
19

Journal of Computer Science Research | Volume 03 | Issue 02 | April 2021

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jcsr.v3i2.2921

Journal of Computer Science Research

https://ojs.bilpublishing.com/index.php/jcsr

REVIEW

A Review of Consensus Protocols in Permissioned Blockchains

Nenad Zoran Tomić*
University of Kragujevac, Serbia

ARTICLE INFO ABSTRACT

Article history
Received: 26 February 2021
Accepted: 8 March 2021
Published Online: 20 April 2021

Consensus protocols are used for the distributed management of large
databases in an environment without trust among participants. The choice
of a specific protocol depends on the purpose and characteristics of the
system itself. The subjects of the paper are consensus protocols in permis-
sioned blockchains. The objective of this paper is to identify functional
advantages and disadvantages of observed protocol. The analysis covers
a total of six consensus protocols for permissioned blockchains. The
following characteristics were compared: security, trust among partici-
pants, throughput and scalability. The results show that no protocol shows
absolute dominance in all aspects of the comparison. Paxos and Raft are
intended for systems in which there is no suspicion of unreliable users,
but only the problem of a temporary shutdown. Practical Byzantine Fault
Tolerance is intended for systems with a small number of nodes. Federat-
ed Byzantine Fault Tolerance shows better scalability and is more suitable
for large systems, but can withstand a smaller number of malicious nodes.
Proof-of-authority can withstand the largest number of malicious nodes
without interfering with the functioning of the system. When choosing
a consensus protocol for a blockchain application, one should take into
account priority characteristics.

Keywords:
Permissioned blockchain
Consensus protocols
Byzantine Fault Tolerance
Crash fault tolerance

　

*Corresponding Author:
Nenad Zoran Tomić,
University of Kragujevac, Serbia;
Email: ntomic@kg.ac.rs

1. Introduction

Blockchain technology enables distributed manage-
ment of large databases. Its functioning was explained
for the first time in the Bitcoin cryptocurrency manifesto,
in late 2008 [1]. Given its characteristics, blockchain soon
came out of the shadow of cryptocurrencies and found ap-
plication in the broader electronic business context. This
technology allows participants to execute transactions in
order to enter new data in the public ledger. A transaction
is any instruction that leads to a change in the state of the
system. The public ledger consists of a series of blocks,
which contain records of performed transactions [2]. The
content of each block depends on the content of the pre-

viously entered blocks, because the new state depends on
the previous state and the changes brought by the transac-
tions. Data is entered into the public ledger without third
party mediation [3]. As there is no trust among participants,
it is necessary to provide a mechanism by which the en-
tered data will be checked and confirmed. This mecha-
nism is called a consensus protocol.

Blockchain technology itself is new, but its foundations
are previously known technologies and methods, such
as asymmetric cryptography, timestamping, Merkle tree,
hash functions and smart contracts. Asymmetric cryptog-
raphy is used to sign executed transactions. Transactions
are timestamped to avoid double spending by creating
confusion about the order. Hash functions are used to

20

Journal of Computer Science Research | Volume 03 | Issue 02 | April 2021

Distributed under creative commons license 4.0 DOI: https://doi.org/10.30564/jcsr.v3i2.2921

prevent subsequent changes to the contents of blocks em-
bedded in the public ledger. Therefore, the hash value of
the previous block is entered in each new block, which
prevents the change of their content [4]. Blockchain tech-
nology enables the implementation of smart contracts, as
an electronic document that is executed on the basis of a
programming code [5]. Consensus algorithms themselves
are not a new technological solution. Their foundations
were laid by Lamport (1978) and Schneider (1990) in the
desire to formulate algorithms tolerant to a certain kind of
faults [6] [7].

The subjects of the paper are consensus protocols in
permissioned blockchains. The objective of this paper is
to identify the functional advantages and disadvantages of
observed protocols. The paper will be divided into three
sections. The section one will present the key features of
blockchain technology. Special attention will be addressed
to the difference of the blockchain systems according to
the degree of openness for participants. The section two
analyzes the principles of functioning of the observed pro-
tocols individually. The final section identifies advantages
and disadvantages of all protocols through a comparative
analysis of their key characteristics.

