
31

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

Journal of Computer Science Research
https://ojs.bilpublishing.com/index.php/jcsr

Copyright © 2022 by the author(s). Published by Bilingual Publishing Co. This is an open access article under the Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding Author:
Zorica Stefanovska,
Faculty of Informatics, AUE-FON University, Skopje, Republic of North Macedonia;
Email: zstefanovska@yahoo.com

DOI: https://doi.org/10.30564/jcsr.v4i2.4048

ARTICLE
Optimization of Secure Coding Practices in SDLC as Part of
Cybersecurity Framework

Kire Jakimoski1 Zorica Stefanovska1* Vekoslav Stefanovski2

1. Faculty of Informatics, AUE-FON University, Skopje, Republic of North Macedonia
2. Sourcico, Tel Aviv, Israel

ARTICLE INFO ABSTRACT

Article history
Received: 3 November 2021
Accepted: 13 June 2022
Published Online: 21 June 2022

Cybersecurity is a global goal that is central to national security planning
in many countries. One of the most active research fields is design of
practices for the development of so-called highly secure software as a kind
of protection and reduction of the risks from cyber threats. The use of a
secure software product in a real environment enables the reduction of the
vulnerability of the system as a whole. It would be logical to find the most
optimal solution for the integration of secure coding in the classic SDLC
(software development life cycle). This paper aims to suggest practices
and tips that should be followed for secure coding, in order to avoid cost
and time overruns because of untimely identification of security issues.
It presents the implementation of secure coding practices in software
development, and showcases several real-world scenarios from different
phases of the SDLC, as well as mitigation strategies. The paper covers
techniques for SQL injection mitigation, authentication management for
staging environments, and access control verification using JSON Web
Tokens.

Keywords:
Cybersecurity
Security risks
Secure SDLC
SQL injection
Broken authentication
Broken access control
Mitigation practices

1. Introduction

Software is the transformation of an idea that becomes
a reality in the form of a software solution to a specific re-
al-world problem [1]. The international standard ISO/IEC/
IEEE12207-2008 [1] which defines the working framework
for all activities that are part of a software life cycle indi-
cates that the software starts with an idea, i.e. with a pre-
cisely defined need for a certain type of software product.
The software product is a set of computer programs ac-

companied by appropriate documentation, which was de-
signed and developed for commercial purposes, i.e. sales.
Everyday life imposes a great need for new software prod-
ucts that should, above all, be quality, but also safe. If se-
cure coding is not applied during the development of new
software, the possibility of a weakness of the software
solution remains, i.e. the solution itself becomes a vulner-
ability of the system in general. Practice shows that such
vulnerabilities are often the result of insufficient testing of
the security aspect of the code, insufficient education of

mailto:zstefanovska@yahoo.com
https://doi.org/10.30564/jcsr.v4i2.4048
https://orcid.org/0000-0002-4969-8054

32

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

new IT specialists on the term secure coding, differences
in security rules in different programming languages, use
of free software (open source) and the like. On the other
hand, due to insufficient information of people about cy-
ber threats and in the absence of basic cyber-awareness
in the common man, we are witnessing the massive use
of unverified and non-validated software created with in-
secure coding which is one of the many vulnerabilities of
systems.

There are many concepts for developing high quality
and functional software [2]. The challenge of any good
team of developers is to create a secure and high quality
software solution that will meet security practices and
measures while not being a bottleneck for the of soft-
ware’s functionality. Finding the optimal solution that
will meet both conditions: Security and Functionality, is
considered one of the most challenging tasks in the life
cycle of software solution development. Achieving “ide-
ally secure” software requires new mechanisms in coding,
raising the expertise of developers to write secure code,
investing in their additional education in the field of IT
security, implementing additional security specifics in
writing code and the like [3].

The purpose of this paper is to point out good practices
and tips to be used in software development to integrate
secure coding at all stages of the development cycle. This
paper can help software product engineers anticipate and
recognize the challenges in cyberspace that would be a
vulnerability to the product they create. At the same time,
this paper will contribute to raising awareness of cyber
attacks among young developers and the need to write

secure code, which will be subject to various types of
testing in the first phase of SDLC. In other words, this
paper presents the optimization of secure coding in the
development of software applications using practices to
improve the quality of software solutions from a security
perspective, while offering the user an optimal security
solution, and thus approaching the ideal security function-
al software.

