
9

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

Journal of Computer Science Research
https://ojs.bilpublishing.com/index.php/jcsr

1. Introduction

The beginning quantum computing student immediately
confronts the steep hurdle of the mathematics of complex
vector spaces needed to understand the basics. While
there are new languages and extensive systems available
to aid quantum computations, they add to the learning
curve. Quantum algorithms are presented as circuits or
gate sequences, and one wants to know several things that
are not immediately available in quantum programming
systems. First, a trace of the quantum state after each
circuit gate is convenient. A display of the gate equivalent
at any point in the circuit is also desirable. Measures

of the quantum probabilities, without state collapse,
are helpful. All this information is available in a circuit
simulation. A circuit simulation is not a quantum computer
simulation. It is a mathematical rendering of each step
of a quantum algorithm described by a sequence of gate
operations on an initial quantum state and rendered by the
software system described in this paper, Quick Quantum
Circuit Simulation (QQCS). The system allows a student
to quickly construct a circuit using a linear notation
motivated by the circuits themselves and acquire the
information to analyze an algorithm without the need for
extensive computation.

As an example of the operation of QQCS, consider

*Corresponding Author:
Daniel Evans,
Pace University, New York, United States;
Email: de36804p@pace.edu

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

ARTICLE
Quick Quantum Circuit Simulation

Daniel Evans*

Pace University, New York, United States

ARTICLE INFO ABSTRACT

Article history
Received: 15 August 2021
Accepted: 9 September 2021
Published Online: 18 September 2021

Quick Quantum Circuit Simulation (QQCS) is a software system for
computing the result of a quantum circuit using a notation that derives
directly from the circuit, expressed in a single input line. Quantum
circuits begin with an initial quantum state of one or more qubits, which
are the quantum analog to classical bits. The initial state is modified by a
sequence of quantum gates, quantum machine language instructions, to
get the final state. Measurements are made of the final state and displayed
as a classical binary result. Measurements are postponed to the end of the
circuit because a quantum state collapses when measured and produces
probabilistic results, a consequence of quantum uncertainty. A circuit
may be run many times on a quantum computer to refine the probabilistic
result. Mathematically, quantum states are 2n-dimensional vectors over
the complex number field, where n is the number of qubits. A gate is a
2n×2n unitary matrix of complex values. Matrix multiplication models the
application of a gate to a quantum state. QQCS is a mathematical rendering
of each step of a quantum algorithm represented as a circuit, and as such,
can present a trace of the quantum state of the circuit after each gate,
compute gate equivalents for each circuit step, and perform measurements
at any point in the circuit without state collapse. Output displays are in
vector coefficients or Dirac bra-ket notation. It is an easy-to-use educational
tool for students new to quantum computing.

Keywords:
Quantum
Computing
Circuit
Simulation
Education
Software

10

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

the circuit in Figure 1 [1,2] which is a sequence of basic
one- and two-qubits gates that together implement a more
complicated gate known as a controlled Hadamard gate.

Figure 1. A Controlled Hadamard Gate Sequence

In an interactive QQCS session, the user enters the
circuit in a single QQCS statement on one line, shown in
Listing 1, and the result is immediately displayed after the
Enter key.

(1)1 :_H :_Sa :Cx :_H :_T :Cx :_T :_H :_S :_X :S_
[0.7+0.7i 0 0 0
0 0.7+0.7i 0 0
0 0 0.5+0.5i 0.5+0.5i
0 0 0.5+0.5i -0.5-0.5i]
Listing 1. QQCS Linear Notation, Input and Output for

the Controlled-H Gate Sequence of Figure 1

Listing 1 Explanation

(1) The user enters the full gate sequence. A gate is
introduced by a colon (:) followed by a mnemonic for the
common name of the gate, H for Hadamard, Sa for S-gate
adjoint (phase gate inverse), Cx for controlled-X, and
so forth. The underscore character (_) is used to position
the gate in the circuit, and to represent a qubit line with no
gate (an implied identity gate). In Figure 1, all the gates
one-qubit gates except for the two-qubit Cx gates at step 3
and step 6 of the circuit.

The following output display is the final gate matrix
result. Since ,
the result is equivalent to

a controlled-Hadamard gate with a global phase factor
of .

In this QQCS statement, there is no initial quantum
state, so the output display represents the gate equivalent,
the complex matrix that is the controlled-Hadamard gate,
the product of eleven 4×4 matrix multiplications. The
quantum computing student who is using QQCS as a

1 Program output has been edited to accommodate the needs of
publication.

study tool, can quickly see and dissect the operation of
any circuit encountered in a textbook. Supporting software
for quantum programming education is important [3].
QQCS provides a simple tool that does not detract from
the primary learning task.

2. Related Work

For an extensive review of quantum programming, see
the article “Quantum Programming Languages” [4]. The
following references are selected as systems in which
results close to those of QQCS could be obtained. In a few
cases, they are explicitly compared to QQCS.

