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1. Introduction

The beginning quantum computing student immediately 
confronts the steep hurdle of the mathematics of complex 
vector spaces needed to understand the basics. While 
there are new languages and extensive systems available 
to aid quantum computations, they add to the learning 
curve. Quantum algorithms are presented as circuits or 
gate sequences, and one wants to know several things that 
are not immediately available in quantum programming 
systems. First, a trace of the quantum state after each 
circuit gate is convenient. A display of the gate equivalent 
at any point in the circuit is also desirable. Measures 

of the quantum probabilities, without state collapse, 
are helpful. All this information is available in a circuit 
simulation. A circuit simulation is not a quantum computer 
simulation. It is a mathematical rendering of each step 
of a quantum algorithm described by a sequence of gate 
operations on an initial quantum state and rendered by the 
software system described in this paper, Quick Quantum 
Circuit Simulation (QQCS). The system allows a student 
to quickly construct a circuit using a linear notation 
motivated by the circuits themselves and acquire the 
information to analyze an algorithm without the need for 
extensive computation.

As an example of the operation of QQCS, consider 
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the circuit in Figure 1 [1,2] which is a sequence of basic 
one- and two-qubits gates that together implement a more 
complicated gate known as a controlled Hadamard gate.

Figure 1. A Controlled Hadamard Gate Sequence

In an interactive QQCS session, the user enters the 
circuit in a single QQCS statement on one line, shown in 
Listing 1, and the result is immediately displayed after the 
Enter key.

(1)1 :_H :_Sa :Cx :_H :_T :Cx :_T :_H :_S :_X :S_ 
[0.7+0.7i   0                     0                    0 
0                0.7+0.7i         0                     0 
0                0                     0.5+0.5i         0.5+0.5i 
0                0                     0.5+0.5i        -0.5-0.5i] 
Listing 1. QQCS Linear Notation, Input and Output for 

the Controlled-H Gate Sequence of Figure 1

Listing 1 Explanation

(1) The user enters the full gate sequence. A gate is 
introduced by a colon (:) followed by a mnemonic for the 
common name of the gate, H for Hadamard, Sa for S-gate 
adjoint (  phase gate inverse), Cx for controlled-X, and 
so forth. The underscore character (_) is used to position 
the gate in the circuit, and to represent a qubit line with no 
gate (an implied identity gate). In Figure 1, all the gates 
one-qubit gates except for the two-qubit Cx gates at step 3 
and step 6 of the circuit.

The following output display is the final gate matrix 
result. Since , 
the result is equivalent to

a controlled-Hadamard gate with a global phase factor 
of .

In this QQCS statement, there is no initial quantum 
state, so the output display represents the gate equivalent, 
the complex matrix that is the controlled-Hadamard gate, 
the product of eleven 4×4 matrix multiplications. The 
quantum computing student who is using QQCS as a 

1 Program output has been edited to accommodate the needs of 
publication.

study tool, can quickly see and dissect the operation of 
any circuit encountered in a textbook. Supporting software 
for quantum programming education is important [3]. 
QQCS provides a simple tool that does not detract from 
the primary learning task.

2. Related Work

For an extensive review of quantum programming, see 
the article “Quantum Programming Languages” [4]. The 
following references are selected as systems in which 
results close to those of QQCS could be obtained. In a few 
cases, they are explicitly compared to QQCS.

One of the most well-known quantum computing 
resources is IBM’s Quantum Experience [2] public web 
site. IBM supports the open-source software QISKit [5], a 
set of Python libraries which allow one to write quantum 
programs (circuits) in a language called Open Quantum 
Assembly Language (QASM), the language used to 
program the real quantum computers available through 
the website. QISKit can submit to the website or simulate 
locally the operation of QASM. In QISKit, the circuit of 
Figure 1 would be written as shown in Listing 2.

def ctl_h():
    qs = QuantumRegister(2, ‘qs’)
    cr = ClassicalRegister(2, ‘cr’)
    ckt = QuantumCircuit(qs, cr)
    # initialization to |11>
    ckt.x(qs[0])
    ckt.x(qs[1])
    # end init
    ckt.h(qs[1])
    ckt.sdg(qs[1])
    ckt.cx(qs[0], qs[1])
    ckt.h(qs[1])
    ckt.t(qs[1])
    ckt.cx(qs[0], qs[1])
    ckt.t(qs[1])
    ckt.h(qs[1])
    ckt.s(qs[1])
    ckt.x(qs[1])
    ckt.s(qs[0])
    ckt.measure(qs, cr)
    return ckt

Listing 2. QISKit Controlled-Hadamard
This circuit would be run using the ‘qasm_backend’ 

executor for 100 shots and would output a result that 
would provide counts for each probabilistic result that 
would show approximately half the shots producing the 
value 10 and half the shots producing 11. These reflect 
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the actual mathematical result 
, so one could assume that the sequence of gates was 
equivalent to a controlled-Hadamard gate.

