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Abstract - Machine learning algorithms (MLs) can potentially improve disease diagnostic, 
leading to early detection and treatment of these diseases. Although conventional ML 
techniques such as classification attain good classification accuracies in medical diagnoses, 
their performance diminishes when presented with imbalanced dataset more so in detection of 
minority category. In addition, numerous factors negatively impact on the performance of 
current classification models when applied to real data, such as class imbalance of the training 
dataset. Consequently, these models are often biased towards majority class and hence unable 
to generalize the learning. Ensemble learning which involves the utilization of a group of 
decision making systems that apply various strategies to combine classifiers may be helpful 
here to boost prediction on new data. However, current ensemble ML techniques rarely 
consider comprehensive evaluation metrics to evaluate the performance of individual 
classifiers. This comprehensive evaluation is necessary so as to deploy ML algorithms that are 
not only accurate but also efficient in terms of computation costs involved. In this paper, an 
ensemble machine learning algorithm is developed based on Random Forest (RF), Support 
Vector Machine (SVM), Naïve Bayes (NB) and K-nearest neighbor (KNN). This algorithm is 
then executed on Breast cancer data and evaluated using execution time, correctly classified 
instances (CCI), incorrectly classified instances (ICI), FP rate (FPR), recall(R), precision (P) 
and F-measure (F-M). The results indicated. Experimental results show that SVM is the best 
classifier, in which the probability of having best classification is 0.9652% at lowest error rate 
of 0.0206. On the other hand, NB had the worst performance of 0.8475% classification at 
0.0738 error rate.  
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1 Introduction 
The process of automated prediction of disease is key for better treatment and life 

saving. As such, many machine learning (ML) based methods have been developed 
for various diseases. Breast cancer (BC) is a fatal disease that arises from human 
breast tissue cells and it accounts for 13.7% of deaths in women. As such, early 
diagnosis of BC is a rich application domain for data mining algorithms. The growing 
utilization of machine learning algorithms is attributed to the huge surge in digital 
storage of health records, where ML algorithms help in uncovering patterns existing 
in these health records. By doing so, interesting insights are gained that assist in 
diagnosis of various ailments. Authors in [1] explain that data mining models such as 
artificial neural networks (ANNs), decision tree (DT) analysis, support vector 
machines (SVMs), Naïve Bayes (NB), and K-Nearest neighbor (KNN) have been 
deployed for medical diagnosis. 

As explained in [2], the development of newer technologies such as analytics, 
artificial intelligence and machine learning have influenced a number of sectors 
including health care. Here, these schemes are deployed for improving patient 
wellness, clinical decision support, and better care coordination. Authors in [3] note 
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that there is a growing literature on the deployment of machine learning techniques 
for the development of psychopathology risk algorithms that inform preventive 
intervention. For instance, supervised machine learning methods can serve as an 
alternative to conventional techniques for internalizing disorder (ID). Here, these ML 
algorithms are critical for the optimization of early detection.  

World health organization (WHO) reports indicate that many cancer cases are 
diagnosed too late [4].  However, if accurate diagnosis could be done early, more than 
30% of these patients can service the disease. This calls for the design of effective 
techniques for early detection of diseases so as to improve societal healthcare. The 
complex nature of actual medical dataset needs careful management due to serious 
consequences of prediction errors [5]. 

Machine learning (ML) techniques can effectively extract useful knowledge from 
large, complex, heterogeneous and hierarchical time series clinical data [6]. As such, 
many machine learning algorithms have been proposed for deployment in medical 
diagnosis. As explained in [7], data mining and machine learning techniques present 
new and powerful solutions for discovering hidden relationships in complex datasets. 
In most cases, raw datasets available from different medical science sources have 
useful information which traditional data classification approaches cannot unravel. In 
addition, although these manual classification schemes may unravel some latent 
information, they require longer durations and are prone to human mistakes. 
Consequently, the provision of reliable and trustworthy predictive models with the 
highest precision and accuracy is the main goal of data mining and machine learning 
approaches [7]. It is also important for the predictive models to have negligible error 
rates for effective diagnosis and treatment. 