One of the most well-known quantum computing
resources is IBM’s Quantum Experience [2] public web
site. IBM supports the open-source software QISKit [5], a
set of Python libraries which allow one to write quantum
programs (circuits) in a language called Open Quantum
Assembly Language (QASM), the language used to
program the real quantum computers available through
the website. QISKit can submit to the website or simulate
locally the operation of QASM. In QISKit, the circuit of
Figure 1 would be written as shown in Listing 2.

def ctl_h():
 qs = QuantumRegister(2, ‘qs’)
 cr = ClassicalRegister(2, ‘cr’)
 ckt = QuantumCircuit(qs, cr)
 # initialization to |11>
 ckt.x(qs[0])
 ckt.x(qs[1])
 # end init
 ckt.h(qs[1])
 ckt.sdg(qs[1])
 ckt.cx(qs[0], qs[1])
 ckt.h(qs[1])
 ckt.t(qs[1])
 ckt.cx(qs[0], qs[1])
 ckt.t(qs[1])
 ckt.h(qs[1])
 ckt.s(qs[1])
 ckt.x(qs[1])
 ckt.s(qs[0])
 ckt.measure(qs, cr)
 return ckt

Listing 2. QISKit Controlled-Hadamard
This circuit would be run using the ‘qasm_backend’

executor for 100 shots and would output a result that
would provide counts for each probabilistic result that
would show approximately half the shots producing the
value 10 and half the shots producing 11. These reflect

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

11

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

the actual mathematical result
, so one could assume that the sequence of gates was
equivalent to a controlled-Hadamard gate.

Listing 3 shows the controlled-Hadamard computation
expressed in QuTIP-qip [6], the Quantum Toolbox in
Python component for quantum information processing.
The component has a circuit simulator, and the
computation looks very much like QISKit. It has facilities
to display the equivalent matrix, shown at the end of the
listing. Compare this to Listing 1. QuTIP is an extensive
package going far beyond circuit simulation and is an
excellent tool for the advanced quantum computing
student, worthy of study on its own.

def sdg_gate2():
 # S adjoint gate
 mat = np.array([[1., 0],
 [0, -1.j]])
 return Qobj(mat, dims=[[2], [2]])
def ctl_h():
 q = QubitCircuit(2, reverse_states=False)
 q.user_gates = {‘SDG’: sdg_gate2}
 q.add_gate(‘SNOT’, targets=[1])
 q.add_gate(‘SDG’, targets=[1])
 q.add_gate(“CNOT”, controls=[0], targets=[1])
 q.add_gate(‘SNOT’, targets=[1])
 q.add_gate(‘T’, targets=[1])
 q.add_gate(“CNOT”, controls=[0], targets=[1])
 q.add_gate(‘T’, targets=[1])
 q.add_gate(‘SNOT’, targets=[1])
 q.add_gate(‘S’, targets=[1])
 q.add_gate(‘X’, targets=[1])
 q.add_gate(‘S’, targets=[0])
 return q
Quantum object: dims = [[2, 2], [2, 2]],
shape = (4, 4), type = oper, isherm = False
Qobj data =
[[0.7+0.7j 0. +0.j 0. +0.j 0. +0.j]
 [0. +0.j 0.7+0.7j 0. +0.j 0. +0.j]
 [0. +0.j 0. +0.j 0.5 +0.5j 0.5 +0.5j]
 [0. +0.j 0. +0.j 0.5 +0.5j -0.5 -0.5j]]

Listing 3. QuTIP-qip Controlled-Hadamard
The language Q# [7] was used as a teaching tool, described

in “Teaching Quantum Computing through a Practical
Software-driven Approach: Experience Report” [3]. A Q#
implementation of the controlled-Hadamard computation
would look very much like Listing 2 and Listing 3. It provides
another approach but is an additional learning burden.

Although quantum computing is a relatively new
computer science subfield, there are many software

systems to aid in quantum computation, most of which are
open source. ProjectQ [8] is a compiler framework capable
of targeting various types of hardware, containing a high-
performance simulator with emulation capabilities, based
on a Python-embedded domain-specific language. Toqito

[9] is a Python library for studying various objects in quantum
information, states, channels, and measurements. QuNetSim

[10] is a quantum network simulation framework. Interlin-q [11]

is a simulation platform for simulating distributed quantum
algorithms. Cirq [12] is a Python library for writing,
manipulating, and optimizing quantum circuits and
running them against quantum computers and simulators.
QRAND [13] is a smart quantum random number generator
for arbitrary probability distributions, which operates
by providing a multiplatform NumPy adapter interface.
Qrack [14] is a GPU-accelerated HPC quantum computer
simulator framework. Pulser [15] is a Python library for
programming neutral-atom quantum devices at the pulse
level. QCOR [16] is a quantum-retargetable compiler
platform providing language extensions for both C++ and
Python that allows programmers to express quantum code
as stand-alone kernel functions. XACC [17] is a service-
oriented, system-level software infrastructure in C++
promoting an extensible API for the typical quantum-
classical programming, compilation, and execution
workflow. Yao [18] is a framework that aims to empower
quantum information research with software tools in the
Julia programming language. Quantify [19] is a Python-
based data acquisition platform focused on quantum
computing and solid-state physics experiments.