Listing 3 shows the controlled-Hadamard computation 
expressed in QuTIP-qip [6], the Quantum Toolbox in 
Python component for quantum information processing. 
The component has a circuit  simulator,  and the 
computation looks very much like QISKit. It has facilities 
to display the equivalent matrix, shown at the end of the 
listing. Compare this to Listing 1. QuTIP is an extensive 
package going far beyond circuit simulation and is an 
excellent tool for the advanced quantum computing 
student, worthy of study on its own.

def sdg_gate2():
    # S adjoint gate
    mat = np.array([[1., 0],
                    [0, -1.j]])
    return Qobj(mat, dims=[[2], [2]])
def ctl_h():
    q = QubitCircuit(2, reverse_states=False)
    q.user_gates = {‘SDG’: sdg_gate2}
    q.add_gate(‘SNOT’, targets=[1])
    q.add_gate(‘SDG’, targets=[1])
    q.add_gate(“CNOT”, controls=[0], targets=[1])
    q.add_gate(‘SNOT’, targets=[1])
    q.add_gate(‘T’, targets=[1])
    q.add_gate(“CNOT”, controls=[0], targets=[1])
    q.add_gate(‘T’, targets=[1])
    q.add_gate(‘SNOT’, targets=[1])
    q.add_gate(‘S’, targets=[1])
    q.add_gate(‘X’, targets=[1])
    q.add_gate(‘S’, targets=[0])
    return q
Quantum object: dims = [[2, 2], [2, 2]],
shape = (4, 4), type = oper, isherm = False
Qobj data =
[[ 0.7+0.7j  0. +0.j   0.  +0.j   0.  +0.j  ]
 [ 0. +0.j   0.7+0.7j  0.  +0.j   0.  +0.j  ]
 [ 0. +0.j   0. +0.j   0.5 +0.5j  0.5 +0.5j ]
 [ 0. +0.j   0. +0.j   0.5 +0.5j -0.5 -0.5j ]]

Listing 3. QuTIP-qip Controlled-Hadamard
The language Q# [7] was used as a teaching tool, described 

in “Teaching Quantum Computing through a Practical 
Software-driven Approach: Experience Report” [3]. A Q# 
implementation of the controlled-Hadamard computation 
would look very much like Listing 2 and Listing 3. It provides 
another approach but is an additional learning burden.

Although quantum computing is a relatively new 
computer science subfield, there are many software 

systems to aid in quantum computation, most of which are 
open source. ProjectQ [8] is a compiler framework capable 
of targeting various types of hardware, containing a high-
performance simulator with emulation capabilities, based 
on a Python-embedded domain-specific language. Toqito 

[9] is a Python library for studying various objects in quantum 
information, states, channels, and measurements. QuNetSim 

[10] is a quantum network simulation framework. Interlin-q [11] 

is a simulation platform for simulating distributed quantum 
algorithms. Cirq [12] is a Python library for writing, 
manipulating, and optimizing quantum circuits and 
running them against quantum computers and simulators. 
QRAND [13] is a smart quantum random number generator 
for arbitrary probability distributions, which operates 
by providing a multiplatform NumPy adapter interface. 
Qrack [14] is a GPU-accelerated HPC quantum computer 
simulator framework. Pulser [15] is a Python library for 
programming neutral-atom quantum devices at the pulse 
level. QCOR [16] is a quantum-retargetable compiler 
platform providing language extensions for both C++ and 
Python that allows programmers to express quantum code 
as stand-alone kernel functions. XACC [17] is a service-
oriented, system-level software infrastructure in C++ 
promoting an extensible API for the typical quantum-
classical programming, compilation, and execution 
workflow. Yao [18] is a framework that aims to empower 
quantum information research with software tools in the 
Julia programming language. Quantify [19] is a Python-
based data acquisition platform focused on quantum 
computing and solid-state physics experiments.