2. Blockchain Characteristics

There are three types of participants in blockchain
systems: nodes, full nodes, and miners. Nodes are par-
ticipants that can send or receive transactions, but do not
participate in consensus building nor keep a copy of the
public ledger. In addition to participating in transactions,
full nodes also store a copy of the public ledger. Miners
are full nodes that participate in consensus building and
embed new blocks in the public ledger. Generally, partic-
ipants do not know each other and do not trust each other.
This means that each blockchain must have a built-in
protocol for reaching consensus in trustless environment
where there is no third party to confirm data authenticity
[8]. The protocol determines which participants can create
blocks, how consensus is reached and whether there is a
reward.

When performing a transaction, the sender applies the
selected hash function to it and signs the resulting record
using a private key. The signature authenticates the send-
er. Miners need to confirm the integrity of the transaction
and the participant who sent it. This means that the digital
signature should correspond to the sender’s signature, i.e.
hash value of the transaction should correspond to the one
signed by the user. After confirmation, one of the miners
(depending on the algorithm) packs the transactions into a
block and suggests a new block to the other miners [9]. The
new block contains the hash value of the previous block,

the timestamp, and a list of included transactions. Other
miners check whether the size of the block is within the
allowed values, whether it follows the previous block ac-
cording to the timestamp, as well as all hash values.

Sharing a public ledger of transactions among partic-
ipants and signing transactions creates the conditions for
overcoming the problem of mistrust. After reaching a con-
sensus, the block is embedded in the public ledger, which
is available to everyone and shows the current state of
the system. This eliminates the need for an intermediary
in transmitting and storing data [10]. Once recorded in the
public ledger, transactions are irreversible. Merkle tree
technology is used to connect blocks, so any attempt to
change the content of a previously performed transaction
leads to a change in the content of all subsequent blocks.
Attempting to systemically change a series of blocks
would require enormous computing power regardless of
consensus protocol, an investment that can hardly be justi-
fied by benefits.

According to their openness to participants, blockchain
systems are divided into permissioned blockchains and
permissionless blockchains. They differ fundamentally
in terms of access to the system and the role that the user
can perform. Permissionless blockchains have open ac-
cess. Each user can become part of the network and act
as a node, full node or miner, as all roles are available [11].
Because of these characteristics, these blockchain systems
are often referred to as public.

In permissioned blockchains, there is a clear separation
of roles. Miners are always known and predetermined [12].
There are differences in terms of the capabilities that other
users may have. For some systems, membership is open,
but nodes can only send and receive transactions. For oth-
ers, each user must receive a special invitation to become
a node. In such systems, all users are known and identi-
fied in advance. Due to these characteristics, such systems
are referred to as private or consortium blockchains in the
literature. However, it should be borne in mind that higher
centralization compared to permissionless blockchains
should not mean that one institution is the full owner of
the system. For any business application in which there is
a trusted institution, it is better to use some other database
technology than blockchain.

3. Types of Consensus Protocols in Permis-
sioned Blockchains

3.1 Byzantine Fault Tolerant Protocols

Most of the protocols for reaching consensus in per-
missioned blockchain systems are based on solving the
problems of Byzantine generals. The problem describes

21

Journal of Computer Science Research | Volume 03 | Issue 02 | April 2021

Distributed under creative commons license 4.0

difficulties in reaching an agreement in conditions of mu-
tual distrust among decision makers [13]. One can imagine
that several divisions of Byzantine army attack the enemy
city. A unilateral attack of a single division cannot lead to
victory. But if the generals reach a consensus on the tim-
ing of the simultaneous attack, the city will be conquered.
The problem is that generals cannot communicate directly,
but solely through couriers. There may be two problems.

The first problem is the possibility that some of the
generals are traitors and deliberately send contradictory
messages. Another problem is the possibility for some of
the couriers to change the content of the messages, either
because they are traitors, or because the enemy intercepts
them and replaces them with their own couriers. There-
fore, it is necessary to devise a mechanism for reaching
consensus, so that:

a. All loyal generals adopt the same plan (traitors, if
any, can do what they want).

b. Traitors cannot lead loyal generals into adopting a
wrong plan.

The problem that participants in permissioned block-
chains face is similar to the problem of Byzantine gener-
als. There are a finite number of known participants, but
it is not possible to say with certainty which of them are
loyal and which are traitors. Therefore, consensus algo-
rithm must be able to allow decision-making even when
some participants are unreliable. In addition to this type,
crash faults also occur, when, due to technical, or prob-
lems of some other nature, the decision-making process is
slowed down or stopped. Therefore, consensus algorithms
in permissioned blockchains are divided into crash fault
tolerant and Byzantine fault tolerant.