3. QQCS

3.1 Quantum Circuits, Briefly

Quantum programs are often constructed and displayed
as quantum circuit diagrams. As shown in Figure 1,
circuit diagrams are stacked horizontal lines with various
connections between them. Each horizontal line represents
a qubit. A line is also called a wire, but it is only a wire
conceptually. The qubit it represents may be physically
realized in several different ways by a quantum computer.
The lines are read from left to right corresponding to the
sequential execution of the circuit and are best thought
of as representing movement in time. Elements that are
vertically aligned in the circuit are considered to happen
simultaneously. Gates are labeled rectangles, named for
the type of gate. Measurement sets a classical bit from
a qubit. Measurement is indicated in a quantum circuit
by a meter symbol, and usually appears at the end of the
circuit. The double wire exiting a meter indicates that
the line now carries a classical bit, not a qubit. There are

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

12

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

a small number of additional conventions. A controlled
gate, such as a controlled NOT, has a control qubit and
a target qubit, and is represented not by a rectangle but
by a vertical line from the control qubit, indicated by
the black dot at the line intersection, to the target qubit,
indicated by the at the intersection. The third and sixth
gates in Figure 1 are controlled NOT gates, with controls
on line 0 and targets on line 1. A Toffoli gate, a three-
qubit controlled gate with two controls and one target, is
represented the same way; the control intersections have
black dots, and the target intersection has a . A Toffoli
gate is shown in Figure 4c.

3.2 Gate Linear Notation

A quantum circuit is a sequence of gates, and as the number
of qubits increases, the options for placing and connecting the
gates increases, too. Most gate placements, however, are of
only a few varieties. The simulation’s available gates are one-
qubit gates named with one and two letter abbreviations, which
are then augmented with prefixes and suffixes describing their
positions within the circuit. Additional conventions provide for
multiple gates in a single time slice, and for arbitrary control
and target lines anywhere within a ten-qubit circuit. The full
syntax is shown in Appendix A.

The basic gate names are shown in Table 1 [20,21].
In the linear notation, a gate name is preceded by a

colon (:) character.

3.3 Rotational Gates

All the rotational gates specify the angle parameters
as factors of radians, with implicit. Thus, Rx(.5) is
an X-axis rotation of radians, or 90 degrees. The
parameter range for all angles is (0,4).

The U gate may have one, two, or three parameters:
i) , i i) , o r i i i)

. The three-parameter version implements the
general unitary matrix:

The Rx() gate is equivalent to .
The Ry() gate is equivalent to .
The Rz() gate is equivalent to .
An alternate general unitary definition is available,

invoked by the -u command line flag, or the $ualt comment
flag. The alternate definition differs only by a phase factor
from the default definition above, but it can simplify the
elements of some rotational gates. The definition is:

3.4 Oracles

Table 2. Oracles

Oracles specified with 1-digit size suffix, and optional parameters

Ob Bernstein-Vazirani

Od Deutsch-Jozsa

Os Simon

Og Grover

Oracles are available for the well-known algorithms
of Deutsch, Deutsch and Josza, Bernstein and Vazirani,
Simon, and Grover.

The oracles are specified with the syntax :Ox(p)n.

Table 1. The Basic 1-, 2-, and 3-qubit Gate Names

Names Gate Description

1-Qubit

H Hadamard gate

I Identity gate

_ ungated lines (implied Identity)

Kp() Phase gate (universal set) [21]

Rp() Rotation gate (universal set) [21]

Rx() Pauli X rotation gate

Ry() Pauli Y rotation gate

Rz() Pauli Z rotation gate

S S gate (phase gate)

Sa S adjoint

T gate (phase gate)

Ta T adjoint

Tp() Phase rotation gate (universal set) [21]

U(Universal one-, two-, or three-parameter rotation gate

X Pauli X gate

Y Pauli Y gate

Z Pauli Z gate (phase gate)

2-Qubit

C general CNOT (used with a 2-digit control suffix)

Cx CNOT with control qubit q and target qubit q+1

Cr reverse CNOT with control qubit q+1 and target qubit q

Sw General swap (used with a 2-digit control suffix)

3-Qubit

Tf general Toffoli gate (used with a numerical suffix)

Fr general Fredkin gate (used with a numerical suffix)

n-Qubit

Im Mean Inversion (used with 1-digit size suffix)

Qf
Quantum Fourier Transform (used with 1-digit size
suffix)

Qa QFT adjoint (used with 1-digit size suffix)

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

13

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

x is set to d for Deutsch and Deutsch-Josza, which are
distinguished by their qubit size, b for Bernstein-Vazirani,
s for Simon, and g for Grover. The optional parameter
p is specific to the oracle and determines whether the
oracle will implement a random function or a function
determined by the parameter. The n suffix is the qubit size
and must be specified. The qubit size includes any ancilla
qubits.