3. QQCS

3.1 Quantum Circuits, Briefly

Quantum programs are often constructed and displayed 
as quantum circuit diagrams. As shown in Figure 1, 
circuit diagrams are stacked horizontal lines with various 
connections between them. Each horizontal line represents 
a qubit. A line is also called a wire, but it is only a wire 
conceptually. The qubit it represents may be physically 
realized in several different ways by a quantum computer. 
The lines are read from left to right corresponding to the 
sequential execution of the circuit and are best thought 
of as representing movement in time. Elements that are 
vertically aligned in the circuit are considered to happen 
simultaneously. Gates are labeled rectangles, named for 
the type of gate. Measurement sets a classical bit from 
a qubit. Measurement is indicated in a quantum circuit 
by a meter symbol, and usually appears at the end of the 
circuit. The double wire exiting a meter indicates that 
the line now carries a classical bit, not a qubit. There are 

DOI: https://doi.org/10.30564/jcsr.v3i4.3567



12

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

a small number of additional conventions. A controlled 
gate, such as a controlled NOT, has a control qubit and 
a target qubit, and is represented not by a rectangle but 
by a vertical line from the control qubit, indicated by 
the black dot at the line intersection, to the target qubit, 
indicated by the  at the intersection. The third and sixth 
gates in Figure 1 are controlled NOT gates, with controls 
on line 0 and targets on line 1. A Toffoli gate, a three-
qubit controlled gate with two controls and one target, is 
represented the same way; the control intersections have 
black dots, and the target intersection has a . A Toffoli 
gate is shown in Figure 4c.

3.2 Gate Linear Notation

A quantum circuit is a sequence of gates, and as the number 
of qubits increases, the options for placing and connecting the 
gates increases, too. Most gate placements, however, are of 
only a few varieties. The simulation’s available gates are one-
qubit gates named with one and two letter abbreviations, which 
are then augmented with prefixes and suffixes describing their 
positions within the circuit. Additional conventions provide for 
multiple gates in a single time slice, and for arbitrary control 
and target lines anywhere within a ten-qubit circuit. The full 
syntax is shown in Appendix A.

The basic gate names are shown in Table 1 [20,21].
In the linear notation, a gate name is preceded by a 

colon (:) character. 

3.3 Rotational Gates

All the rotational gates specify the angle parameters 
as factors of  radians, with  implicit. Thus, Rx(.5) is 
an X-axis rotation of  radians, or 90 degrees. The 
parameter range for all angles is (0,4).

The U gate may have one, two, or three parameters: 
i )  ,  i i )  ,  o r  i i i ) 

. The three-parameter version implements the 
general unitary matrix:

 

The Rx( ) gate is equivalent to .
The Ry( ) gate is equivalent to .
The Rz( ) gate is equivalent to .
An alternate general unitary definition is available, 

invoked by the -u command line flag, or the $ualt comment 
flag. The alternate definition differs only by a phase factor 
from the default definition above, but it can simplify the 
elements of some rotational gates. The definition is:

 

3.4 Oracles

Table 2. Oracles

Oracles specified with 1-digit size suffix, and optional parameters

Ob Bernstein-Vazirani

Od Deutsch-Jozsa

Os Simon

Og Grover

Oracles are available for the well-known algorithms 
of Deutsch, Deutsch and Josza, Bernstein and Vazirani, 
Simon, and Grover.

The oracles are specified with the syntax :Ox(p)n. 

Table 1. The Basic 1-, 2-, and 3-qubit Gate Names

Names Gate Description

1-Qubit

H Hadamard gate

I Identity gate

_ ungated lines (implied Identity)

Kp( ) Phase gate (universal set) [21]

Rp( ) Rotation gate (universal set) [21]

Rx( ) Pauli X rotation gate

Ry( ) Pauli Y rotation gate

Rz( ) Pauli Z rotation gate

S S gate (  phase gate)

Sa S adjoint

T  gate (  phase gate)

Ta T adjoint

Tp( ) Phase rotation gate (universal set) [21]

U(  Universal one-, two-, or three-parameter rotation gate

X Pauli X gate

Y Pauli Y gate

Z Pauli Z gate (  phase gate)

2-Qubit

C general CNOT (used with a 2-digit control suffix)

Cx CNOT with control qubit q and target qubit q+1

Cr reverse CNOT with control qubit q+1 and target qubit q

Sw General swap (used with a 2-digit control suffix)