2. Related Works

In recent years, the number of different vulnerabilities
of different software products has been increasing. Soft-
ware vulnerabilities are constantly growing, but the search
for new ways and practices to improve software products
is also growing. The emergence of vulnerable software
over a period of 20 years is illustrated in Figure 1.

There are several definitions of software product vul-
nerability, including that of the IETF (IETF RFC 4949): “A
flaw or weakness in a system’s design, implementation, or
operation and management that could be exploited to vio-
late the system’s security policy” [5].

To overcome software development vulnerabilities that
contribute to the creation of vulnerable software, different
methods of software development have been identified in
practice. Recently, most popular are the agile methods for
developing software products that have incorporated the
security issue in each stage of their SDLC. Namely, more
and more software companies in the development of new
software use secure coding practices and test the security
of the software at every stage of development, while re-
specting the principles of the standard SDLC [6].

Figure 1. Number of reported vulnerable software in the CVE (Common Vulnerabilities and Exposures) database from
1999 to 2021. [4]

33

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

The term secure coding has attracted a great deal of
attention in recent years. There are several ways to define
this term. Most intuitively, we can define secure coding as
a way of writing a secure program that will be as resistant
as possible to illegal operations by malicious programs
or people. By illegal operations we mean operations that
compromise the security of the data and the application as
a whole. If errors occur in the program that contributes to
the program not fulfilling its functionalities, but these er-
rors do not have a security implication, then we must not
declare the program as unsafe.

It is necessary to distinguish between a functional ap-
plication of sufficient quality that is not safe, and a safe but
not sufficiently functional application. Secure coding helps
protect user data from theft, corruption and malicious use.
Security is not something that can be added to the software
in the end as a finishing touch. In order to integrate security
into the software itself, the natures of the threats must first
be identified and accordingly security coding practices must
be included during the software planning phase.

Without going into the reasons why malware attacks
software applications, we must be aware that even the
slightest vulnerability of a system is an open vector for
attack and data theft. Attacks can be automated and repli-
cated, but any vulnerability, no matter how small, is a real
threat to the system as a whole, noting that no platform is
immune to cyber attacks today.

It should be noted that secure coding is important for
all types of software, from even the small everyday scripts
that developers often write for themselves, to the largest
commercial applications intended for public use.

Practices and tips for secure coding can be suggested
by any experienced software team. Whether they will be
implemented in software solution development usually
depends on the management team leading the software
development project.

Guided by the idea of avoiding the additional financial
implications that would result from additional steps in the
classic SDLC, the implementation of security in the early
stages of development is often avoided. Practice, on the
other hand, has shown that saving on security compromis-
es application data protection. Namely, it has happened
many times that the financial loss caused by a cyber attack
on a web application is much greater than the finances
that would be needed to include security in all phases of
the SDLC. The SDLC security proposed by Microsoft is
a model that includes 12 practices that need to be imple-
mented and with their proper implementation, the security
of the application is achieved in the most economical way.

These are the following practices for secure SDLC by
Microsoft [7]:

• Provide Training.
• Define Security Requirements.
• Define Metrics and Compliance Reporting.
• Perform Threat Modeling.
• Establish Design Requirements.
• Define and Use Cryptography Standards.
• Manage the Security Risk of Using Third-Party

Components.
• Use Approved Tools
• Perform Static Analysis Security Testing (SAST).
• Perform Dynamic Analysis Security Testing (DAST).
• Perform Penetration Testing.
• Establish a Standard Incident Response Process.

3. Top 10 Web Application Security Risks

Every development team would like to know in ad-
vance what the possible attack risks are for the applica-
tion they are developing. There are several methods to
anticipate possible security risks that, if not addressed in
a timely manner, could result in a vulnerable and unsafe
application. The security risk analysis, according to the
OWASPa Methodology, is treated with four metrics to
determine the level of risk for the software solution - Usa-
bility, Frequency, Lightness and Technical Impact [8]. Risk
analysis provides recommendations and tips that can suc-
cessfully detect if an application is vulnerable, as well as
tips and suggested practices on how to protect ourselves
from these risks. The tips and recommendations that we
will point out are of great importance for the development
teams that are trying to develop secure code. If they are
implemented and followed at all stages of SDLC when de-
veloping a software product, it is very likely that you will
get Secure SDLC. In that way, the end goal of highly se-
cure and functional software can be achieved in the most
economical way. In essence, by creating your own model
for secure coding according to the advice and methodolo-
gy of OWASP, each organization can achieve optimization
of secure coding in the development of software solutions
in both the private and public sector. The followings are
the top 10 web application security risks:

Injection. Injection occurs when untrusted data (usu-
ally provided by the user) is sent to command or query
interpreter. Commonly used vectors are databases (SQL
Injection) and operating system shells (OS Command In-
jection). The malicious agent can use a specially crafted
input that will be sent to the underlying interpreted, exe-
cuting unintended commands or accessing unauthorized
data [9,10].

a The Open Web Application Security Project® (OWASP) is a non-
profit foundation that works to improve the security of software.

34

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

Broken Authentication. Authentication and overall
session management is easy to implement in a functional
and insecure manner. This means that while the applica-
tion is functioning correctly for regular users, it is possible
for malicious agents to compromise passwords, keys, or
session tokens [11].

Sensitive Data Exposure. Many web applications use
sensitive and personally identifiable information, so those
data must be stored on the server, transferred to the brows-
er, and used during the browser session. Each of those
sites is a possible exposure risk, a place where attacker
can steal or modify data. This can result in credit card
fraud, identity theft and other crimes.

XML External Entities (XXE). XML processors pro-
vide the option of evaluating external entity references.
While this is a useful feature, it can be an attack vector if
used with untrusted data. Possible issues include disclo-
sure of internal server files and file shares, scanning and
access of internal ports, remote code execution, and denial
of service attacks via XML bombs.

Broken Access Control. Another issue that is com-
monly implemented in a functional and insecure way is
authorization and access control. Abuse of these features
would enable a malicious user to escalate its privileges –
which could lead to access of other user’s data, and in ex-
treme cases, changing of access rights and overtaking of
the system [12].

Security Misconfiguration. This is not a single issue,
but a result of a flawed application deployment process.
The most common issues are insecure default configu-
rations, incomplete or ad hoc configurations, open cloud
storage, verbose error messages, etc. Misconfiguration
can happen at any level of an application stack, as well as
on all the interfaces between different levels of the stack,
both technical and human. It is common to have a vulner-
ability because of miscommunication of responsibilities.

Cross-Site Scripting XSS. XSS is an injection-based
attack that focuses on the front-end of a web application.
It happens when user-provided data is not properly vali-
dated and sanitized. Commonly it is used in a stored way,
with the attacker injecting data in the web-site’s database,
which is later viewed by a victim. This can lead to session
hijacking, data leaks or redirects to malicious sites.

Insecure Deserialization. A common approach to passing
information between the client and the server is to exchange
a state object, e.g. in a cookie. This state object is serialized
and encoded using some scheme when in transit and is then
deserialized on the client and on the server. If an attacker
is able to deserialize the serialized state, he can access the
application data inside, or even tamper with it. This could
lead to remote code execution, privilege escalation, ses-

sion hijacking, and other breaches.
Using Components with Known Vulnerabilities.

Any non-trivial application will use third-party libraries,
frameworks, packages, and other software modules as part
of its code base.

All the parts run with the same privileges the applica-
tion itself is running with, which means that any vulnera-
bility of a component is a vulnerability of the application.
These kinds of attacks are also lucrative for the attackers,
as finding a vulnerability inside a heavily used component
can allow access to multiple sites.

Insufficient Logging & Monitoring. If despite all our
efforts, a breach does occur, it is extremely important that
we have the necessary tools to detect it and mitigate it.
With some attacks, like DDoS, proper detection is crucial
in the defense of our site. Also, a common scenario is that
once an attacker successfully overtakes a system, that
system can be used as a foothold in attacking connected
systems.

4. Example and Tips for Secure Coding

4.1 Injection into SQL Expressions

Technique overview. Most RDBMSb are using SQL
as the querying and command language and the applica-
tion build over them communicate with the database by
constructing and sending SQL commands. The database
does not know if the queries are malicious or not, and if
they are valid, they will be executed. SQL Injection is an
attack technique that will trick the application server into
constructing a malicious command and getting the data-
base to simply execute it. One often used type of attack
is on applications where the construction of an SQL com-
mand is done with string concatenation. If the application
concats unverified and unsanitized user input, the user can
basically short-circuit the SQL Expression, and attach an-
other of his own [13].