3.1.1 Practical Byzantine Fault Tolerance

Practical Byzantine fault tolerances was formulated by
Castro & Liskov (2002) [14]. The algorithm is designed to
work in asynchronous systems and to provide liveness and
safety. Liveness is reflected in the fact that some consen-
sus will certainly be reached. Safety refers to the ability to
reach a valid consensus in a situation where at most (n-1)/3
nodes act maliciously, with n being the total number of
nodes participating in the decision-making. If we denote
the faulty nodes with f, then the total number of nodes
must be n = 3f +1.

To prevent misrepresentation and confusion, each
node signs messages with its own secret key. Also, each
message has an authentication code, and when sent, it
is compressed using the hash function. Each node com-
municates with all other nodes in the system. Nodes can
identify each other based on the signature and check if
the message was changed during transmission. Before

the consensus-building process begins, the nodes are di-
vided hierarchically, with one chosen as the leader and
the others as the backup. The role of the nodes changes
before each new round of decision-making on a round
robin basis. One round of consensus-building consists of
four phases. In the first phase, the client sends a message
to the leader wanting to change the state of the system. In
the second phase, the leader forwards the message to the
backup nodes. Backup nodes consider the content of the
message and send a response in the third phase. In the last
phase, the client collects f +1 identical responses from the
backup. The selected response represents the attitude of
the entire system towards the message sent by the client.

The key advantage of pBFT in relation to all permis-
sionless blockchains protocols is lower computational
complexity, and, thus, lower electricity consumption.
Also, the throughput is higher than with the mentioned
systems. However, pBFT is intended for systems with a
small number of participants. Increasing the number of
nodes exponentially increases the volume of communica-
tion, so application in permissionless blockchains would
lead to congestion. Of the known blockchain platforms,
Hyperledger Fabric and Zilliqa use pBFT.

3.1.2 Delegated Byzantine Fault Tolerance

Delegated Byzantine fault tolerance (dBFT) is a mod-
ification of the basic form of pBFT (Coelho et al., 2020)

[15]. It was proposed during the creation of the NEO block-
chain, which, in addition to the cryptocurrency of the
same name, offers a code for creating smart contracts. The
GAS token is used to execute smart contracts, which users
who own NEO cryptocurrency receive as a kind of divi-
dend.

The use of dBFT overcomes the problem of exces-
sive communication due to the increase in the number of
nodes. Any user who owns a NEO can vote for one of the
nodes, which then become delegates. In order for a node
to become a delegate, it is necessary to positively identify
itself, to have a stable internet connection and appropriate
computer equipment, and to invest 1000 GAS units [16].
The speaker is then randomly selected from among the
delegates. The speaker selects the transactions to be in-
cluded in the new block and sends the proposal to the del-
egates for confirmation. The block needs to be confirmed
by at least 2/3 of the delegates. Otherwise the proposal is
rejected and a new random speaker is elected who repeats
the process.

The dBFT protocol is criticized for the increased level
of centralization. Although in theory this should not be
the case, the NEO cryptocurrency has shown that all del-
egates are also members of the founding consortium. It

DOI: https://doi.org/10.30564/jcsr.v3i2.2921

22

Journal of Computer Science Research | Volume 03 | Issue 02 | April 2021

Distributed under creative commons license 4.0

can be assumed that this was not the idea of the founders,
but it should also be borne in mind that the selection of
delegates is a great challenge. On the one hand, if no are
set, participants can delegate themselves. On the other
hand, setting criteria too high reduces the number of del-
egates and the system becomes centralized. In that case,
the blockchain does not fulfill its basic decentralization
premise among users who do not trust each other.

3.1.3 Federated Byzantine Fault Tolerance

Federated Byzantine fault tolerance or the Federated
Byzantine Agreement (FBA) is also a modification of the
basic form of pBFT. In order to overcome the problem
of extensive communication, the FBA implies that nodes
exchange messages only with nodes they trust [17]. The
Stellar and Ripple cryptocurrencies use the FBA variants.

A set of nodes that one node trusts is called a quorum
slice, while a quorum is a set of nodes that trust each oth-
er. Based on the mutual trust with other nodes, one node
can be part of multiple quorums at the same time. That
node represents the quorum intersection. Nodes commu-
nicate only within the quorum. Each node collects trans-
actions performed after the last block was embedded and
those performed before which so far have not become part
of the blocks. The nodes then declare on the validity of
the proposed transactions. When they receive the required
percentage of positive votes, the transactions are included
in the block, which is embedded into the public ledger.