3-Qubit  

Tf general Toffoli gate (used with a numerical suffix)

Fr general Fredkin gate (used with a numerical suffix)

n-Qubit  

Im Mean Inversion (used with 1-digit size suffix)

Qf 
Quantum Fourier Transform (used with 1-digit size 
suffix)

Qa QFT adjoint (used with 1-digit size suffix)
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x is set to d for Deutsch and Deutsch-Josza, which are 
distinguished by their qubit size, b for Bernstein-Vazirani, 
s for Simon, and g for Grover. The optional parameter 
p is specific to the oracle and determines whether the 
oracle will implement a random function or a function 
determined by the parameter. The n suffix is the qubit size 
and must be specified. The qubit size includes any ancilla 
qubits.

:Od2 is considered the Deutsch oracle, and any larger 
qubit size is the Deutsch-Josza oracle. Both algorithms 
use a single ancilla qubit, and the random function is 
either a constant or balanced binary function of domain 
size n-1. If the optional parameter is specified, a value of 
0 generates a constant function whose values are all 0. A 
value of 1 generates a constant function whose values are 
all 1. Any other value generates a balanced function.

:Obn is the Bernstein-Vazirani oracle. The algorithm 
uses a single ancilla qubit, and the function implements a 
hidden binary string of size n-1. If the optional parameter 
is specified, it determines the hidden string and should be 
a value between 0 and .

:Osn is the Simon oracle. The algorithm uses n/2 
ancilla qubits, and the function implements a binary string 
of size n/2 representing the “period” [22] of the function, 
which is discovered by the Simon algorithm. If the 
optional parameter is specified, it determines the “period” 
and should be a value between 0 and .

:Ogn is the Grover oracle. The oracle randomly selects 
one basis vector from its n-qubit input and changes its 
phase to the opposite sign. If the optional parameter is 
specified, it determines the basis vector to be changed and 
should be a value between 0 and .

3.5 Permutation Gates

Permutation gates are matrices with a single 1 in each 
row and column and 0’s in all other elements. The CNOT 
gate is a typical permutation gate. When applied to a 
quantum state, permutation gates shift the amplitudes from 
one basis vector to another. A permutation gate is specified 
with the syntax :P(pair, ...)n. Each pair is syntactically real 
number, but it is interpreted as a pair of integers separated 
by a period. The n suffix is the qubit size of the gate. 
The integers in a pair must be in the domain  
For example, the number 2.6 is taken as the pair 2 6, 
referencing the basis vectors  and . The gate 
:P(2.6,6.4,4.2)4 will cycle the amplitudes of three basis 
vectors in a four-qubit circuit. A two-qubit CNOT gate is 
equivalent to the permutation specification :P(2.3,3.2)2. 
The QQCS specification of a large permutation gate is 
tedious. The simplest way to use one is to specify it once 
and assign it to a custom gate, then reuse the custom gate 

as needed.

3.6 Positioning and Replicating Gates

When a gate is positioned in a circuit, it may have qubit 
lines above and/or below on which there are no gates. 
The Identity gate is implied when no gate is specified. 
To indicate this, QQCS uses an underscore (_), repeated 
once for each ungated qubit line. If the gate is replicated 
on several circuit lines, the gate name can be repeated, 
or the replication can be abbreviated with a digit. :H_ is 
a Hadamard gate on qubit 0, with no gate on qubit 1. To 
place the Hadamard gate on qubit line 1, use :_H. See 
Figure 2. The _ can be repeated as many times as needed. 
:_____H is a one-qubit Hadamard gate on line 5 of a six-
qubit circuit. :____H_ moves the Hadamard gate up to 
line 4.

Figure 2. Gate Positioning

To place a gate across multiple qubit lines, follow 
its name with a digit replicator suffix. To transform a 

 initial value in a four-qubit circuit to a balanced 
superposition, use :HHHH or :H4 as a four-qubit 
Hadamard gate on lines 0 through 3, shown in Figure 3a. 
The replicator suffix is applicable only to one-qubit gates.

In instances where several gates appear on non-adjacent 
qubit lines, and are therefore executed simultaneously, 
the gates can be listed in sequence. If there are implied 
identity gates between some gates, use one or more 
underscores. To put an X-gate on lines 1 and 3 of a four-
qubit circuit, use :_X_X, as shown in Figure 3b.