Example. In a PHP-based application, the following
code is used to select values from a table called Items.

$sql = “SELECT Name, Status
 FROM Items
 WHERE Status != “ . ITEM_DELETED_
 STATUS . “AND ID = “ . $item_id . “;

This command is constructed with concatenating the
fixed text of the command with two code-level param-
eters, ITEM_DELETED_STATUS and $item_id. The

b　Relational Database Management System

35

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

ITEM_DELETED_STATUS is a constant that is defined
in the code, so this cannot be used as an attack vector. On
the other hand, $item_id is taken from a parameter of the
request, using the following code:

$item_id = filter_var($_GET[“id”], FILTER_SANITIZE_
 STRING)

While it seems that the input is sanitized, the sanitiza-
tion used is targeted to prevent XSS attacks. It does noth-
ing to prevent SQL injection attacks - so from a database
perspective, the value of the user input is completely raw.
This endpoint could be accessed using something like the
following URL:

http://server/item-info.php?id=123

In that case, the value of the $item_id variable will be
“123”. The actual value of the $sql variable will be:

SELECT Name, Status
FROM Items
WHERE Status != 0 AND ID = 123

This is a valid SQL expression that when executed by
the database will return the Name and Status of the item
with and ID of 123. One variant of SQL injection changes
the value of this parameter to an expression that will re-
turn more data than the original expression. E.g., if we use
the following URL:

http://server/item-info.php?id=123%20OR%201=1

the value of the $sql variable will become:

SELECT Name, Status
FROM Items
WHERE Status != 0 AND ID = 123 OR 1=1

Since 1=1 is a condition that is always true, this com-
mand will effectively return the names and statuses of
all items in the database. Another variant is to use the
specifics of SQL to attach an additional statement after
the intended statement. E.g. the following link includes a
destructive DDL statement:

http://server/item-info.php?id=123;%20DROP%20
TABLE%20Items

The value of the $sql variable will become:

SELECT Name, Status
FROM Items
WHERE Status != 0 AND ID = 123; DROP
TABLE Items

This actually changes our SQL statement into two
statements. One is the original query, while the other is
a destructive command, and will delete the Items table
itself. Once this request is processed, the application will
no longer have such a table, which means that, at best, the
application is nonfunctional, and at worst, a major, and
potentially unrecoverable data loss.

In this specific application, all database queries are
run under a user that has full privileges not only on the
database, but on the database server as well, so even more
drastic privilege escalations are possible.

Mitigation of the example code’s vulnerability. There
are multiple approaches available to this piece of code. One
of the most basic ones is to limit the destructive power of an
intruder, even if a successful attack occurs.

Database user privileges. The user that accesses the
database should have the minimum permission that are
sufficient to execute their intended operations. Usually,
the user needs only to have data manipulation permis-
sions (selecting, inserting and modifying data). This
would mean that while the attack via the http://server/
item-info.php?id=123%20OR%201=1 URL will succeed
and leak data, the attack via the http://server/item-info.
php?id=123;%20DROP%20TABLE%20Items URL will
fail. An outside attacker will not be able to destroy our
database, but they will still be able to extract data they
should not be able to. In this specific case, the SQL com-
mand

REVOKE ALL ON `Databasè .* FROM
‘user’@’localhost’;
GRANT SELECT, INSERT, UPDATE ON
`Databasè .*
TO ‘user’@’localhost’;

was used to modify the accessing users’ privileges.
First, all privileges were revoked, and then the user was
explicitly granted only the SELECT, INSERT and UP-
DATE privileges. Since the application uses a technique
known as soft delete, the DELETE permission was not
required, so it was not granted. This approach should be
used in all scenarios, as the application user should not
have any extra permissions that those that are actually
needed.

http://server/item-info.php?id=123
http://server/item-info.php?id=123%20OR%201=1
http://server/item-info.php?id=123;%20DROP%20TABLE%20Items
http://server/item-info.php?id=123;%20DROP%20TABLE%20Items

36

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

Type validation on user input. Another way to defend
against SQL injection attacks is to ensure that the user in-
put does conform to the type requirements of the query. In
this case, the input should be an integer, so if we test the
input for that, we can detect this attack and stop it before
it gets to the database.