Although machine learning-based techniques have been successful in many areas 
of medical science, there is need to optimize and improve these methods [8]. 
Ensemble learning is one such improvement that has enhanced machine learning 
tasks. Here, a classifier consists of a set of individual classifiers coupled with a 
mechanism, such as majority voting that combines the predictions of the individual 
classifiers. Authors in [9] discuss that ensemble classifiers exhibit better performance 
compared to conventional classifiers. This superiority results from the utilization of a 
group of decision making systems that apply various strategies to combine classifiers 
to boost prediction on new data. Authors in [10] concur that ensemble learning can 
yield more accurate classification results than a single classifier due to incorporation 
of benefits from both the performance of different classifiers and the diversity of the 
errors. The contributions of this paper include the following: 

• An ensemble classifier leveraging on RF, KNN, BN and SVM is developed to 
boost breast cancer detection accuracies. 

• A comprehensive mathematical modeling of the proposed classifier is carried 
out to unravel its technical structures and operations. 

• Principal component analysis is deployed to reduce the feature space for 
enhanced classification accuracies. 

• Performance evaluations shows that SVM had the best classification 
accuracies among all the other classifiers.  

The rest of this paper is organized as follows: Section 2 discusses related work while 
section 3 elaborates the system model employed to achieve the paper objectives. On the 
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other hand, section 4 presents results, discusses them and evaluates the developed 
protocol. Lastly, section 5 concludes this paper and gives future direction in this 
research area.  

2 Related Work 
The field of disease diagnostics has attracted a lot of research efforts from both the 

industry and academia. This can be attributed to the ease with which diseases such as 
cancer, diabetes cardiovascular diseases (CVDs), and Rheumatoid arthritis (RA) can 
be treated if they are detected early. According to [1], there is need to identify the 
causes of such diseases and be able to diagnosis them early enough. Artificial 
intelligence based algorithms have been deployed for this early diagnosis for a 
number of diseases. For instance, authors in [11] have applied KNN, ANN, radial 
basis function (RBF) neural network (RBFNN), and SVM techniques for BC data 
classification. In addition, Genetic Algorithm (GA) and Random Forest (RF) 
algorithms have been deployed for BC detection in [12]. 

A data mining method for accurate breast cancer (BC) prediction has been 
developed in [13], by combining SVMs and ANNs for BC data analysis.  The results 
showed that this approach improved the performance of the conventional machine 
learning algorithms, attaining an accuracy of 100%. A probabilistic neural network 
(PNN), convolutional neural network (CNN), multilayer perceptron neural network 
(MLPNN), recurrent neural network (RNN) and SVM have been utilized in [14] for 
BC prediction. The results showed SVM achieved the best prediction accuracy of 
99.54%. On the other hand, Association Rules (AR) and neural network (NN) 
techniques have been applied in [15] for BC detection, attaining a classification 
accuracy of 97.40%. Separately, NB technique in combination with a weighting 
approach have been deployed in [16], yielding a BC prediction accuracy of 98.54%. 

On the other hand, ANFIS technique coupled with GA have been applied in [17] 
for BC prediction, reporting a prediction accuracy of 71%. Authors in [18] have 
evaluated SVM, DT (C4.5), NB and KNN algorithms for BC classification, with 
SVM reporting the highest accuracy of 97.13% among other classifiers. Similarly, 
authors in [19] have applied multilayer perceptron (MLP), RF, Random RT and 
Ensemble Classifier (EC) for BC detection, with EC yielding the highest accuracy of 
83.50% among all classifiers. On the other hand, the scheme proposed in [20] 
exhibited an accuracy of 99.68%. 