Figure 3. Positioning in a 4-Qubit Circuit

3.7 Controlled Gate Names

Qubit line numbers on a controlled gate can be relative 
to the span of the gate, or absolute.

For relative line numbers, the span of a gate is the 
difference between the minimum and maximum control/
target lines plus one. Reading left to right, controls occur 
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first, then the target, each as a single digit. As an example, 
the control suffix 02 has a span of 3 (2-0+1=3) lines 
and indicates a control on relative line 0 and a target on 
relative line 2.

Ungated prefixes and suffixes are used, as in all other 
gates, to position the gate vertically in the circuit. Lines 
within the span that are not control or target lines are 
ungated by implication.

To place controlled gates in a circuit, start as if the gate 
were placed at line 0, then identify the controls and the 
target, in that order. A controlled NOT gate with a three-
qubit span with the control on line 2 and the target on 
line 0 is :C20. To reverse the control and target, use :C02. 
See Figure 4. If the gate needs to be positioned within a 
larger qubit circuit, use leading underscores to shift it. The 
control and target numbers are with relative to the span of 
the gate, not the number of qubit lines in the circuit. This 
means that if the gate spans 4 qubits, the lines within the 
span are referenced from 0 to 3, regardless of the position. 
The controlled NOT gate :_C02 is shown in Figure 4b. 
The common names :Cx (equivalent to :C01) and :Cr 
(equivalent to :C10) are also available for CNOT and 
reverse CNOT gates with a span of 2.

Figure 4. Controlled Gate Linear Notation

Gates that involve two or more control lines and one 
target, or one control and two targets, will have three 
(or more) digits following the gate name, in the order 
(control1, control2, target), or (control, target1, target2), 
as shown in Figure 4c and 4d. Again, the control and 
target line numbers are relative to the span.

Any of the built-in one-qubit gates can be supplied 
with a 2-digit control suffix to add a control line to the 
gate. See Figure 5 showing a three-qubit quantum Fourier 
equivalent circuit [20,22], using several different controlled 
gate forms. The final gate is a swap between lines 0 and 2.

Figure 5. 3-qubit Quantum Fourier Transform

With an absolute suffix, the control and target digits 
indicate the actual lines of the circuit. No leading _’s are 
needed for positioning. Trailing _’s may still be needed to 
indicate the full qubit size of the gate. Either absolute or 
relative notation may be used.

A Toffoli gate may have more than two control qubits.

3.8 Display

A circuit simulation display starts with the initial 
value if it is a quantum state and ends with the resulting 
quantum state at the end of the circuit. By default, both 
displays are row vectors. Internally, quantum states are 
column vectors, but they are transposed for linear display. 
To see the balanced superposition result of a Hadamard 
gate across three qubits, enter the circuit sequence in 
Listing 4 and press Enter. The result is shown following 
the entry2.

(1)    |000>:H3 
[1  0   0  0  0  0  0  0]        H3 
[ 0.354   0.354  0.354  0.354 
0.354  0.354  0.354  0.354 ] 

Listing 4. Balanced Superposition

Listing 4 Explanation

(1) The user enters a three-qubit initial value, and 
the three-qubit Hadamard gate. The following output 
display is the initial value as a transposed vector, the gate 
sequence, and the final quantum state, which shows the 
balanced superposition.

If the gate sequence does not start with an initial value, 
the display is an empty initial value and the ending gate 
matrix. The ending matrix is the matrix product of all the 
gates in the circuit. In Listing 5, there is only a single two-
qubit Hadamard gate.

(1)  :H2 
[ ]  H2  [ 
0.5     0.5     0.5    0.5 
0.5    -0.5    0.5    -0.5 
0.5    0.5     -0.5    -0.5 
0.5       -0.5    -0.5    0.5] 

Listing 5. 2-Qubit Hadamard Gate

Listing 5 Explanation

(1) The user enters a two-qubit Hadamard gate. The 
following output display is the gate itself.

2 In Listings, line wraps and indentation are artificial for format purposes
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3.9 Comments

An input comment is anything following a ‘#’ character 
to the end of the line. A comment is also searched for 
switch specifications beginning with the character ‘$’. 
Keywords following the ‘$’ set or unset internal options, 
most of which correspond to command line flags.