$item_id = filter_var($_GET[“id”], FILTER_SANITIZE_
STRING)

if (!is_numeric($item_id)) {
 logError(“Invalid item_id received from client “
 . $item_id);
 die;
}

$sql = “SELECT Name, Status
 FROM Items
 WHERE Status != “ . ITEM_DELETED_
STATUS
 . “ AND ID = “ . $item_id . “;”

This code uses the library function is_numeric to check
whether the $item_id variable is either a valid number, or
a string containing a valid number. If it’s not, then an error
is logged, and the processing of the request stops immedi-
ately. The malicious SQL is neither generated nor sent to
the database.

This approach is effective, but it’s not systemic. It’s
hard to check all the options for every single query, and
the burden of implementation is on the developer.

Query parametrization using PDO. A better ap-
proach is to avoid manual generation of the SQL string
completely. We can use a technique called prepared state-
ments that is supported by most databases. In this case, we
send the query using parameters, i.e. the text of the query
is defined once, with placeholders at the variable parts.
The values that need to specify the parameters are send
separately. Since the database engine knows that is should
execute a specific query format, it knows the types of the
parameters, so it will not allow for any insertion of SQL
statements.

In PHP there is a PDO library that supports using pre-
pared statements. The code in our case would look like
this

$item_id = filter_var($_GET[“id”], FILTER_SANITIZE_
 STRING)

$statement = $pdo->prepare(“SELECT Name, Status
FROM Items WHERE WHERE Status != :status

AND ID = :item_id”);
$statement->bindValue(“:status”,ITEM_DELETED_

STATUS,
PDO::PARAM_INT);
$statement->bindValue(“:item_id”, $item_id,
PDO::PARAM_INT);
$statement->execute();

Since the statement knows that the :item_id parameter
should only have an integer value, it will not allow any
insertion of SQL inside the value.

Implicit parameterization using ORM. Instead of
hand-crafting our SQL, it’s quite possible to use a tool to
map it for us. These kinds of tools are called Object-Rela-
tional Mappers (ORM). The most popular ORM for PHP
is called Eloquent and it is part of the Laravel framework.
Using it, we can describe the shape of our database using
a model. Then, instead of creating SQL statements, we
use regular language concepts to specify the data we need,
and the SQL query is generated by the ORM automati-
cally. This has the benefit that we are protected from SQL
injection attacks by design, as there is no SQL to concate-
nate in an unintended way [14-16].

The code would look like this:

use Illuminate\Database\Eloquent\Model;
class Items extends Model
{
 protected $primaryKey = ‘ID’;
 protected $fillable = [
 ‘Name’,’Status’
];
}
const item = Items::where([
 [‘Status’, ‘!=’, ITEM_DELETED_STATUS],
 [‘ID’, ‘=’, $item_id],
])->first()

A major drawback to this approach is that, as part of
a framework, it can’t be easily used in isolation, as it re-
quires significant setup effort.

Discussion. After evaluation of the different approaches
we decided to implement explicit parametrization of the
code. While with Eloquent any parametrization is implicit
and easier to use, it requires a major refactor of the appli-
cation. It was decided not to proceed with such a change.
Instead, the database privileges were fixed, and in addition,
all the vulnerable SQL statements were transformed into
a parametrized format. In specific places, where it made
sense from a user perspective, type checks were added as
well, in order to be able to return user-friendly errors.

37

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

4.2 Broken Authentication

Technique overview. One of the most trivial, yet per-
sistent security holes are authentication leaks. The issue is
that quite often, they are not a purely technical problem,
i.e. it’s not enough to solve them through code, but they
require user discipline and education.

Quite often, especially with systems with automated
deployment, it is common to have a set of hardcoded sys-
tem users with total access to the system. It is assumed
that once the system is deployed, the operator should
change the default credentials to custom ones, so that
those users cannot be used by unauthorized persons. How-
ever, this is not always the case, so there are plenty of cas-
es where an otherwise secure system was compromised
using the default set of credentials.

Example. A large, distributed team of developers are
developing a large, distributed system. The authentication
of the system is done with a regular username/password
combination, with optional two-factor authentication.
Because of business reasons, it’s not possible to enforce
two-factor authentication across the board. The process of
registration of a user involved email verification.