Authors in [21] have used lazy association classification algorithm on heart disease 
data set and recorded 10.26% improvement over J4.8 and 8.6% improvement against 
NB classification algorithm. On the other hand, a hybrid model of neural network 
tools and genetic algorithms for prediction of heart disease have been presented in 
[22], yielding trained data accuracy of 96% and validation accuracy of 89%. 
Similarly, NB algorithm have been deployed in [23] for heart disease prediction, 
obtaining an accuracy of 86.29%. On the other hand, authors in [24] have employed 
AdaBoost and feature subset selection method principal component analysis (PCA) 
for heart disease data analysis, which improved prediction rates by 2.11% over 
classification accuracy of J4.8 and 7.33% over 10 cross validations. Authors in [25] 
have employed decision tree algorithm C4.5 for heart disease prediction, yielding the 
highest accuracy of 75% while a combination of KNN and NB classifier have been 
presented in [26] for heart disease prediction, achieving an accuracy of 82.6% on 
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heart disease data set. The scheme developed by in [27] was shown to improve 
prediction accuracy by more than 4% compared with other schemes. 

 

3 System Model 
In this section, the mathematical basis for the deployed machine learning algorithms 
is provided. This is followed by data set description, data pre-processing, PCA, and 
experimentations as explained in the sib-sections that follow. 

3.1 Mathematical Modeling of ML Algorithms 

In this sub-section, the mathematical formulations for K-nearest neighbor, Naïve 
Bayes, Random Forest and support vector machine are presented. 

3.1.1. K-Nearest Neighbours  

Taking �� as an M-dimensional training vector and ��   as the consequent class 
label, then the training set is formualted as in (1): {��� , ���}�	
� ∈ 
                                                     (1) 

Suppose that �′ is a particular query from some test set (��, �′). Based on this, the 
unknown class label �′ is derived as shown in steps 2 to 5. 

Step 1: Calculate Euclidean distance ℤ between �� and each training set ��� , ���: 
ℤ���, ��� = ||�� − ��||ℜ�                                       (2) 

Equation (2) can also be expressed as follows: suppose that ω is the number of 
training samples , and Ψ is the number of feature vectors. Then for a particular test 
feature set (�
, ��, �� … . ��) and training feature set (�
, ��, �� … . ��), ℤ� is derived 
as in (3): 

ℤ� = �∑ ��� !� − �"#$%��&�'
                                 (3) 
Step 2: Organize the obtained Euclidean distance ℤs in ascending order 
Step 3: Designate  some weight ℽi to ith nearest neighbour as in (4): ℽ� = 
ℤ�*+,*,��                                                             (4) 

Step 4: For equally-weighted KNN rules, designate ℽ� = 1 
Step 5: Suppose ℱ�. � is the Dirac-delta function,  / is the class label, and �� is the 

class label for ith nearest neighbour among its K-nearest neighbours. Then depending 
on the majority vote of its nearest neighbours, the class label for  �� is assigned as in 
(5):  �� = #"0 1 234 ∑  ℽ�ℱ�/ = ����*,,5,�∈6+                        (5) 

Here, ℱ�. � assumes the value of unity (1) when its argument is true and zero 
otherwise. 

3.1.2 Support Vector Machine 

This classifier takes in an input feature vector and establishes the class to which 
this vecor belongs to. Suppose that �� , $ = 1,2,3, … 9 are the feature vectors for 
training set Ť. Here, Ť may belong to either Ÿ1 or  Ÿ2.  Based on this training data, the 
hyperplane is mathematicaly represented as in (6): 
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ℍ(��= ℽd��+ ℒ =0                                                           (6) 
Where ℽ=[ ℽ1, ℽ2… ℽq] represents the weight vector and ℒ is the bias. Here, the 

binary classification degenerates into the solution of decision function in (7): 
℘(�)=sign (ℽd��+ ℒ)                                                         (7) 

Due to the possibility of many hyperplanes that seprate the feature vectors, the role 
of SVM is to find the one with the largest margin. For non-linearly separable  feature 
vectors, the input space is mapped into high dimensional feature space using kernel 
functions that transforms it into linear separable. In essense, kernel functions serve to 
transform feature vectors from finite to infinite dimensional space. As such, the 
performance of SVM is influenced immensely by the underlying kernel function. The 
five most prominent kernel functions include linear, Mahalanobis, radial basis 
function(RBF), polynomial and sigmoid (also known as hyperbolic tanget or multi-
layer perception kernel) whose mathematical formulation are derived in (8) to (12).  