In the Ripple protocol, a quorum is a unique node list
(UNL). Making a decision implies a positive response
from at least 80% of the nodes involved. This means that
the maximum number of malicious nodes can be f ≤ (n -
1) / 5, where n is the number of nodes within a particular
UNL. This leads to a strong correctness of the system. In
case the number of malicious nodes is higher, the system
has a defense plan. As long as their number is f ≤ (4n +
1) / 5, the system exhibits weak correctness, i.e. it is not
capable of validating true transactions, but can prevent
malicious nodes from embedding fake transactions [18].
Unlike the previous two protocols, which ensured finality
without the possibility of forking, in FBA, the possibility
of forking depends on the size of the quorum. If the size
of individual quorums does not have a lower limit, then
forking is possible. However, even with the lower limit of
0.2 * ntotal, where ntotal is the total number of nodes in the
system, forking becomes impossible if the quorums par-
tially overlap.

3.1.4 Proof-of-authority

Proof-of-authority (PoA) is a consensus protocol based

on the identification of nodes and their reputation. It was
created in 2015 based on the proof-of-stake (PoS), with
the proviso that in this case the nodes do not invest the
coins they own, but their own reputation [9]. Nodes that
embed blocks in the public ledger are called validators. In
order to become a validator, node’s identity must not only
be publicly known, but also confirmed by the notary ser-
vice. The point of the system is that in case of any unde-
sirable behavior, the validator gains a negative reputation
and loses the opportunity to participate in further block
creation. Nodes with a satisfactory reputation change in
the role of validator on a round robin basis.

Although PoA can also be used in permissionless
blockchains, its design is extremely centralistic, because
a small group of validators embed blocks. Also, PoA does
not ensure anonymity, as one of the key features of a per-
missionless blockchain. The advantage is that, unlike PoS,
it does not favor rich individuals. In practice, PoA is used
on the PoA Network and Vechain trading platforms, as
well as on the Quorum blockchain platform.

3.2 Crash Fault Tolerant Protocols

The second class of consensus protocols deals with the
problems of the imperfect environment in which systems
operate. A metaphorical representation of the problems ad-
dressed by these protocols is the fictitious local assembly
on the Greek island of Paxos. Deputies constantly enter
the assembly hall and leave, while staying in the building
for a period of time that is not foreseen in advance, nor
is it the same for each deputy. Despite the occasional ab-
sence of deputies, it is necessary to provide conditions for
unhindered legislative decisions. Thus, crash fault tolerant
protocols ensure functioning in situations where individ-
ual participants are unavailable during a certain period.
The assumption is that there are no participants who are
malicious, i.e. that Byzantine faults are not a problem that
the system encounters.

3.2.1 Paxos

Paxos is not an individual protocol, but a whole family
of protocols, created with the aim of solving the problem
of absence of participants [19]. The basic system assump-
tions are as follows: processors perform operations at any
arbitrary speed; during work they may experience a crash
fault; after recovery, processors can rejoin the protocol;
during operation, processors do not attempt to trick the
system in any way. In terms of communication, one pro-
cessor can send messages to any other processor, which
takes an arbitrarily long time to be delivered. Messages
can be lost, but they are not modified by third parties.

DOI: https://doi.org/10.30564/jcsr.v3i2.2921

23

Journal of Computer Science Research | Volume 03 | Issue 02 | April 2021

Distributed under creative commons license 4.0

Consensus can be reached when the total number of nodes
is n = 2F + 1, where F is the maximum number of nodes
that can experience a simultaneous crash fault. In other
words, most of the total number of nodes must always be
present.

Nodes are called acceptors in Paxos protocols. They
are divided into quorums, as subsets of a set of acceptors,
with any two quorums having to be intersected by at least
one acceptor [20]. The size of the quorum is such that it in-
cludes the majority of the total number of acceptors (and
in the event that the acceptors are assigned a certain vot-
ing weight, the quorum must include more than half of the
votes). The client sends a message requesting a change of
state from the system. In order for a decision to be made,
all quorum acceptors must receive the same message. The
proposer coordinates the distribution of messages and de-
cision-making (especially in case of disagreement). Each
system has one prominent proposer, called a leader. Final-
ly, learners execute the decisions made (change the state
of the system) and send a response to the client.

