheating furnace. In the Mill Module webpage, different conditions of 
static, dynamic and metadynamic recrystallization are calculated. In this 
module, austenite grain size is calculated from the recrystallization con-
ditions using corresponding recrystallization and grain growth equations. 
The last module is a cooling module. In this module, the phase trans-
formation equations are used to predict the grain size of ferrite phase. 
In this module, structure-property correlation is used to predict the final 
mechanical properties. In the Training Module, the neural network based 
adapation algorithm trains the model and stores the weights and bias in a 
database for future predictions. Finally, the model was trained and vali-
dated with measured property data. 
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1. Introduction

Prediction of mechanical properties of hot rolled 
plates using principles of microstructuctural evo-
lution and structure-property correlations is a 

challenging task for researchers. This paper describes the 
methodology of prediction of mechanical properties of 
hot rolled plates of both C-Mn and microalloyed grades of 
steel using a mathematical-artificial neural network (ANN) 

hybrid model. The basic mathematical model is devel-
oped from the theoretical equations of microstructure 
evolution during reheating, deformation, recrystallization, 
grain growth, phase transformation and structure-property 
correlation. The initial coefficients and exponents of the 
semi-empirical equations were determined from the exper-
imental data generated through experimentation in dynam-
ic thermo mechanical simulator and experimental rolling 
mill. The mechanical properties predicted by the empirical 
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models are not highly accurate as the empirical equations 
have been formulated with some simplified assumptions 
which are not suitable for practical industrial application. 
Therefore, the mathematical model is combined with an 
ANN model in an innovative way to predict mechanical 
properties of plates more accurately. The uniqueness of 
this combination is that the model trains itself very fast 
when predicted and measured data are incorporated to the 
model. 

An ASP. Net based website has been developed to sim-
ulate plate rolling conditions and predicts the mechanical 
properties in the intranet of Steel Authority of India Lim-
ited (SAIL). Through the SAIL intranet, the model system 
is accessible to all SAIL steel plants, marketing centres 
and other units throughout India. The website has 4 major 
web pages. In the Furnace Module webpage, the austenite 
grain size of the product is calculated using semi-empir-
ical equations of austenite grain size during heating of 
slab in a reheating furnace. In the Mill Module webpage, 
different conditions of static, dynamic and metadynam-
ic recrystallization are predicted. Austenite grain size is 
calculated from the recrystallization condition using cor-
responding recrystallization and grain growth equations. 
In the cooling module, the phase transformation equations 
are used to predict the grain size of ferrite phase. The 
structure-property correlation is applied in this module to 
predict the final mechanical properties like yield stress, 
ultimate tensile strength and percentage elongation. The 
Hybrid Module webpage uses the hybrid ANN module to 
predict the final properties of plates.

2. Literature Review

The objective of the literature search is to finding out em-
pirical equations developed by different researchers for 
prediction of mechanical properties of steel. Following 
pioneering works of Sellars and Whiteman [1,2] pioneered 
the work of development of models for predicting micro-
structure evolution during hot rolling in the late 1970s 
using empirical equations which led to direct industrial 
application in early 1990s. Siwecki [3] has described de-
tails microstructure-evolution model for hot rolling and 
its application to forecasting the microstructure evolution 
during recrystallization controlled rolling of Ti-V-N and 
Ti-V-Nb microalloyed steels. Kern et al [4] have developed 
computer models for the simulation of grain size develop-
ment during thermo-mechanical rolling and the resulting 
strength properties for the prediction of the material prop-
erties of microalloyed HSLA steel plates. The standard 
deviation between predicted and measured properties for 
YS and UTS is about 30N/mm2. Saito and Shiga [5] of 
Kawasaki Steel Corporation have developed a computer 

simulation model of microstructural evolution on the basis 
of chemical thermodynamics and classical nucleation and 
growth theory. A review paper was published by Senuma 
et al. [6] describing mathematical models for predicting 
microstructural evolution and mechanical properties of 
hot strips. The successful application of computer mod-
eling contributes to quality improvement and cost reduc-
tion through optimum design and control. Suehiri et al 
[7] discussed a microstructural evolution model for high 
carbon (0.5% C) steels. The mathematical model predicts 
the transformation kinetics during cooling with special 
attention to pearlite transformation aiming at the appli-
cation to high carbon steels. Herman et al. [8] described 
an empirical model for precipitation kinetics during hot 
rolling HSLA steels. They have prescribed two different 
equations for precipitation kinetics: one for uncrystallized 
austenite and other for recrystallized austenite. Hodsgon 
& Gibbs [9] developed mathematical models for each of 
the microstructural events that occur during the hot rolling 
for a wide range of commercial steels. These models have 
been incorporated into process models for the various 
mills to allow the prediction of final mechanical proper-
ties. Siciliano et al [10] developed a mathematical model 
which correlates Mean Flow Stress (MFS) with chemical 
composition, strain, strain rate and temperature. The pre-
diction falls in the range of +/- 15%. 