:Od2 is considered the Deutsch oracle, and any larger
qubit size is the Deutsch-Josza oracle. Both algorithms
use a single ancilla qubit, and the random function is
either a constant or balanced binary function of domain
size n-1. If the optional parameter is specified, a value of
0 generates a constant function whose values are all 0. A
value of 1 generates a constant function whose values are
all 1. Any other value generates a balanced function.

:Obn is the Bernstein-Vazirani oracle. The algorithm
uses a single ancilla qubit, and the function implements a
hidden binary string of size n-1. If the optional parameter
is specified, it determines the hidden string and should be
a value between 0 and .

:Osn is the Simon oracle. The algorithm uses n/2
ancilla qubits, and the function implements a binary string
of size n/2 representing the “period” [22] of the function,
which is discovered by the Simon algorithm. If the
optional parameter is specified, it determines the “period”
and should be a value between 0 and .

:Ogn is the Grover oracle. The oracle randomly selects
one basis vector from its n-qubit input and changes its
phase to the opposite sign. If the optional parameter is
specified, it determines the basis vector to be changed and
should be a value between 0 and .

3.5 Permutation Gates

Permutation gates are matrices with a single 1 in each
row and column and 0’s in all other elements. The CNOT
gate is a typical permutation gate. When applied to a
quantum state, permutation gates shift the amplitudes from
one basis vector to another. A permutation gate is specified
with the syntax :P(pair, ...)n. Each pair is syntactically real
number, but it is interpreted as a pair of integers separated
by a period. The n suffix is the qubit size of the gate.
The integers in a pair must be in the domain
For example, the number 2.6 is taken as the pair 2 6,
referencing the basis vectors and . The gate
:P(2.6,6.4,4.2)4 will cycle the amplitudes of three basis
vectors in a four-qubit circuit. A two-qubit CNOT gate is
equivalent to the permutation specification :P(2.3,3.2)2.
The QQCS specification of a large permutation gate is
tedious. The simplest way to use one is to specify it once
and assign it to a custom gate, then reuse the custom gate

as needed.

3.6 Positioning and Replicating Gates

When a gate is positioned in a circuit, it may have qubit
lines above and/or below on which there are no gates.
The Identity gate is implied when no gate is specified.
To indicate this, QQCS uses an underscore (_), repeated
once for each ungated qubit line. If the gate is replicated
on several circuit lines, the gate name can be repeated,
or the replication can be abbreviated with a digit. :H_ is
a Hadamard gate on qubit 0, with no gate on qubit 1. To
place the Hadamard gate on qubit line 1, use :_H. See
Figure 2. The _ can be repeated as many times as needed.
:_____H is a one-qubit Hadamard gate on line 5 of a six-
qubit circuit. :____H_ moves the Hadamard gate up to
line 4.

Figure 2. Gate Positioning

To place a gate across multiple qubit lines, follow
its name with a digit replicator suffix. To transform a

 initial value in a four-qubit circuit to a balanced
superposition, use :HHHH or :H4 as a four-qubit
Hadamard gate on lines 0 through 3, shown in Figure 3a.
The replicator suffix is applicable only to one-qubit gates.

In instances where several gates appear on non-adjacent
qubit lines, and are therefore executed simultaneously,
the gates can be listed in sequence. If there are implied
identity gates between some gates, use one or more
underscores. To put an X-gate on lines 1 and 3 of a four-
qubit circuit, use :_X_X, as shown in Figure 3b.

Figure 3. Positioning in a 4-Qubit Circuit

3.7 Controlled Gate Names

Qubit line numbers on a controlled gate can be relative
to the span of the gate, or absolute.

For relative line numbers, the span of a gate is the
difference between the minimum and maximum control/
target lines plus one. Reading left to right, controls occur

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

14

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

first, then the target, each as a single digit. As an example,
the control suffix 02 has a span of 3 (2-0+1=3) lines
and indicates a control on relative line 0 and a target on
relative line 2.

Ungated prefixes and suffixes are used, as in all other
gates, to position the gate vertically in the circuit. Lines
within the span that are not control or target lines are
ungated by implication.

To place controlled gates in a circuit, start as if the gate
were placed at line 0, then identify the controls and the
target, in that order. A controlled NOT gate with a three-
qubit span with the control on line 2 and the target on
line 0 is :C20. To reverse the control and target, use :C02.
See Figure 4. If the gate needs to be positioned within a
larger qubit circuit, use leading underscores to shift it. The
control and target numbers are with relative to the span of
the gate, not the number of qubit lines in the circuit. This
means that if the gate spans 4 qubits, the lines within the
span are referenced from 0 to 3, regardless of the position.
The controlled NOT gate :_C02 is shown in Figure 4b.
The common names :Cx (equivalent to :C01) and :Cr
(equivalent to :C10) are also available for CNOT and
reverse CNOT gates with a span of 2.