In these formulations, ℳ�> 0� is the scaling factor, D is the dimension of the data 
set, V is the covariance matrix, and Ɬ denotes polynomial kernel degree, which is 
adjustable just like parameters ꝕ and ℰ based on the underlying data. 

K(��, ��) = (1+��>��) , (linear)                                               (8) 

 K(�� , ��) = (ꝕ ��>�� + 1)Ɬ , ꝕ > 0 (Polynomial)                  (9) 

 K(�� , ��) = ��	ꝕ||*,	*@||�� , ꝕ > 0 (RBF or Gaussian)          (10)                 

K(��, ��) = tanh(ꝕ ��>�� + ℰ)   (Sigmoid)                             (11) 

K(��, ��) = - ℳB C�� − ��D>E	
��� − ���  (Mahalanobis)      (12) 

In equation (10),  ℳ serves to control the Mahalanobis distance. 
Consdering a set of q data samples that belong to two classes ��
, �
�, ���, ���…., C�F , �FD that are mapped to a higher dimensional space, where �� ∈ {−1,1}. For the 

correct classification process, the separating hyperplane should be optimized. Taking 
ℽ as some weight vector and ℒ  as bias weight, the optimization problem in SVM 
degenerates to the determination of the hyperplane that segrates positive and negative 
classes given in (14) and (15): 

 ℍ(��= ℽ��+ ℒ =0                                                                  (13) 
(ℽ��+ ℒ) ≥ 1, for ��=1                                                            (14) 
(ℽ��+ ℒ) ≤  −1, for ��= -1                                                      (15) 

To accomplish this, the margin between the two classes is maximized by 
determining ℽ and ℒ that maximizes (16): 
� ||ℽ||�                                                                                     (16) 

In essence, an optimal hyperplane denotes an error-free plane with largest possible 
separation margin. Ideally, this is the hyperplane that minimizes the cost function in 
(17): 

ℂ(ℽ) = 

� ℽ> . ℽ                                                            (17) 

The optimization in (17) is subject to some constant in (18): ���ℽ> . �� +  ℒ� ≥ 1, $ = 1: J                                      (18) 
Due to the convex nature of ℂ(ℽ), Lagrange multipliers (ℓ1, ℓ2…. ℓq) are employed 

to reduce this constrained optimization problem. This is achieved through the process 
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of weighing each data point based on its criticality in the determination of the 
segregating information of the two classes. Mathematically, this is derived as in (19): max L� ℽ, ℒ, ℓ)= ∑ ℓ� − 
� ∑ ∑ ℓ�ℓ�F�'
F�'
FP'
 ����(�� . ��)         (19) 

The optimization in (19) is subject to the conditions in (20): ℓ� ≥ 0 & ∑ ℓ�F�'
 �� = 0                                              (20) 
Incorporating Lagrange multipliers to the decision function in (7) results in (21): 

℘(�)=sign (∑ ℓ�F�'
 ����� . ��+ ℒ)                                               (21) 
Taking ℂ(�) as the transformation function that maps lower dimension feature 

vectors to higher dimensional feature space, then the Kernel function in (22) is 
deployed for these transformations: 

K(�, �) = ℂ(�)ℂ(�)                                                                     (22) 
Based on (22), the decision function is modified as in (23): 

℘(�)=sign (∑ ℓ�F�'
 ��K��� , ��+ ℒ)                                               (23) 
 