Since there are many changes being done to the system
at a given time, using a single testing and staging envi-
ronment is not practical. A procedure was developed for
automated generation of ephemeral testing/staging envi-
ronments. These environments are a point-in-time replica
of the production environment, including databases, stor-
ages, services, cloud resources, etc.

Any subteam is able to generate such an environment,
use it to test and stage a feature, and once ready, push it to
production. The authorization pool that is generated per
environment used a single hardcoded user with a global
super-admin role. The user was preset as verified. The
password for the user was stored inside a secret of the
continuous integration tool, so it was not directly accessi-
ble to the developers. The intention was that only an enu-
merable list of people will have access to it, and that after
generation of an environment, there should be a manual
intervention to change the password.

That was not always the case, and, in time, most of the
developers knew and used the default password.

Mitigation of the example code’s vulnerability. To
address the vulnerability before it became an attack, sev-
eral solution scenarios were proposed.

Enforce scrubbing of data. Since the default account
was used only on the ephemeral environments, the leak-
age will be much smaller if the data are scrubbed of any
personally identifiable information. This approach would
trivialize the problem, however it has some issues of its

own – mainly that it’s hard to guarantee and enforce a
proper scrubbing procedure on a system that changes of-
ten.

These issues were considered, and it was decided that
this approach, for the specific system, will create more
problems than it solves, so it was not implemented.

Limit the access of the environments. Another pro-
posed option was to limit the physical access of the envi-
ronments to users within the company, instead of the gen-
eral internet. This solution had the benefit that it is easy
to enforce via network policies, even for remote workers,
using VPN filtering or similar approaches. Also, this kind
of solution was already used for things like cloud service
or direct database access.

However, the business requirements are that the
ephemeral environments had to be accessible to specific
stakeholders who are outside of the company. While it
is possible to expose the environments in a controlled
manner, it would have created additional workload for the
operations team, as well as disrupting the user experience
of external stakeholders.

Since this approach was determined to create additional
workloads, without solving the underlying problem, it was
not implemented. It was decided that we might implement
limited access to some ephemeral environments if we
know they won’t be used from outside the organization.

Code-based limitation of the hard-coded account.
Since the hardcoded user should ideally be used only to
create the real users that will actually use the environment,
a possible solution would be to add such restrictions to
the default user. For example, we could add a rule that the
default user is only active some preset time after creation,
or that it can only do specific actions, or we can disable it
once a real super-admin user is generated, etc.

While these actions will effectively solve the problem,
they would require changes and specific checks in the
authentication/authorization code. This means that the
hardcoded account will not only be hardcoded in the con-
figuration of the ephemeral environments, but also in the
service that processes the users.

The drawbacks are that the code will have to behave
differently for different users, and that would make the
system inconsistent. It will dramatically increase the need
to test and verify that the authentication/authorization pro-
cess is operational and secure.

This approach was dismissed because, while effective,
it will increase the complexity of an already complicated
system.

Implement two-factor authentication. A fourth ap-
proach was to turn on the two-factor authentication for the
hardcoded account. Since this would be used by multiple

38

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

people, we will need to use an application for sharing
TOTP verification codes.

This lowers the security value of the hardcoded pass-
word, since even if a malicious user knows the password,
they cannot use it to login to the system, unless they have
access to the shared TOTP application. And since most
tools for secret sharing include centralized administration,
this transfers the problem to management of the secret
sharing system. This will dramatically reduce the number
of people who can tamper with the system.

The only downside of this solution is that it requires a
centralized secret sharing tool, but there are plenty reason-
ably priced solutions for that.

Add account verification. Another option was to avoid
hardcoding the password for the super-admin account at all.
Instead of generating a pre-verified account with a set us-
ername and password, only the username can be hardcod-
ed, and then use an email to verify the account and set a
password. Since the environment deployment process al-
ready generated an email specific to the environment, this
was easy to implement, and the implementation would
only change the deployment process.

The downside is that the environment is not immediate-
ly useful, as it will require a manual step of verifying the
account. However, since the environment generation pro-
cess is usually monitored, the person responsible for the
specific environment can easily verify and set a password.
If needed, they can set up two factor authentication for the
specific account, or even disable the account altogether.
And since the password will be generated by them, it will
be unknown even to the system administrators.