Figure 4. Controlled Gate Linear Notation

Gates that involve two or more control lines and one
target, or one control and two targets, will have three
(or more) digits following the gate name, in the order
(control1, control2, target), or (control, target1, target2),
as shown in Figure 4c and 4d. Again, the control and
target line numbers are relative to the span.

Any of the built-in one-qubit gates can be supplied
with a 2-digit control suffix to add a control line to the
gate. See Figure 5 showing a three-qubit quantum Fourier
equivalent circuit [20,22], using several different controlled
gate forms. The final gate is a swap between lines 0 and 2.

Figure 5. 3-qubit Quantum Fourier Transform

With an absolute suffix, the control and target digits
indicate the actual lines of the circuit. No leading _’s are
needed for positioning. Trailing _’s may still be needed to
indicate the full qubit size of the gate. Either absolute or
relative notation may be used.

A Toffoli gate may have more than two control qubits.

3.8 Display

A circuit simulation display starts with the initial
value if it is a quantum state and ends with the resulting
quantum state at the end of the circuit. By default, both
displays are row vectors. Internally, quantum states are
column vectors, but they are transposed for linear display.
To see the balanced superposition result of a Hadamard
gate across three qubits, enter the circuit sequence in
Listing 4 and press Enter. The result is shown following
the entry2.

(1) |000>:H3
[1 0 0 0 0 0 0 0] H3
[0.354 0.354 0.354 0.354
0.354 0.354 0.354 0.354]

Listing 4. Balanced Superposition

Listing 4 Explanation

(1) The user enters a three-qubit initial value, and
the three-qubit Hadamard gate. The following output
display is the initial value as a transposed vector, the gate
sequence, and the final quantum state, which shows the
balanced superposition.

If the gate sequence does not start with an initial value,
the display is an empty initial value and the ending gate
matrix. The ending matrix is the matrix product of all the
gates in the circuit. In Listing 5, there is only a single two-
qubit Hadamard gate.

(1) :H2
[] H2 [
0.5 0.5 0.5 0.5
0.5 -0.5 0.5 -0.5
0.5 0.5 -0.5 -0.5
0.5 -0.5 -0.5 0.5]

Listing 5. 2-Qubit Hadamard Gate

Listing 5 Explanation

(1) The user enters a two-qubit Hadamard gate. The
following output display is the gate itself.

2 In Listings, line wraps and indentation are artificial for format purposes

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

15

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

3.9 Comments

An input comment is anything following a ‘#’ character
to the end of the line. A comment is also searched for
switch specifications beginning with the character ‘$’.
Keywords following the ‘$’ set or unset internal options,
most of which correspond to command line flags.

3.10 Measurement

If simple quantum state display is not sufficient, the
results can also be measured and displayed. Measuring
produces a probability display for each non-zero basis
vector component of the result. Measurement is specified
by the M pseudo-gate. M is not an actual gate, but it
can be placed anywhere in the circuit gate sequence just
as if it were a gate. Unlike measurement in an actual
quantum computer, measurement in the simulation does
not collapse the quantum state. It is designed for trace
purposes. It can occur in a circuit any number of times.
If the measurement is only to be applied to some subset
of the qubits, specify it exactly as if M were a gate, with
underscore prefixes, suffixes, infixes. The controlled-H
sequence of Figure 1 is shown with three additional
measuring points in Listing 6.

(1) |10>:_H:M_:_Sa:Cx:_H:M_:_T
:Cx:_T:_H:_S:_X:S_:M2
M1={1:1}
M2={1:1}
M3={10:0.5, 11:0.5}
[0 0 1 0] _H _Sa Cx _H _T Cx _T _H
_S _X S_ [0 0 0.5+0.5i 0.5+0.5i]

Listing 6. Measurement

Listing 6 Explanation

(1) The gate sequence has internal two measurements
for qubit line 0, and a full measurement of both lines as
the final gate.

[M1] The output of the first measurement, measuring
only the first qubit, shows a probability of 1 for the qubit
value 1.

[M2] The output of the second measurement also
shows a probability of 1 for the qubit value 1.

[M3] The final measurement shows a probability of .5
for each of |10 and |11 .

[last] The output is the initial state, the gate sequence,
and the final quantum state.

Note that the first two measurements only measure
the qubit on line 0. The last measurement, at the
end, is for both qubits. The measurement outputs are

sequentially numbered so they can be distinguished,
and the results are enclosed in braces indicating that
it is not a quantum state. The measurement output is
a list of measurement outcomes and the probability of
each. Even when measuring fewer qubits than are in the
circuit, the probabilities will always add to one. The final
measurement in Listing 6 shows the probabilities, but the
final quantum state shows that the probabilities arise from
interesting basis coefficients.