With development of soft computing techniques like 
artificial neural network (ANN), genetic algorithm (GA) 
etc, efforts have been made by many researchers to pre-
dict mechanical properties of hot rolled steel. Bhadeshia 
[11] has described the application of neural network in 
different fields of material science. He suggested that me-
chanical properties need to be expressed in quantitative 
model as a function of large number of process variables. 
Dumortier and Lehert [12] describes a statistical modelling 
of mechanical tensile properties of steels by using neural 
networks and multivariate data analysis based on the data 
obtained from Hot Strip Mill of Cockerill-Sambre Carlam 
Steel Plant. They have developed an ANN model with 
target variables as Yield strength [Re], Ultimate Strength 
[R], Elongation [El] with input variables as thickness [Th], 
width [W], steel chemical analysis like [C], [Mn] and [P] 
and reheating temperature [TF], roughing temperature 
[TS], finishing temperature [TR] and coiling temperature 
[TC]. Datta et al [13] described an Petri Neural Network 
model (a multilayered feed forward network model) used 
for predicting mechanical properties of steel. Warde and 
Kimowles [14] predicted yield strength of polycrystalline 
superalloys using a artificial neural network within a 
Bayesian framework. Femminella [15] described the im-
portance of data pre-processing and model initialization 
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in neurofuzzy (NF) modelling of structure-property re-
lationships. Wang et al [16] developed an artificial neural 
network model to describe the effect of the carbon con-
centration and cooling rates on CCT diagrams. Sikdar et 
al. [17] presented an model developed for Tata Steel. The 
on-line model predicts load, microstructure and properties 
of hot rolled coils accurately. Singh et al [18] described 
an integrated off-line mathematical model developed for 
both C-Mn and Nb-bearing microalloyed steel (for API 
grades) for Plate Mill of Bhilai Steel Plant. Pereda et al. 
[19] developed an improved model for kinetics of strain 
induced precipitation and microstructure evolution of Nb 
microalloyed steels during multipass rolling. The kinetics 
of Nb precipitation were modeled taking the equation 
proposed by Dutta and Sellars as the base for calculating 
the precipitation start time. Senuma and Takemoto [20] 
have developed a model which shows that the influence of 
the amount of carbon in the steel on the recrystallization 
behavior of austenite is relatively small. Schambron et al. 
[21], studied the effect of reduction in Mn content in ther-
momechanical processing of Pipeline steel for Bluescope 
Steel Limited, Australia using the model. Jia et al. [22] de-
scribes a new modeling method developed for continuous 
cooling transformation. 

The methodology of development of standalone math-
ematical and ANN models is well documented in the liter-
ature described above. However, both these methods have 
shortcomings for industrial applications. The mathemat-
ical model equations are developed and validated in lab-
oratory conditions which do not consider wide variation 
of parameters in industry. Similarly, the standalone ANN 
models lacks the basic metallurgical considerations lead-
ing to difficulty in convergence and repeatability. Doll et 
al [23] of Siemens AG developed an hybrid empirical-ANN 
model to predict mechanical properties of steel. The grain 
size predicted by the empirical model has been used as 
an input to ANN model along with other parameters like 
chemical composition and strip thickness. Though this 
hybrid model was better than the standalone models, it 
also has the problems of convergence and non-repeatibilty 
making it difficult for online industrial application. The 
methodology adopted for developing a hybrid model for 
prediction of roll force in an earlier publication [23] was 
considered as a basis for development of hybrid model for 
prediction of mechanical properties. In the following sec-
tion, the methodologies of developing the hybrid model 
and making it on-line are discussed.

3. Hybrid Model Development

The on-line hybrid model has been developed in a series 
of steps which include selection of empirical equations, 

development of mathematical model, and development of 
Mathematical-ANN hybrid model and integration of the 
hybrid model with plant automation system to predict the 
mechanical properties on-line.

3.1 Selection of Empirical Equations

As discussed earlier, a large number of empirical rela-
tionships are published in the literature. The equations are 
converted into generalized form and given below (eqn. 1 
to 14). The nomenclature used in the equations is given in 
Table-1.