3.10 Measurement

If simple quantum state display is not sufficient, the 
results can also be measured and displayed. Measuring 
produces a probability display for each non-zero basis 
vector component of the result. Measurement is specified 
by the M pseudo-gate. M is not an actual gate, but it 
can be placed anywhere in the circuit gate sequence just 
as if it were a gate. Unlike measurement in an actual 
quantum computer, measurement in the simulation does 
not collapse the quantum state. It is designed for trace 
purposes. It can occur in a circuit any number of times. 
If the measurement is only to be applied to some subset 
of the qubits, specify it exactly as if M were a gate, with 
underscore prefixes, suffixes, infixes. The controlled-H 
sequence of Figure 1 is shown with three additional 
measuring points in Listing 6.

(1)  |10>:_H:M_:_Sa:Cx:_H:M_:_T 
:Cx:_T:_H:_S:_X:S_:M2 
M1={1:1} 
M2={1:1} 
M3={10:0.5,  11:0.5} 
[0   0   1   0]  _H  _Sa  Cx  _H  _T  Cx  _T  _H 
_S  _X  S_ [0  0  0.5+0.5i  0.5+0.5i] 

Listing 6. Measurement

Listing 6 Explanation

(1) The gate sequence has internal two measurements 
for qubit line 0, and a full measurement of both lines as 
the final gate.

[M1] The output of the first measurement, measuring 
only the first qubit, shows a probability of 1 for the qubit 
value 1.

[M2] The output of the second measurement also 
shows a probability of 1 for the qubit value 1.

[M3] The final measurement shows a probability of .5 
for each of |10  and |11 .

[last] The output is the initial state, the gate sequence, 
and the final quantum state.

Note that the first two measurements only measure 
the qubit on line 0. The last measurement, at the 
end, is for both qubits. The measurement outputs are 

sequentially numbered so they can be distinguished, 
and the results are enclosed in braces indicating that 
it is not a quantum state. The measurement output is 
a list of measurement outcomes and the probability of 
each. Even when measuring fewer qubits than are in the 
circuit, the probabilities will always add to one. The final 
measurement in Listing 6 shows the probabilities, but the 
final quantum state shows that the probabilities arise from 
interesting basis coefficients. 

3.11 Initial Values

Quantum circuits are generally assumed to start with 
an initial value of  where n is the number of qubits. 
QQCS uses the presence or absence of an initial value to 
distinguish between displays. If an initial value is present 
at the beginning of a circuit, the ending display will be the 
ending quantum state. If there is no initial value, the ending 
display will be the equivalent gate matrix. An initial value 
syntactically is quantum state, a sum of basis kets with 
complex coefficients. Listing 7 shows four interactions with 
QQCS in which a Hadamard gate operates on initial values 
of , , , and . 
It is an illustration of measurement in the Hadamard basis.

(1)   |0>:H 
[1  0]   H   [0.707   0.707] 
(2)   |1>:H 
[0  1]   H   [0.707   -0.707] 
(3)   0.707|0>+0.707|1>:H 
[0.707   0.707]   H   [1  0] 
(4)   0.707|0>-0.707|1>:H 
[0.707   -0.707]   H  [0  1]

Listing 7. Measurement in the Hadamard Basis

Listing 7 Explanation

(1) User enters  followed by a Hadamard gate. The 
output is the initial state  (as a transposed column 
vector), followed by the gate sequence, followed by the 
final state.

(2) The same sequence with an initial value of .
(3) The initial value is , which is  in 

the Hadamard basis, as the following H transformation 
shows.

(4) Complete the example by showing  in the 
Hadamard basis.

3.12 Tensor Products

An initial value can be constructed from a tensor 
product. If more than one quantum state is entered as an 
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initial value and the states are parenthesized, a tensor 
product is implied. This is shown in Listing 8. As in all 
other QQCS interactions, the first value displayed is that 
of the first operand. The last value displayed is the result 
of the computation.