When a proposer receives a request from a client, they
formulate a message, assign it a certain number p, and dis-
tribute it to the acceptors within the quorum. The number
p serves only to determine the chronological order of the
message and must be greater than the numbers of all mes-
sages that the acceptors have processed so far. This activi-
ty is called Prepare. Upon receipt, the acceptors check the
number p and if that number is greater than the numbers
of all previous messages, they send a positive response.
This process is called Promise. If they have accepted a
message in the previous period, they shall also submit to
the proposer the number of that message q (where q < p)
and the value of w accepted by that message. Since Paxos
is intended for asynchronous systems, participants may be
at different stages of the process, so it is possible that the
proposer does not know that the message q is accepted at
all. In case the number of the message p is less than the
number of any of the previous messages, the acceptors can
send a negative response to the proposer, or not respond at
all. This concludes the first phase.

If it receives a sufficient number of positive responses,
the proposer in the second phase submits to the acceptors
the full content of the message p, which, in addition to the
number, also contains the proposed value v = x. In case
the acceptors inform them that the message q has been ac-
cepted in the meantime, the proposer can decide to modify
the proposal before sending, and for the proposed value to
be v = y. A request for verification and acceptance is sent
to the acceptors with the message. Acceptors accept the
message (p, v) if in the meantime they have not promised
to consider only the message under the number r, r > p. [21].

When they accept the message, they inform the proposer
and the learners (although the role of the learner is often
played by the proposer itself).

This case is a general form of the Paxos algorithm. As
it is a family of protocols, this means that the general case
has a large number of modifications into specific forms.
Individual cases vary significantly in terms of purpose,
and, therefore, have different performance, which further
complicates the comparison of this protocol with other
ones.

3.2.2 Raft

Raft is a consensus protocol with resilience to crash
faults, proposed by Ongaro & Ousterhout (2014) [22]. It is
a modification of the Paxos algorithm, in which nodes can
exist in one of three states: leader, followers or candidates.
Time is divided into arbitrarily long sections, called terms.
During one term, the same node always plays the role of
the leader. They receive requests for transactions from
clients, check them and index them, in order to maintain
insight into chronological order. The transactions are then
packed in blocks, which are forwarded to followers. The
task of the followers is to send the leader an acknowledg-
ment of the correctness of the block and to replicate the
block, i.e. to take over the information it contains.

When requests for new entries stop arriving, the node
waits for a certain period, known as an election timeout.
This means that the old leader has lost its role and that
elections for a leader for the next term are taking place.
The node becomes a candidate, gives itself a vote and
sends messages to the rest of the network asking for sup-
port for its candidacy. If it gets the support of most other
nodes, it will be elected leader in the coming term. It then
sends a message to all other nodes informing them of its
election. Also, it can happen that, while waiting for votes,
the node receives a message from another node claiming
to have been elected leader. In that case, the node com-
pares its term index with the term index of the node that
claims to be elected. If its term index is lower, it must
recognize the other node as the leader. However, if its
term index is higher, it can reject the message of the node
claiming to be the leader and continue to collect votes. A
higher term index value indicates that this node is aware
of the last changes that have occurred. If no candidate
collects enough votes, the whole process is repeated with
a randomly assigned short pause. The node assigned the
shortest pause will initiate a new vote.

The key difference between Paxos and Raft algorithms
is that Raft allows only the best updated nodes to take
on the role of the leader, while with the Paxos algorithm
it can be any node [23]. The well-known blockchain plat-

DOI: https://doi.org/10.30564/jcsr.v3i2.2921

24

Journal of Computer Science Research | Volume 03 | Issue 02 | April 2021

Distributed under creative commons license 4.0

forms, R3 Corda and Quorum, use Raft as a consensus
protocol.

4. Comparing Protocols

Permissionless blockchains are easy to compare. They
all have the same purpose, but show significant differ-
ences in terms of required investments, throughput and
scalability. In addition, a large number of papers com-
pare these protocols in some respect. The situation with
permissioned blockchains is somewhat more complex.
First of all, the systems are divided into two large groups,
which differ according to the level of security they pro-
vide. Differences in purpose undoubtedly lead to differ-
ences in performance. However, the problem that exists
in the literature is the uneven terminology in this area.
Some papers that generally compare consensus protocols
for permissioned blockchains actually compare the perfor-
mance of the platforms applying them [24].