3.11 Initial Values

Quantum circuits are generally assumed to start with
an initial value of where n is the number of qubits.
QQCS uses the presence or absence of an initial value to
distinguish between displays. If an initial value is present
at the beginning of a circuit, the ending display will be the
ending quantum state. If there is no initial value, the ending
display will be the equivalent gate matrix. An initial value
syntactically is quantum state, a sum of basis kets with
complex coefficients. Listing 7 shows four interactions with
QQCS in which a Hadamard gate operates on initial values
of , , , and .
It is an illustration of measurement in the Hadamard basis.

(1) |0>:H
[1 0] H [0.707 0.707]
(2) |1>:H
[0 1] H [0.707 -0.707]
(3) 0.707|0>+0.707|1>:H
[0.707 0.707] H [1 0]
(4) 0.707|0>-0.707|1>:H
[0.707 -0.707] H [0 1]

Listing 7. Measurement in the Hadamard Basis

Listing 7 Explanation

(1) User enters followed by a Hadamard gate. The
output is the initial state (as a transposed column
vector), followed by the gate sequence, followed by the
final state.

(2) The same sequence with an initial value of .
(3) The initial value is , which is in

the Hadamard basis, as the following H transformation
shows.

(4) Complete the example by showing in the
Hadamard basis.

3.12 Tensor Products

An initial value can be constructed from a tensor
product. If more than one quantum state is entered as an

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

16

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

initial value and the states are parenthesized, a tensor
product is implied. This is shown in Listing 8. As in all
other QQCS interactions, the first value displayed is that
of the first operand. The last value displayed is the result
of the computation.

(1) (|0>) (|1>)
[1 0] [0 1 0 0]
(2) (0.707|0>+0.707|1>)
(0.707|0>-0.707|1>)
[0.707 0.707] [0.5 -0.5 0.5 -0.5]
(3) (0.707|0>+0.707|1>)
(0.5|00>-0.5|01>+0.5|10>-0.5|11>)
[0.707 0.707]
[0.354 -0.353 0.354 -0.353
0.354 -0.353 0.354 -0.353]

Listing 8. Tensor Products

Listing 8 Explanation

(1) The tensor product
(2) The tensor product

(3) The tensor product

3.13 Factoring

The Quantum Fourier Transform circuit in Figure 5
will display the matrix shown in Listing 9.
0.354 0.354 0.354 0.354 ...
0.354 0.25+0.25i 0.354i -0.25+0.25i ...
0.354 0.354i -0.354 -0.354i ...
0.354 -0.25+0.25i -0.354i 0.25+0.25i ...
0.354 -0.354 0.354 -0.354 ...
0.354 -0.25-0.25i 0.354i 0.25-0.25i ...
0.354 -0.354i -0.354 0.354i ...
0.354 0.25-0.25i -0.354i -0.25-0.25i ...
..

Listing 9. QFT With No Factoring

In texts [22], the n-qubit QFT is the matrix

where and is a primitive N’th root of unity.
By factoring out (0.35355) using the suffix operator

(/) at the end of the circuit, it is easier to see that the result
of the circuit is the three-qubit QFT, as in Listing 10.

[2] :H__:S10_:T20:_H_:_S10:__H
:C02:C20:C02/0.35355
1 1 1 1 ...
1 0.707+0.707i 1i -0.707+0.707i ...
1 1i -1 -1i ...
1 -0.707+0.707i -1i 0.707+0.707i ...
1 -1 1 -1 ...
1 -0.707-0.707i 1i 0.707-0.707i ...
1 -1i -1 1i ...
1 0.707-0.707i -1i -0.707-0.707i ...
..

Listing 10. QFT Factored

4. Examples

4.1 Oracles for the Grover Search

The two-qubit Grover Search tries to determine the
phase encoding of the input quantum state. The algorithm
uses a black box circuit, called an Oracle, to initially
change the phase of one of the basis kets in a balanced
superposition two-qubit quantum state. It then uses
inversion to the mean to amplify the phase difference
before a final measurement. Listing 11 shows four oracle
gate sequences to change the phase of the input in each
of the possible ways, that are alternatives to the built-in
QQCS :Og gate.

(1) |00>:H2:_H:C01:_H
[1 0 0 0] H2 _H C01 _H
[0.5 0.5 0.5 -0.5]
(2) |00>:H2:S_:_H:C01:_H:S_
[1 0 0 0] H2 S_ _H C01 _H S_
[0.5 0.5 -0.5 0.5]
(3) |00>:H2:_S:_H:C01:_H:_S
[1 0 0 0] H2 _S _H C01 _H _S
[0.5 -0.5 0.5 0.5]
(4) |00>:H2:Y2:_H:C01:_H:Y2
[1 0 0 0] H2 Y2 _H C01 _H Y2
[-0.5 0.5 0.5 0.5]

Listing 11. Four Oracles For Grover Search

Listing 11 Explanation

(1) Change the phase of .
(2) Change the phase of
(3) Change the phase of .
(4) Change the phase of .