3.1.3 Random Forest  

This classifier comprises of classification tree ��R, S��, $ = 1,2. . J. Here, S�  
represents a vector that is identically and indepently disributed (IID) with each tree 
vote at its input R. Basically, a random forest comines several decision trees so as to 
minimize over-fitting. Suppose that �
�T�, ���T�,… �F�T� is an ensemble classifier 
with arbitrary training data gotten from vector T and Q (the prediction class), ƒ is the 
indicator function, Ă is the mean, the margin function is formulated as in (24): 

mg (S,Q) =Ăƒ(�
�T� = U) − 234VWX ƒ(�
�T� = Y)                          (24) 

In (24), ���T� = U denote classification result while ���T� = Y is classification 
result with Y. In RF, the margin is utilized to establish the mean value of votes T and U, such that the greater the margin, the more accurate is the classification. Here, the 
generalization error Ĝ is derived as in (25): 

Ĝ=WS,Q(mg(S,Q) < 0)                                                                    (25) 
In (25), WS,Q signifies that the probability is more than S,Q dimension. Considering 

training sample Ţp={��
, �
�, … , ��Z, �Z�} of IID [0,1]l. Using Ţp, the objective is to 
estimate the regression function RF(�� = [[�[� = ]]]for some fixed ] ∈ [0,1]_. 
Generally, RF classifier consists of a set of stochastic regression tree {RT(] , hq, Ţp), J ≥ 1}. Here, h1, h2,…. denote  IID outputs of a randomization construct h. By 
combining these random trees (RTs), an amalgamated regression estimate is obtained 
as in (26): Y`aaaa (�, Ţc) = [d[Rf�] , h, Ţc�                                                      (26) 

In (26), [d is conditionally associated with random constructs on  ] and Ţp. Here, 
the dependency of sample estimates is denoted as Yh `(]� and h is utilized to establish 
how successive divisions are executed when building individual trees. 

3.1.4 Naïve Bayes 

In this algorithm, the probability that attribute  ] takes on particular G when the 
class is Ƈ is modeled using a real number between 0 and 1. On the other hand, 
continous attributes are modeled using continous probability distribution over a range 
of attribute’s values. Suppose that RV is a random variable representing instance class, 
and RA is a random variable vector representing observed attribute values. Denoting  
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rv as a specific class label and ra as the specific observed attribute value, then if Ʀ is a 
test case that is to be classified, the probability of each class given the vector of 
oberved values for the predicitive  features is obtained using Bayes’ theorem in (27): 

p(RV= rv|RA= ra) = Z�ij' kl�c�im' kn|ij' kl�Z�im' kn�                                   (27) 

Since an event consists of a juxtaposition of feature values assignments, then using 
the features conditional independence postulation, equation (27) is written as in (28): 

p(RA= ra |RV= rv) = o� p�Rmq = rnq|RV =  rv�                                (28) 

Suppose that Ƥ is the training set and Ū is the related class labels. Here, each tuple 
is denoted by Ȅ features, implying that each tuple consists of  Ȅ values.  If there are k 
class labels Ū1, Ū2,… Ūk for any new tuple Z, the classifier predicts that Z is a 
member of the class with highest probability state on Z. suppose now that this 
classifier is presented with a new test set Z that needs to be classified as either benign 
or malignant. Here, Z can be classified into its respective class Ūi or Ūj  provided it 
satisfies the state in (29): 

PuŪ,w x > PuŪ@w x for 1 ≤ y ≤ z                                                        (29) 

In this case, Ū� becomes the maximum posterior hypothesis since its uŪ,w x is being 

maximized. Based on Bayes’s theorem: 

P(Ū�|{) = 
|�w|Ū,�|�Ū,�}�w�                                                                       (30) 

Since P({�is unvarying for all the classes, only the values for P�{|Ū��P�Ū�� needs t 
be increased. In this case, the formualions reduce to: 

PuŪ,w x = P u wŪ,x ∗ ��Ū��                                                                   (31) 

During prediction of Z’s class label , P u wŪ,x ∗ ��Ū�� is evaluated for each class Ū� .  
In essence, the predictor class label Ū� for which P u wŪ,x ∗ ��Ū��is maximum. 