Since none of the observed protocols are based on
intensive computation, no high initial investment is nec-
essary. Protocols are not competitive as proof-of-work
and related protocols are, so there is no energy load. They
still differ a lot in scalability and throughput. Also, there
is a significant difference in terms of mutual trust between
nodes. Having in mind the representative research in this
field, the comparison was made on the basis of the follow-
ing characteristics: security, mutual trust, throughput and
scalability. Table 1 presents the results of the comparison.

Table 1. Comparative analysis of the presented consensus
protocols in permissioned blockchains

Protocols
Characteris-

tics
pBFT dBFT FBA PoA Paxos Raft

Security

Byzan-
tine if

f <
33.3%

Byzan-
tine if

f <
33.3%

Byzan-
tine if

f < 20%

Byzan-
tine if

f < 49%

Only
from
crash
fault

Only
from
crash
fault

Mutual trust

Based
on node
selec-
tion

Nodes
choose
who to
trust

Flexible
trust

Based
on

identity

Com-
plete in
terms of
good in-
tentions

Com-
plete in
terms of
good in-
tentions

Throughput Moder-
ate High High Low Moder-

ate
Moder-

ate

Scalability Limited High High Low Limited Limited

Source: author, according to the broad literature

The first four presented protocols protect the system
from Byzantine faults. They differ from each other in the
proportion of malicious nodes that the system can tolerate
without losing normal functioning. Paxos and Raft assume
that all nodes have already been checked and known, and
that they are not characterized by malicious behavior.

Therefore, they do not provide protection against Byzan-
tine faults, but only from a temporary crash fault. Thus,
the level of security they guarantee is significantly lower.

Nodes do not know each other in permissionless block-
chains, so there is no basis for trust. With permissioned
blockchains, the nodes do not have to know each other ei-
ther, but the very fact that the membership is permissioned
gives some degree of trust. Thus, with pBFT, mutual trust
is based on the fact that the nodes have been allowed to
enter the system. That is why each node communicates
with all other nodes, because it trusts their decisions.
With dBFT and FBA, the situation is somewhat different,
so the nodes choose who they trust. This is especially
pronounced with FBA and the so-called flexible trust,
meaning that, regardless of the total number of nodes, the
participants make a decision only with those who they
trust. With PoA, trust is based on a previously irrevocably
established identity and the responsibility it entails. With
the Paxos and Raft protocols, nodes have complete mutual
trust in terms of goodwill, but they do not trust each other
in terms of prompt response to tasks.

One of the key problems of permissionless blockchains
is that, due to protocol design in a trustless environment,
they cannot achieve throughput at the level of payment
card companies. In order for a single protocol to be con-
sidered an adequate basis for a financial or other business
system, it must allow the processing of a large number
of transactions. All protocols analyzed in this paper
show significantly high throughput, but there are differ-
ences between them. Thus, with pBFT, on a sample of
10,000 transactions on the Hyperledger Fabric platform,
a throughput of about 200 transactions per second (TPS)
was proven [25]. dBFT is said to be able to support around
4000 TPS [26], though specific data on the NEO cryptocur-
rency blockchain shows that this number is 4 times lower.
Also, the data shows throughput of about 4000 TPS with
FBA [27], though theoretical assumptions claim that this
number could be over 10,000. PoA has a slightly lower
throughput, of about 80 TPS.

There are large differences in terms of scalability of the
observed protocols. It was shown that a pBFT network
with 40 nodes takes only 4 seconds to confirm a block of
10,000 transactions, but that with an increase in the num-
ber of nodes to 200, than time increases to 26 seconds and
continues to grow exponentially [28]. From the above it can
be concluded that pBFT is a good solution for small and
controlled systems, but that due to the need for all nodes
to communicate with each other it is not a good choice for
large systems. It was stated that the NEO blockchain can
process a block within 20 seconds, when the number of
nodes ranges from 7 to 1024 [26]. Thus, with the growth of

DOI: https://doi.org/10.30564/jcsr.v3i2.2921

25

Journal of Computer Science Research | Volume 03 | Issue 02 | April 2021

Distributed under creative commons license 4.0

the system, dBFT becomes a better choice than pBFT, but
it also has scalability limits. FBA is designed to maintain
high scalability despite the involvement of thousands of
nodes. However, this has not been confirmed in practice,
because the Ripple and Stellar cryptocurrency blockchains
have only 130 and 136 nodes, respectively. At the same
time, they maintain a very stable scalability. PoA has a
stable scalability which means 5-8 seconds required to
validate the block even in case of increasing the number
of nodes to over 1000. The problem that Paxos and Raft
face in this context is the need for all communication to
go through one node (leader), which leads to a bottleneck.