(1)   (|0>) (|1>) 
[1  0]    [0  1  0  0] 
(2)   (0.707|0>+0.707|1>) 
(0.707|0>-0.707|1>) 
[0.707   0.707]   [0.5  -0.5  0.5  -0.5]
(3)   (0.707|0>+0.707|1>) 
(0.5|00>-0.5|01>+0.5|10>-0.5|11>) 
[0.707   0.707]
[0.354     -0.353    0.354     -0.353 
0.354      -0.353     0.354    -0.353]

Listing 8. Tensor Products

Listing 8 Explanation

(1) The tensor product 
(2) The tensor product 

(3) The tensor product 

3.13 Factoring

The Quantum Fourier Transform circuit in Figure 5 
will display the matrix shown in Listing 9.
0.354   0.354             0.354         0.354             ... 
0.354   0.25+0.25i    0.354i       -0.25+0.25i     ... 
0.354   0.354i           -0.354       -0.354i             ... 
0.354   -0.25+0.25i   -0.354i      0.25+0.25i      ... 
0.354   -0.354            0.354        -0.354             ... 
0.354   -0.25-0.25i     0.354i       0.25-0.25i       ... 
0.354   -0.354i          -0.354        0.354i             ... 
0.354   0.25-0.25i     -0.354i      -0.25-0.25i      ... 
..

Listing 9. QFT With No Factoring

In texts [22], the n-qubit QFT is the matrix

where  and  is a primitive N’th root of unity. 
By factoring out  (0.35355) using the suffix operator 

(/) at the end of the circuit, it is easier to see that the result 
of the circuit is the three-qubit QFT, as in Listing 10.

[2]  :H__:S10_:T20:_H_:_S10:__H 
:C02:C20:C02/0.35355 
1    1                           1               1                          ... 
1     0.707+0.707i       1i             -0.707+0.707i      ... 
1     1i                        -1              -1i                         ... 
1    -0.707+0.707i     -1i              0.707+0.707i      ... 
1    -1                          1               -1                         ... 
1    -0.707-0.707i        1i             0.707-0.707i        ... 
1    -1i                        -1              1i                          ... 
1      0.707-0.707i      -1i             -0.707-0.707i       ... 
..

Listing 10. QFT Factored

4. Examples

4.1 Oracles for the Grover Search

The two-qubit Grover Search tries to determine the 
phase encoding of the input quantum state. The algorithm 
uses a black box circuit, called an Oracle, to initially 
change the phase of one of the basis kets in a balanced 
superposition two-qubit quantum state. It then uses 
inversion to the mean to amplify the phase difference 
before a final measurement. Listing 11 shows four oracle 
gate sequences to change the phase of the input in each 
of the possible ways, that are alternatives to the built-in 
QQCS :Og gate.

(1)  |00>:H2:_H:C01:_H 
[1  0  0  0]  H2 _H  C01  _H 
[0.5  0.5  0.5  -0.5]
(2)  |00>:H2:S_:_H:C01:_H:S_ 
[1  0  0  0]  H2  S_  _H  C01 _H  S_ 
[0.5  0.5  -0.5  0.5]
(3)  |00>:H2:_S:_H:C01:_H:_S 
[1  0  0  0]  H2  _S  _H  C01  _H  _S 
[0.5  -0.5  0.5  0.5] 
(4)  |00>:H2:Y2:_H:C01:_H:Y2 
[1  0  0  0]  H2  Y2  _H  C01  _H  Y2 
[-0.5  0.5  0.5  0.5]

Listing 11. Four Oracles For Grover Search

Listing 11 Explanation

(1) Change the phase of .
(2) Change the phase of 
(3) Change the phase of .
(4) Change the phase of .
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4.2 Modular Arithmetic Subroutine

The implementation of Shor’s algorithm[23] needs a 
subroutine circuit to compute , from 
1 to the modulus minus 1. Instead of a straightforward, 
and inefficient, implementation, the book presents a 
simple qubit swapping circuit based on the bit patterns of 
the modulo computation. Listing 12 shows the gates of the 
swap circuit assigned to name, ss, which then can be used 
like any other gate. The named gate is applied to the four-
qubit values from  to . The result shows the 
resulting quantum state of each of the 16 inputs, which in 
each case is a single basis ket whose binary value equals 
that of the  calculation.