On condition that priori probabilities for class P�Ū�) is unknown, the assumption 
made is that the classes are all equally likely and P�Z|Ū�) needs to be maximized. 

During class label or class value Z classification, P�{|Ū��P�Ū�� is evaluated for 
both benign and malignant instances in Ū�. In this case, NB classifies Z to class Ū�  on 
condition that it is the class that maximizes P(Z|Ū�)P(Ū�). 

3.2 Data Set Description 

In this paper, the data set from Wisconsin Diagnostic Breast Cancer (WDBC) 
repository is deployed. This data set comprises of 699 cases with 11 attributes for 
each data sample as shown in Table 1.  

Table 1: Attribute Space 
Attribute Range 

Normal Nucleoli 1-10 

Sample code number 1-10 

Mitoses 1-10 

Clump Thickness 1-10 
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Bland Chromatin 1-10 

Uniformity of Cell Size 1-10 

Bare Nuclei 1-10 

Uniformity of Cell Shape 1-10 

Single Epithelial Cell Size 1-10 

Marginal Adhesion 1-10 

Class B or M 

The class attribute, which is part of the 11 attributes, has only two values: benign (B) 
or malignant (M). As such, each instance is either benign or malignant.  

3.3 Data Pre-processing 

Before the classification process, the data was cleansed and relevance analysis 
excuted to eliminate redundant attributes from further analysis. Thereafter, data 
transformation is executed to map the attribute values to a small-scale range of 1 or 0, 
before the application of PCA for dimensionality reduction. Here, data cleaning 
involves the removal or reduction of noise and handdling of missing values. The 
WDBC data set has 16 instances with single missing attribute value. These missing 
values were replaced by the mean of the particular attribute.  In addition, the attribute 
‘Sample code number’ in Table 1 is irrelevant and hence is eliminated. On the other 
hand, statistical correlations are computed and utilized to eliminate redundant 
attributes. 

3.4 Principal Component Analysis 

Based on the deployed data, its input attributes are huge and this may impede 
classification speed and accuracy. As such, the principal component analyisis (PCA) 
is utilized for feature selection as one way of dimensionality reduction in the input 
features. The selection of PCA was informed by the fact that it is a simple and yet 
widely deployed dimensionality redction technique for the two-class classification 
problems. In essence, PCA serves to establish peak disparity in the underlying data 
set. In so doing, the many features in the dataset are reduced to less but crucial 
features. By applying it to both training and testing samples, patterns in the input 
dataset are detected based on resemblance and variances among the present attributes. 

Suppose that M is the dimension of the data set that has q samples {9�}P'
F , in 
which 9� ∈ Y�. Here, PCA attempts to determine the principle orthogonal directions 
in which this data set has the highest variances. Provided that majority of these 
variances occur in one or numerous main directions, these directions form the 
principal component directions of the data set. These directions are a better 
representation of the data set with less dimensions. Taking Ṽ as the mean vector of 
the data samples, the covariance matrix Ω of the sample set is computed as in (32): 

Ω=E[(9� − Ṽ)�9� − Ṽ�f)]                                                          (32) 
Using the eigenvectors of Ω as the basis to span a new coordinate system, the 

orthogonal coordinate system can be obtained that can eliminate correlations between 
diverse components of the samples in their initial space. Essentially, the level of Ω’s 
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eigenvalues depict the variance of the samples along the coordinates of the 
consequent eigenvalues. 