5. Conclusions

Comparing consensus protocol performance has three
limitations. First of all, although all the observed proto-
cols are intended for permissioned blockchains, not all
have the same purpose. The clearest clasification is into
those protocols that protect the system from Byzantine
faults and those that protect only from crash faults. How-
ever, there are differences within these groups as well.
Thus, pBFT is intended for systems with a small number
of nodes, while FBA is intended for systems with a large
number of nodes. If performed outside the intended envi-
ronment, these systems can show significant deviations in
terms of performance. Comparison under conditions that
favor one group or one separate protocol yields results
that do not reflect their actual usability.

Furthermore, observed protocols were not tested evenly
in practice. It is worth mentioning that dBFT and PoA ac-
tually have limited application, and that their performance
should therefore not be taken as completely reliable. Some
protocols can be analyzed in parallel on the examples of
a larger number of cryptocurrencies and/or business plat-
forms, while others have an application that is sufficient
only for conditional results. Finally, most protocols in
practice show deviations from the theoretically stated op-
timal results. This problem is related to the previous one
and speaks of insufficient testing in different conditions
and on different platforms.

Having in mind the above and the results of the com-
parison, it can be concluded that no protocol shows ab-
solute dominance in all aspects of the comparison. When
choosing a consensus protocol for a blockchain applica-
tion, one should take into account priority characteristics.

References

[1] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash
system [R]. 2008, retrieved from https://bitcoin.org/
bitcoin.pdf.

[2] Zheng, Z., Xie, S., Dai, H.N., Chen, X. & Wang, H.
An overview of blockchain technology: architecture,
consensus and future trends [C], IEEE 6th interna-
tional congress on Big data, Honolulu, HI, 2017: 557-
564 https://doi: 10.1109/BigDataCongress.2017.85.

[3] Belotti, M., Božić, N., Pujolle, G. & Secci,S. A va-
demecum on blockchain technologies: when, which,
and how [J], IEEE Communication, Surveys & Tuto-
rials, 2019, 21(4): 3796-3838.

[4] Oliveira, M.T., Reis, L.H.A., Medeiros, D.S.V.,
Carrano, R.C., Olabarriaga, S.D. & Mattos, D.M.F.
Blockchain reputation-based consensus: A scal-
able and resilient mechanism for distributed mis-
trusting applications [J], Computer Networks,
2020,179: 107367. https://doi.org/10.1016/j.com-
net.2020.107367.

[5] Szabo, N. Formalizing and Securing Relationships
on Public Networks [J]. First Monday, 1997, 2(9).
https://doi.org/10.5210/fm.v2i9.548.

[6] Lamport, L. Time, Clocks and the Ordering of Events
in a Distributed System [J]. Communications of the
ACM, 1978, 21(7): 558-565.

[7] Schneider, F. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial [J].
ACM Computing Surveys, 1990, 22(4): 299-319.

[8] Bamakan, S.M.H., Motavali, A. & Bondarti, A.B.
A survey of blockchain consensus algorithms per-
formance evaluation criteria [J], Expert Systems
with Applications, 2020, 154: 113385. https://doi.
org/10.1016/j.eswa.2020.113385.

[9] Ismail, L. & Materwala, H. A Review of Blockchain
Architecture and Consensus Protocols: Use Cases,
Challenges, and Solutions [J], Symmetry 2019, 2019,
11: 1198. https://doi:10.3390/sym11101198.

[10] Zheng, Z., Xie, S., Dai, H.N. & Wang, H. Blockchain
challenges and opportunities: A survey [J]. Interna-
tional Journal of Web and Grid Services, 2018, 14(4):
352-375.

[11] Lin, I.C. & Liao, T.C. A survey of blockchain secu-
rity issues and challenges [J], International Journal
of Network Security, 2017, 19(5): 653-659. https://
doi:10.6633/IJNS.201709.19(5).01.