Discussion. After evaluation of the different options
available, it was deemed that the last two options will sys-
tematically solve the problem. Taking in mind the specific
organization of the development teams, it was decided to
use the last approach, as it transferred responsibility for
password management on a specific environment to the
team itself. А part of the solution was a training session
for the team leaders on how to set and secure the pass-
word of the super-admin user.

4.3 Broken Access Control

Technique overview. Once an application knows who
the user is, it’s imperative to know what the operations are
the user can do, and, just as important, what operations
should be prohibited. Authorization is extremely compli-
cated problem to solve, and quite often is tricky to vali-
date. This kind of attack misuses that complexity to make
the attacked system think that the malicious user has more
capabilities that they should actually have.

One vector of attack, on applications that use JSON

Web Tokens for authorization and access control, is to
tamper with the data present in the token. A JSON Web
Token consists of three parts: header, payload and signa-
ture. The signature can cryptographically verify the con-
tents on the header and payload, so that it can be detected
whether the data of the payload was tampered with. How-
ever, unless it is being done automatically, there is poten-
tial for error, and an attacker can target the endpoint of the
system that does not implement correct verification.

Example. A JavaScript based server-side application is
using JWT tokens for authorization and access control. It
uses an external service for token generation, and the ver-
ification used the same external service. That means that
the process of verifying the token’s integrity was slow,
and developers tended not to use it, as it was making the
application sluggish.

An example of a JWT would be:

eyJhbGciOiJSUzI1Ni I s InR5cCI6IkpXVCJ9 .
eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Ik-
pvaG4gRG9lI iwiZW1haWwiOiJ lbWFpbEBleG-
FtcGxlLmNvbSIsImlhdCI6MTUxNjIzOTAyMn0.
k E m X w 9 l L w 3 t O 1 H l o D Z Q o O R e j F 1 R i w V F S v -
73VGkbCy7Cu91ZSyuW1b7LayrNWcknl5wP3JH-
9 k H 1 e r r 0 M x 9 6 k b r A 1 u H p u 0 R X o R m L r a T Y-
f 4 0 k r m S V L O 1 c z Y Z B 6 9 B t Q E k W I G 3 w u p _
wlbhDZLiKkJgyLSPx6gnhTQibSw9U7rW07Wm-
CPu36-KyfgXedX--Mk-MsJqyiSBVHlhbMJmjlD-
ABWJJ1fQRF2lsirug9D-16MEYFkzOshvPI1nczLH-
8CBk-ls-VL5c67JPUpmOqYczEGvOth50Bymloc2Jf_
l8pJUWjZzejF-Hsg4AGRHkDrYNbQELHbfGYrNKhyr_
vF0j4BpquYw

It consists of three parts that are separated by the dot(.)
characters. The first two sections are simply base-64 en-
coded strings. If we decode them, we can get their plain
text quite easily. This specific token has the header of

{
 “alg”: “RS256”,
 “typ”: “JWT”
}
and a payload of
{
 “sub”: “1234567890”,
 “name”: “John Doe”,
 “email”: “email@example.com”,
 “iat”: 1516239022
}
We can note that both header and payload are simple

json objects, and, in the payload, the data of the user is

39

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

plainly visible. The frontend application stores this token
in a cookie called ident and sends it on every request to
the backend service.

The service in question is using the express framework
to fulfill the requests, and an example endpoint is https://
www.example.com/api/users/me which returns the full
user profile for the currently logged in user, including per-
sonally sensitive information.

In order to avoid using user-specific parameters in the
endpoint url, it uses the provided cookie to extract the
user email, based on which the full profile is loaded from
the database and returned to the client.

The code that handles the request is

router.get(‘/users/me’, (req, res) => {
 const email = getEmailFromCookie(req);
 if (!email) {
 res.sendStatus(http.forbidden);
 return;
 }

 const profile = await UserService.getProfile(email);
 return res.status(http.ok).send({ profile });
})

This code will extract the email from the request, and
once found will query the database for the profile. This
means that if a malicious user is able to successfully
change the return value of the getEmailFromCookie func-
tion, he will successfully retrieve the full profile of anoth-
er user.