Suppose that we have an H X G matrix denoted by ℚ, in which each row refers to 
one of H trials while each column denotes one of G features. We also let ℬℚ represent 
the average of the input, in which case the Eigen values (λi) and Eigen vectors (μi) of 
the input correlation matrix are derived as in (33): 

⅀=ĒTĒ                                                                                         (33) 
In which Ē=ℚ-ℬℚ 
Taking Ǭ as the right singular vector, the principal components are expressed as in 

(34): 
P= Ē.ǬT                                                                                                                     (34) 

Suppose that (λ1, λ2,… λq) are the eigenvalues of matrix Ω, they can be ordered 
based on their size as: λ1 ≥ λ2 ≥ …≥ λq. Denoting the corresponding eigenvectors as 
(μ1, μ2,…, μq), if the first λs are very large compared with the rest, only μs 
corresponding to these λs are utilized to represent the data set without significant loss 
to the information. The deployed μs are the principal components axes of the data set 
while the spanned sub-space by these μs forms the principal component space (PCS). 
When the first n μs are deployed to build the PCS, the resulting representation error ot 
truncation error ⅇ is derived as in (35): 

� = ∑ �,�,����∑ �,�,��                                                                                    (35) 

This PCA  depiction has the minimum error among all the feasible orthogonal n-
dimensional represenattion of the sample set. 

3.5 Experimentations 

Upon data pre-processing, the four machine learning algorithms which included 
KNN, SVM, RF and NB are applied to the obtained data. To accomplish this, 
Waikato to Environment for Knowledge Analysis (WEKA) software was utilized. 
This choice was informed by its ability to implement and facilitate analysis of 
numerous classification, regression and data mining algorithms. Fig.1 gives the 
general data flow diagram for the machine leaning algorithm (MLA) classification 
process. 

As shown in Fig.1, the breast cancer classification comprised of a number of steps, 
starting with the feeding of the WDBC Data set to the MLA upon which data 
processing was executed. This is followed by training and testing the classifiers. The 
10-fold cross validation test is utilized to evaluate the developed predictive models. 
This technique simply partitions the data set into training and test samples. Here, the 
training data sample is used to build the model while the test sample evaluates the 
constructed model. 

Here, the classification involved the correct placement of an instance into either the 
B or M class. The last set of experimentations involved the appraisal of the 
performance of individual classifiers using the performance metrics in Table 2. Here, 
TP is the true positive, TN is true negative, FP is false positive, and FN is false 
negative. 
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Accuracy represented the overall correctness of the model while precision depicts 
the ratio of positive cases that were predicted appropriately. On the other hand, the 
FP-rate is the ratio of negative cases that were incorrectly classified as positive cases. 
Recall or TP rate represents the ratio of correctly identified positive cases while F-
measure is the harmonic mean of precision and recall. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.1 : MLA Classification Process 

In terms of error performance, Mean Absolute Error (MAE), Kappa, Root Mean 
Squared Error (RMSE), Relative Absolute Error (RAE), and Root Relative Squared 
Error (RRSE) are deployed. Table 3 gives the formulations of these errors. 

Table 2: Performance Metrics 

Metric Formulation 

Accuracy �� + �9�� + �9 + �� + �9 

FP-rate ���� + �9 

Precision ���� + �� 

Recall / TP-rate ���� + �9 

F-measure 2 ∗ �"��$ $�% ∗ Y��#���"��$ $�% + Y��#��  

Start 

Data pre-processing 
• Data cleaning 
• Statistical correlation 
• Data transformation 
• Dimensionality reduction 
 

WDBC Data set 

MLA Training 

MLA Testing 

Classification 

Display results 

Stop 
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In Table 3,  �� is the predicted value, ��� is the predicted value by individual model i 
for tuple j out of n tuples, �� is the target value for tuple j,  �� is the actual value, while  
n is the number of data points. 

 
Table 3: Error Analysis 

 
 

 
 
 
 
 
 
 
 
 

4 Results and Discussion 
In this section, the developed classifiers are evaluated in terms of their build time, 

correctly classified instances (CCI), incorrectly classified instances (ICI), FP rate 
(FPR), recall(R), precision(P) and F-measure(F-M) as shown in Table 4. 