[12] Wang, X., Zha, X., Ni, W., Liu, R.P., Guo, Y.J., Niu,
X. & Zheng, K.. Survey on blockchain for internet of
things [J], Computer Communication, 2019, 136: 10-
29. https://doi.org/10.1016/j.comcom.2019.01.006.

[13] Lamport, L., Shostak, R., & Pease, M. The Byzantine
Generals Problem [J]. ACM Transactions on Pro-
gramming Languages and Systems, 1982, 4(3): 382-
401. https://doi.org/10.1145/357172.357176.

[14] Castro, M., Liskov, B. Practical Byzantine Fault Tol-
erance and Proactive Recovery [J]. ACM Transac-

DOI: https://doi.org/10.30564/jcsr.v3i2.2921

26

Journal of Computer Science Research | Volume 03 | Issue 02 | April 2021

Distributed under creative commons license 4.0

tions on Computer Systems, 2002, 20 (4): 398-461.
https://doi:10.1145/571637.571640.

[15] Coelho, I. M., Coelho, V. N., Araujo, R. P., Yong, Q.
W. & Rhodes, B. D. Challenges of PBFT-Inspired
Consensus for Blockchain and Enhancements over
Neo dBFT. Future Internet, 2020, 12(8): 129. https://
doi:10.3390/fi12080129.

[16] Manoppo, M. Delegated Byzantine Fault Tolerance
Consensus Mechanism [J], Medium, 2018, June 15.

[17] Yoo, J., Jung, Y., Shin, D., Bae, M. & Jee, E. Formal
Modeling and Verification of a Federated Byzantine
Agreement Algorithm for Blockchain Platforms [C],
2019 IEEE International Workshop on Blockchain
Oriented Software Engineerin, 2019,. https://doi.
org/10.1109/IWBOSE.2019.8666514.

[18] Schwartz, D., Youngs, N. & Britto, A. The Ripple
Protocol Consensus Algorithm [R], 2018, retrieved
from: https://ripple.com/files/ripple_consensus_
whitepaper.pdf.

[19] Lamport, L. The part-time parliament [J], ACM
Transactions on Computer Systems. 1998, 16(2):
133-169. https://doi:10.1145/279227.279229.

[20] García-Pérez Á., Gotsman A., Meshman Y. & Sergey
I. Paxos Consensus, Deconstructed and Abstracted
[M]. In: Ahmed A. (ed.) Programming Languages
and Systems. ESOP 2018. Lecture Notes in Com-
puter Science, 2018, 10801: 912-939, https://doi.
org/10.1007/978-3-319-89884-1_32.

[21] Lamport, L. Paxos made simple [J], ACM SIGACT
News. 2001, 32(4): 51-58.

[22] Ongaro, D. & Ousterhout, J. In Search of an Under-
standable Consensus Algorithm [C]. Proceedings
of the 2014 USENIX Annual Technical Conference
(USENIX ATC 14), Philadelphia, PA, USA, 2014,
305-319.

[23] Howard, H. & Mortier, R. Paxos vs Raft: Have we
reached consensus on distributed consensus? [C],
7th Workshop on Principles and Practice of Con-
sistency for Distributed Data (PaPoC ’20), April
27, 2020, Heraklion, Greece, 2020, https://doi.
org/10.1145/3380787.3393681.

[24] Polge, J., Robert, J. & Le Traon, Y. Permissioned
blockchain frameworks in the industry: A compar-
ison [J], ICT Express, in press, 2020, https://doi.
org/10.1016/j.icte.2020.09.002.

[25] Nasir, Q., Qasse, I.A., Abu Talib, M. & Nassif, A.B.
Performance analysis of hyperledger fabric platforms
[J], Security and Communication Networks, 2018,
vol. 2018. https://doi.org/10.1155/2018/3976093.

[26] Xian, M. NEO White paper [R], 2018, retrieved
from: https://github.com/neo-project/docs/blob/
3c5530197768d98a1abf7eeed0119a8f4e99e7cc/enus/
whitepaper.md.

[27] McCaleb, J., Crain, B.F., Couture, S. & Roy, M.
Soundcloud [R], 2017, retrieved from https://sound-
cloud.com/epicenterbitcoin/eb-128.

[28] Jalalzai, M.M., Busch, C. & Richard, G.G. Proteus:
A scalable bft consensus protocol for blockchains [C],
2019 IEEE International Conference on Blockchain,
2019, 308-313.

DOI: https://doi.org/10.30564/jcsr.v3i2.2921