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

17

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

4.2 Modular Arithmetic Subroutine

The implementation of Shor’s algorithm[23] needs a
subroutine circuit to compute , from
1 to the modulus minus 1. Instead of a straightforward,
and inefficient, implementation, the book presents a
simple qubit swapping circuit based on the bit patterns of
the modulo computation. Listing 12 shows the gates of the
swap circuit assigned to name, ss, which then can be used
like any other gate. The named gate is applied to the four-
qubit values from to . The result shows the
resulting quantum state of each of the 16 inputs, which in
each case is a single basis ket whose binary value equals
that of the calculation.

(1) #$rzeroes
(2) ss:C03:C30:C03:C01__
:C10__:C01__:_C01_:_C10_:_C01_
[] C03 C30 C03 C01__
C10__ C01__ _C01_ _C10_ _C01_=
1
. 1
. 1
. 1
. . 1
. 1
. . . 1
. 1
. . . . 1
. 1 . . .
. 1
. 1 . .
. 1
. 1 .
. 1
. 1
(3) |0001>:ss
[|0001>]
ss [|0010>]
(4) |0010>:ss
[|0010>]
ss [|0100>]
. . .
(9) |0111>:ss
[|0111>]
ss [|1110>]
(10) |1000>:ss
[|1000>]
ss [|0001>]
(11) |1001>:ss
[|1001>]

ss [|0011>]
. . .
(15) |1101>:ss
[|1101>]
ss [|1011>]
(16) |1110>:ss
[|1110>]
ss [|1101>]

Listing 12. Shor’s Algorithm Subroutine

Listing 12 Explanation

(1) set a switch to display zeros as periods
(2) Assign the swap circuit to the custom gate name

ss. The following display is the circuit’s equivalent gate
matrix.

(3) Invoke the :ss gate circuit on the initial value
. The output that follows displays the quantum state initial
value in ket format, then the gate name, then the quantum
state resulting from the execution of the gate,
again in ket format.

(4) Shows that .
(…) …
(16) Shows that .

4.3 The Bernstein-Vazirani Oracle

The Bernstein-Vazirani algorithm [24] can be written in
QQCS as shown in Listing 13.

(1) | 0 0 0 1>:H4:Ob4:H3_:M3_
M1={010:1}
[| 0 0 01>] H4 Ob4 H3_
0.707|0100>-0.707|0101>
(2) |0001>:H4:Ob(3)4:H3_:M3_
M1={011:1}
[| 0 0 0 1>] H4 Ob(3) 4 H3_
0.707|0110>-0.707|0111>

Listing 13. The Bernstein-Vazirani Algorithm

Listing 13 Explanation

(1) the Bernstein-Vazirani circuit; the oracle generates
a random hidden string, which the measure shows as 010.

(2) a version of the Bernstein-Vazirani circuit in which
the oracle’s hidden string is set by the parameter to 3; the
measure shows 011.

5. Conclusions

QQCS is a simple linear notation for the simulation
of quantum circuits. It is an educational tool that can be
easily used by students new to Quantum Computing.

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

18

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

It provides automatic mathematical analysis of circuits
by incorporating the matrix mathematics necessary to
provide insight into circuit operation, and by displaying
the details at each execution step, something not available
from quantum computer execution.

Installation

QQCS is installed with the Node Package Manager.
First, install NodeJS. Then, at the command line, enter:

npm install qqcs
To run, go to the node_modules directory, and enter:
node qqcs -or- node qqcs/qdesk.js
Use the command line switch -h to get help.

Acknowledgement

The circuit diagrams in this paper were constructed
using the QPIC software package [25].

References

[1] A. Cross, L. Bishop, J. Smolin and J. and Gambetta,
“Open Quantum Assembly Language,” 2017. [On-
line]. Available: https://arxiv.org/pdf/1707.03429.pdf.

[2] IBM, “IBM Quantum Experience,” 2019. [Online].
Available: http://quantumexperience.ng.bluemix.net/.

[3] M. Mykhailova and K. M. Svore, “Teaching Quan-
tum Computing through a Practical Software-driven
Approach: Experience Report,” in SIGCSE ‘20: Pro-
ceedings of the 51st ACM Technical Symposium on
Computer Science Education, 2020.

[4] B. Heim, M. Soeken, S. Marshall, C. Granade, M.
Roetteler, A. Geller, M. Troyer and K. Svore, “Quan-
tum Programming Languages,” Nat Rev Phys 2, pp.
709-722, 2020.

[5] QISKit, “The QISKit SDK for quantum software de-
velopment,” 2019. [Online]. Available: https://github.
com/QISKit.

[6] QuTIP, “Quantum Toolbox In Python,” 2019. [On-
line]. Available: http://qutip.org/.