Table 4: Performance Comparisons 

Classifier Build time(s) CCI ICI A FPR R P F-M 

RF 0.29 541 28 95.1 0.067 0.951 

 

0.949 

 

0.950 

 

SVM 0.07 561 8 98.6 0.023 0.986 

 

0.982 

 

0.984 

 

NB 0.02 525 44 92.3 0.090 0.923 

 

0.921 

 

0.922 

 

KNN 0.01 5

49 

20 96.5 0.042 0.965 

 

0.962 

 

0.963 

 

 
Based on the values in Table 4, RF takes the longest duration of 0.29 seconds to 

build the model while KNN took the shortest duration of 0.01 seconds. The 
explanation for this is that KNN is a lazy learner and hence it does not execute many 
operations during training. This is unlike other MLAs which need to build models 
during the training process. In terms of accuracy, SVM had the highest value of 
98.6% while NB had the lowest value of 92.3%. This directly follows from SVM’s 
highest values for CCI and lowest value for ICI compared to other classifiers. Table 5 
presents the error performance for the various classifiers. 

Table 5: Error Performance 
Error Classifiers 

Error Formulation 

MAE ∑ |�,	4,|�,�� �   

Kappa �∗��`}∗`��	���∗�}���`}��}�∗��}�`����`}����∗����`��  
RMSE �
� ∑ ��� − ������'
     

RAE [∑ ��,	4,���,�� ]�/�
�∑ 4,��,�� ��/�   

RRSE �∑ ��,@	`@���@��∑ `@	Ṯ���@��   , where Ṯ = 
� ∑ ����'
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 NB RF KNN SVM 

MAE 0.0738 0.0749 0.0407 0.0206 

Kappa 0.8475 0.9026 0.9238 0.9652 

RMSE 0.2637 0.1748 0.1959 0.1462 

RAE 15.7832 16.1648 8.6572 4.5142 

RRSE 54.7826 35.7492 40.5630 30.0195 

It is clear from Table 5 that in SVM, the probability of having best classification is 
0.9652% at lowest error rate of 0.0206. On the other hand, NB had the worst 
performance of 0.8475% classification at 0.0738 error rate. It is evident that both NB 
and RF have highest error rates which can be accounted by their high ICI. The 
confusion matrix in Table 6 presents the comparisons of actual class results with the 
expected results. 

Table 6: Confusion Matrix 

 M B  

SVM 203 10 M 

2 354 B 

NB 189 22 M 

23 335 B 

KNN 203 10 M 

12 344 B 

RF 195 11 M 

9 354 B 

 
Based on the confusion matrix of Table 6, SVM properly predicts 569 instances 

out of 699 instances. Out of these 569 correct predictions, 356 are B instances that are 
actually so, and 213 M instances that are actually so. On the other hand, 12 instances 
are incorrectly predicted, in which 10 B instances are predicted as M while 2 M 
instances are predicted as B instances. This explains the high accuracy values for 
SVM compared with other classifiers. On the other hand, NB had the highest number 
of incorrectly classified instances of 45(22 B instances incorrectly classified as M, 
and 23 M instances incorrectly classified as B). This explains why NB has the lowest 
accuracy of 92.3%. 
 

5 Conclusion and Future Work 

Breast cancer is the most common disease among women whose early detection 
can potentially save lives. However, designing a ML model for the detection of this 
disease presents some challenges due to its heterogeneous nature. In addition, 
performance evaluation of breast cancer ML models has been noted to be 
cumbersome. In this paper, an ensemble MLA is developed based on RF, SVM, NB 
and KNN. Here, breast cancer classification starts by feeding of the WDBC data set to 
the MLA upon which data processing is executed. This is followed by training and 
testing the classifiers, after which 10-fold cross validation test is utilized to evaluate 
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the developed predictive models. Experimental results show that SVM is the best 
classifier, while NB is the worst classifier. Based on classification accuracies, SVM 
was closely followed by KNN, RF and NB in that order. Future work in this research 
domain will involve building an ensemble classifier encompassing other machine 
learning algorithms that were not within the scope of the current work. There is also 
need to evaluate the developed ensemble classifier in other data sets to offer a more 
comprehensive overview of its performance.  
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