(1) #$rzeroes 
(2)  ss:C03:C30:C03:C01__ 
:C10__:C01__:_C01_:_C10_:_C01_ 
[]  C03 C30 C03 C01__ 
C10__ C01__ _C01_ _C10_ _C01_= 
1 . . . . . . . . . . . . . . . 
. . . . . . . . 1 . . . . . . . 
. 1 . . . . . . . . . . . . . . 
. . . . . . . . . 1 . . . . . . 
. . 1 . . . . . . . . . . . . . 
. . . . . . . . . . 1 . . . . . 
. . . 1 . . . . . . . . . . . . 
. . . . . . . . . . . 1 . . . . 
. . . . 1 . . . . . . . . . . . 
. . . . . . . . . . . . 1 . . . 
. . . . . 1 . . . . . . . . . . 
. . . . . . . . . . . . . 1 . . 
. . . . . . 1 . . . . . . . . . 
. . . . . . . . . . . . . . 1 . 
. . . . . . . 1 . . . . . . . . 
. . . . . . . . . . . . . . . 1 
(3)  |0001>:ss 
[|0001>] 
ss [|0010>] 
(4) |0010>:ss 
[|0010>] 
ss [|0100>] 
. . . 
(9)  |0111>:ss 
[|0111>] 
ss [|1110>] 
(10) |1000>:ss 
[|1000>] 
ss [|0001>] 
(11)  |1001>:ss 
[|1001>] 

ss [|0011>] 
. . . 
(15)  |1101>:ss 
[|1101>] 
ss [|1011>] 
(16)  |1110>:ss 
[|1110>] 
ss [|1101>]

Listing 12. Shor’s Algorithm Subroutine

Listing 12 Explanation

(1) set a switch to display zeros as periods
(2) Assign the swap circuit to the custom gate name 

ss. The following display is the circuit’s equivalent gate 
matrix.

(3) Invoke the :ss gate circuit on the initial value 
. The output that follows displays the quantum state initial 
value in ket format, then the gate name, then the quantum 
state resulting from the execution of the gate,  
again in ket format.

(4) Shows that .
(…) …
(16) Shows that .

4.3 The Bernstein-Vazirani Oracle

The Bernstein-Vazirani algorithm [24] can be written in 
QQCS as shown in Listing 13.

(1)  | 0 0 0 1>:H4:Ob4:H3_:M3_ 
M1={010:1} 
[ | 0 0 01>]  H4  Ob4  H3_ 
0.707|0100>-0.707|0101> 
(2) |0001>:H4:Ob(3)4:H3_:M3_ 
M1={011:1} 
[ | 0 0 0 1>]  H4  Ob(3) 4  H3_ 
0.707|0110>-0.707|0111> 

Listing 13. The Bernstein-Vazirani Algorithm

Listing 13 Explanation

(1) the Bernstein-Vazirani circuit; the oracle generates 
a random hidden string, which the measure shows as 010.

(2) a version of the Bernstein-Vazirani circuit in which 
the oracle’s hidden string is set by the parameter to 3; the 
measure shows 011.

5. Conclusions

QQCS is a simple linear notation for the simulation 
of quantum circuits. It is an educational tool that can be 
easily used by students new to Quantum Computing. 
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It provides automatic mathematical analysis of circuits 
by incorporating the matrix mathematics necessary to 
provide insight into circuit operation, and by displaying 
the details at each execution step, something not available 
from quantum computer execution.

Installation

QQCS is installed with the Node Package Manager. 
First, install NodeJS. Then, at the command line, enter:

npm install qqcs
To run, go to the node_modules directory, and enter:
node qqcs -or- node qqcs/qdesk.js
Use the command line switch -h to get help.
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Appendix A 

Linear Notation Syntax

Meta-symbols

::=  is defined as
 |   alternative
 e   empty
‘x’  x is a grammar symbol, not a meta-symbol

Grammar

              Pgm     ::=    stmt  stmt-list  eof
        stmt-list      ::=    eol  stmt  stmt-list | e
               stmt     ::=    ident  gate-sequence |
                                   initial-value  gate-sequence
initial-value        ::=    q-state | q-state-list | e

gate-sequence     ::=    g-seq-tail  g-factor
       g-seq-tail     ::=    : gates  g-seq-tail | e
          g-factor     ::=    / unop  Complex | e
      q-state-list     ::=    ( q-state )  q-state-list | e
             q-state    ::=     unop v-comp  p-state-tail
 p-state-tail          ::=    addop v-comp  p-state-tail | e
              gates      ::=    full-gate  gates | e
         full-gate      ::=    gate  gate-suffix | ident
      gate-suffix     ::=    gate-angle  gate-repl
       gate-angle     ::=    ( unop Real reals ) | e
         gate-repl      ::=    integer | e
                reals      ::=    , unop Real reals | e
            v-comp     ::=    coeff ket
                coeff     ::=     Complex | e
                    ket     ::=     ‘|’ integer >
           Complex    ::=     complex | Real
                  Real    ::=     real | integer
                addop    ::=     + | -
                  unop    ::=     - | e
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