[7] Microsoft, “The Q# User Guide,” 2020. [Online].
Available: https://docs.microsoft.com/en-us/azure/
quantum/user-guide/.

[8] D. S. Steiger, T. Häner and M. Troyer, “ProjectQ:
An Open Source Software Framework for Quantum
Computing,” 2018. [Online]. Available: https://arxiv.
org/abs/1612.08091.

[9] Toqito, “toqito - a Python library for studying various
objects in quantum information: states, channels, and
measurements,” 2021. [Online]. Available: https://
github.com/vprusso/toqito.

[10] QuNetSim, “QuNetSim -a quantum network simula-

tion framework,” 2021. [Online]. Available: https://
github.com/tqsd/QuNetSim.

[11] Interlin-q, “Interlin-q - a simulation platform for dis-
tributed quantum algorithms,” 2021. [Online]. Avail-
able: https://github.com/Interlin-q/Interlin-q.

[12] Cirq, “Cirq - a Python library for writing, manipu-
lating, and optimizing quantum circuits and running
them against quantum computers and simulators,”
2021. [Online]. Available: https://github.com/quan-
tumlib/cirq.

[13] QRAND, “QRAND - a smart quantum random num-
ber generator for arbitrary probability distributions,”
2021. [Online]. Available: https://github.com/pedror-
rivero/qrand.

[14] Qrack, “Qrack - a GPU-accelerated HPC quantum
computer simulator framework,” 2021. [Online].
Available: https://github.com/vm6502q/qrack.

[15] Pulser, “Pulser - a Python library for programming
neutral-atom quantum devices at the pulse level,”
2021. [Online]. Available: https://github.com/pasqal-
io/Pulser.

[16] QCOR, “QCOR - a quantum-retargetable compiler
platform providing language extensions for both
C++ and Python that allows programmers to express
quantum code as stand-alone kernel functions,” 2021.
[Online]. Available: https://github.com/ornl-qci/qcor.

[17] XACC, “XACC - a service-oriented, system-level
software infrastructure in C++ promoting an exten-
sible API for the typical quantum-classical program-
ming, compilation, and execution workflow,” 2021.
[Online]. Available: https://github.com/eclipse/xacc.

[18] Yao, “Yao - a framework that aims to empower quan-
tum information research with software tools in the
Julia programming language,” 2021. [Online]. Avail-
able: https://github.com/QuantumBFS/Yao.jl.

[19] Quantify, “Quantify - a Python based data acquisition
platform focused on Quantum Computing and sol-
id-state physics experiments,” 2021. [Online]. Avail-
able: https://gitlab.com/quantify-os.

[20] M. A. Nielsen and I. L. and Chuang, Quantum Com-
putation and Quantum Information 10th Anniversary
Ed, New York: Cambridge University Press, 2010.

[21] E. Rieffel and W. Polak, Quantum Computing, A
Gentle Introduction, Cambridge: MIT Press, 2011.

[22] R. S. Sutor, Dancing With Qubits, Birmingham:
Packt Publishing, 2019.

[23] C. C. Moran, Mastering Quantum Computing with
IBM QX, Birmingham: Packt Publishing, 2019.

[24] J. Abhijith and e. al, “Quantum Algorithm Implemen-
tations for Beginners,” 2020. [Online]. Available:
https://arxiv.org/pdf/1804.03719.pdf.

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

19

Journal of Computer Science Research | Volume 03 | Issue 04 | October 2021

Distributed under creative commons license 4.0

[25] QPIC, “QPIC (2018) Creating quantum circuit dia-
grams in TikZ,” 2018. [Online]. Available: https://
github.com/qpic/qpic.

Appendix A

Linear Notation Syntax

Meta-symbols

::= is defined as
 | alternative
 e empty
‘x’ x is a grammar symbol, not a meta-symbol

Grammar

 Pgm ::= stmt stmt-list eof
 stmt-list ::= eol stmt stmt-list | e
 stmt ::= ident gate-sequence |
 initial-value gate-sequence
initial-value ::= q-state | q-state-list | e

gate-sequence ::= g-seq-tail g-factor
 g-seq-tail ::= : gates g-seq-tail | e
 g-factor ::= / unop Complex | e
 q-state-list ::= (q-state) q-state-list | e
 q-state ::= unop v-comp p-state-tail
 p-state-tail ::= addop v-comp p-state-tail | e
 gates ::= full-gate gates | e
 full-gate ::= gate gate-suffix | ident
 gate-suffix ::= gate-angle gate-repl
 gate-angle ::= (unop Real reals) | e
 gate-repl ::= integer | e
 reals ::= , unop Real reals | e
 v-comp ::= coeff ket
 coeff ::= Complex | e
 ket ::= ‘|’ integer >
 Complex ::= complex | Real
 Real ::= real | integer
 addop ::= + | -
 unop ::= - | e

DOI: https://doi.org/10.30564/jcsr.v3i4.3567