The grain growth equation during reheating is given by,

D A.t .e0 =
m

−
RT

Q
 (1)

During deformation in the rolling process static re-
crystallization (SRX), dynamic recrystallization (DRX), 
metadynamic recrystallization (MDRX) and grain growth 
takes place. Empirical equations for of these processes are 
given below:

Peak strain, ε aε ε d ep 0= b c d


RT
Q

 (2)

Critical strain ε aε ε d ec 0= b c d


RT
Q

 (3)

RX grain size, d aε ε d ed 0= b c d


RT
Q

 (4)

MDRX grain size, d aε ε d em 0= b c d


RT
Q

 (5)

Table 1. Description of symbols used in formula

Symbol Description & Unit
[C] C in steel composition (%)

[Mn] Mn in steel composition (%)
[P] P in steel composition (%)
[S] S in steel composition (%)
[Si] Si in steel composition (%)
[Al] Al in steel composition (%)
[Nf] Free N in steel composition (%)
ε Strain

ε Strain rate (sec-1)

rε Accumulated strain below recrystallization temperature

R Gas Constant (8.31451 J/K/mol)
T Absolute Temperature
t Time in second
Q Activation energy
Cr Cooling rate (0C/sec),

dr
austenite grain size prior to transformation into ferrite 

(micron)
A, m, a, b, 
c, d,e,f,g, n Coefficients and Exponents of different equations
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Time required for 50% of static recrystallization is giv-

en by, t aε ε d e0.5sx 0= b c d


RT
Q

 (6)

Volume fraction of SRX, X 1 es = −
 
  
 
−0.639

t0.5sx

t
k

 (7)

where k aε ε d e= b c d
 0

RT
Q

 (8)

SRX grain size, d aε ε d es 0= b c d


RT
Q

 (9)

SRX grain growth d d a(t bt )en n= + −rx 0.5
RT
Q

 (10)

Ferrite grain size after cooling is given by

d =(1-a )[b+cC +(d+eC  ) C +f(1-e  ) ]α ε r e e r
0.5 -0.5 gdγ  (11)

where, Ce=[%C]+[%Mn]/6
Experiments were conducted in Dynamic Thermo Me-

chanical Simulator, Gleeble 3500 to find stress, stress and 
ferrite grain size for at different strain rates and tempera-
tures. Using the data generated in the Gleeble3500, the 
coefficients and exponents of the above equations were 
determined by parameter estimation technique minimiz-
ing root mean square error using a multiple multivariable 
optimization technique. The details of the technique are 
described in an earlier publication [25]. The initial values of 
the coefficients required for the optimization were taken 
from literature [26] and [27].

The structure-property correlation equations were also 
generalized as follows:

The generalized form of yield stress(YS) of material is 
given by

σ a b C c Mn d Si  d[N ] edy f α= + + + + +[ ] [ ] [ ] 0.5 0.5−  (12)

Similarly, ultimate tensile strength(UTS) is given by,

σ a b C c Mn d Si e P f[N ] gdt f α= + + + + + +[ ] [ ] [ ] [ ] −0.5  (13)

Percentage elongation(%El) is given by,

ε t = − + + − − +a b C c Mn d Si e P f S gd[ ] [ ] [ ] [ ] [ ] γ
−0.5  (14)

The coefficients of the above mechanical properties 
equations proposed by different researchers are well doc-
umented in the books of Lenard et al [26] and Ginzburg [27]. 
Different researchers have proposed different equations 
for the three properties. The approach adopted in this 

present work was not to evaluate the equations proposed 
by individual researchers. All the equations were taken as 
components of the hybrid model.
3.2 Development of Mathematical Model

A mathematical model has been developed on the modular 
design approach. The plate mill line has been divided into 
3 parts: reheating furnace, mill stand and cooling zone. 
Individual modules have been developed for prediction 
of grain size after each part separately and then these 
parts have been integrated. Based on the above concepts, 
computer program has been written in ASP.Net as front 
page and VB.Net programming language for model cal-
culations. It calculates strain, critical strain and conditions 
for dynamic recrystallization. When there is a dynamic 
recrystallization, the model calculates dynamic recrystal-
lization fraction. Based on recrystallization kinetics, the 
model predicts grain size after the pass. After calculation 
of austenite grain size after mill stand, the cooling module 
calculates phase transformation kinetics from austenite to 
ferrite. This calculation is made by incorporating cooling 
rate and composition to phase transformation equations. 
After the grain size of each phase and their fraction is cal-
culated, the model calculates final mechanical properties: 
YS, UTS and % elongation.

3.3 Development of mathematical-ANN hybrid 
model Adaptation Algorithm

The mechanical properties predicted by the empirical 
models are not highly accurate as the empirical equations 
have been formulated with some simplified assumptions 
which are not suitable for practical industrial application. 
Therefore, an ANN program has been used along with the 
mathematical model as shown in Figure 1. 

Figure 1. Conceptual Diagram of Hybrid Model

The mechanical properties predicted by the empirical 
models are not highly accurate as the empirical equations 
have been formulated with some simplified assumptions 
which are not suitable for practical industrial application. 
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Therefore, an ANN program has been used along with the 
mathematical model as shown in Figure 1. Each of the 
mechanical property has been trained with ANN model 
with training data. In the standalone ANN model, the in-
puts and the measured outputs are used for training of the 
model. In the present work, the empirical model output is 
considered as one of the inputs to ANN model. In a stand-
alone ANN model, the output parameter is mapped to 
those input parameters which influence it. In this case the 
outputs, which are mechanical properties, are highly in-
fluenced by microstructural evolutions during rolling. The 
calculated grain size by empirical equation is the result 
of all microstructural evolution phenomena such as SRX, 
DRX, MDRX and Grain Growth. Therefore, the empiri-
cally calculated mechanical property is considered as one 
of the input parameters in this model.

Figure 1 also shows the structure of the ANN model 
used for the hybrid modelling. It consists of one input 
layers of 8 nodes, one output layer with 1 node and one 
hidden layer with two nodes. The ANN network is a feed 
forward network in which the node value at each hidden 
node is calculated by multiplying weight factors to input 
parameters and adding bias value to it. A transfer function 
(TF) is used for normalization of the hidden layer value. 
In this case the TF is chosen as a sigmoid function so that 
all the calculated values are normalized between 0 and 1. 
The training program of the ANN model is written with 
variable learning rate and conjugate gradient technique of 
error minimisation as discussed in an earlier publication 
(Rath et al. [28]). 

3.4 Development of Intranet Simulation Website

The hybrid model is coded in ASP.NET using VB.NET 
programming language. The front end of the program is 
series of “.aspx” files with cascading style sheet (CSS). 
The back end of the program is equipped with Microsoft 
SqlServer RDBMS which is connected to the ASP.NET 
program using Microsoft.Net framework object SQLCli-
ent. 

Figure 2. Data Flow Diagram (DFD) of Website

The simulation website has 4 major web pages: Fur-

nace Module page, Mill Module page, Cooling Module 
page and Hybrid Module Page. The user can enter the 
rolling parameters like furnace reheating temperature, re-
duction schedules, speed schedules, temperature, and roll 
diameter in graphical user interface in the web-browser. 
The website output will show the predicted austenite grain 
size, ferrite grain size and hybrid model predicted me-
chanical properties.

The web-portal is hosted at a web server at Ranchi 
through ISS Server software and is available for use in the 
entire SAIL (a steel producing company of India) network 
throughout India.

The data flow diagram of the website is given in Figure 
2. This figure shows that the ASP.Net program interacts 
with Mathematical model, ANN model and hybrid mod-
el to predict the mechanical properties. The data of the 
program is stored in a MS-SQL database. The model is 
broadcasted to SAILNet through Microsoft Internet In-
formation Services (ISS) server. Users in any location of 
SAIL office in the country can access the program and 
simulate the plate rolling condition and calculate the me-
chanical properties.

4. Results and Discussion

The model has been validated with data obtained from 
New Plate Mill, Rourkela Steel Plant. Process parameters 
and measured properties data of 290 plates of C-Mn grade 
of steel and 37 plates of Microalloyed grades rolled in the 
mill were used for validation of the model. A validation 
plot for is shown in Figure 3. This plot shows that there is 
close match between predicted and measured YS.

Figure 3. Validation of YS for Micro-alloyed Steel

Figure 4 shows the histogram of Model Error. The 
Model error is slightly skewed towards right. It also shows 
that the model predicts exactly same value as measured 
value for 20% cases indicating the accuracy of the hybrid 
model is very high.
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Figure 4. Histogram Showing YS Model Error (%) for 
Micro-alloyed Steel

The summary of ranges of model prediction error is 
given in Table-2. This table shows that the model predic-
tion is highly accurate for prediction of mechanical prop-
erties of Plain Carbon and Microalloyed grades of steel. 
However, the prediction error for elongation prediction 
is higher. It was found that the measured that are given in 
the form of integer value and decimal points are neglected 
which is responsible for this error.

Table 2. Model prediction Error Ranges

Grade Property Error Range (%)

Plain Carbon
YS (MPa) -5 to +5

UTS (MPa) -4 to +4
Elongation (%) -10 to +10

Microalloyed
YS (MPa) -8.0 to +8.0

UTS (MPa) -5.0 to +5.0
Elongation (%) -10 to +9.0

5. Conclusion

A mathematical-Artificial Neural Network (ANN) based 
hybrid model has been developed under this work to pre-
dict the mechanical properties of hot rolled plates. The 
model has been validated with plant data and found to be 
accurate in prediction. An intranet website has been devel-
oped for simulation of process conditions and prediction 
of mechanical properties.
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