The function getEmailFromCookie is:

const getEmailFromCookie = (request: HttpRequest)
=> {

 const ident: string = request.cookies.ident;
 if (!ident) {
 return undefined;
 }
 const parts = ident.split(‘.’);
 const userData = decodeBase64(parts[1]);
 const { email } = userData;
 return email;
}

This code simply takes the payload from the JWT and,
without running any verifications, decodes and returns the
email.

This means that the user can, manually or automati-
cally, change the value of the cookie to another with the
same header and signature, but whose payload decodes to

{
 “sub”: “1234567890”,
 “name”: “John Doe”,
 “email”: “victim@example.com”,
 “iat”: 1516239022
}

Any verification of this token would mark it as invalid,
but since there is no verification, this will not be noticed.
Once called, the API endpoint will treat this as a valid re-
quest from the user victim@example.com, and return the
full user profile to the attacker.

Mitigation of the example code’s vulnerability. The
obvious solution to this issue, once identified, is to add
token validation. However, this needs to fulfill some re-
quirements:

• It should be done on every request, i.e. the develop-
ers should not be allowed to opt-out of the validation

• It should be done implicitly, with no effort on the
developer side, so that it will be impossible to forget to
use it

• It should be performant, as the added verification
should not slow down the application more than absolute-
ly necessary

The existing verification code failed on all three of
these requirements since it was explicit and used an exter-
nal service.

In order to solve the first two requirements, the veri-
fication was implemented as an express middleware that
verified that the token in the ident cookie was a valid JWT
token. Because of the specifics of the express framework,
the middleware will be called before the actual route han-
dler. The route handler will be invoked if and only if, the
middleware ends its run with a call to the next function. If
the verification is not successful, i.e. if the token has been
tampered with, we stop the processing, returning a forbid-
den error

Note that the actual verification is done inside the veri-
fy JWT token function. That function takes the token as a
parameter, and verifies it asynchronously. Once the prom-
ise is resolved, we have a single boolean with the verifica-
tion result.

To satisfy the third requirement, the verify JWToken
function used a two-pronged approach. It maintained a
list of tokens that were already verified (along with their
expiration dates), so that a known good token does not
have to be verified all the time. This is needed because the
verification of the signature itself takes a non-trivial pro-
cessing time, even when running locally. The nature of the
service is that a user will usually request several hundreds

40

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

of API endpoints in a small amount of time, so keeping a
list of known good tokens can effectively short-circuit that
verification, at a small memory cost.

The second prong was to run the verification process
locally instead of using the external service. The service
helpfully provided for a way to download the key that is
being currently used for the client (along with its expira-
tion details) in a JSON Web Key format (JWK). In order
to run the validation locally, several external libraries were
needed, like jsonwebtoken and jwk-to-pem. The code for
the verification was:

const verifyJWToken = async (token:string) => {
 if (checkCache(token)) {
 return true;
 };
 const pem = jwkToPem(jsonWebKey);
 const result = await new Promise((resolve) => {
 jwt.verify(token, pem, { algorithms: [‘RS256’] },
 (err, payload) => {
 if (err) {
 return resolve({success: false});
 }
 return resolve({success: true, payload});
 });
 });
 if (!result.success) {
 return false;
 }
 if (isExpired(result.payload.exp)) {
 return false;
 }
 tokenCache[token] = result.payload.exp;
 return true;
};

This code first checks the cache for the token. If the
token is found, it returns success. If the token is not in the
cache, we can verify it using the jwt library. If the verifica-
tion is successful, we get the decoded payload as a result.
Once we have that, we’re checking for token expiration
one more time, and if everything is ok, we are signaling
that the verification is successful.

This approach fulfills all three requirements, as it is
both performant and transparent for the end user.

5. Conclusions

Secure coding and adherence to secure SDLC is quite
a difficult task, both for the developers and the other
members of the project team. The recommendations and
tips outlined in this paper are intended to help software

companies in the public and private sectors reduce the risk
of application attacks in the most cost-effective way. This
goal can be achieved exclusively by using the multitude
of resources offered in the literature and empirically prov-
en to have a positive impact on cyber defense, resulting in
a functional and secure software product.

To create a secure application, you first need to define
the term application security. In other words, frame all the
answers to the question: What is security for a software
product? Such a framework should guide the development
of a secure application. Most of the answers to this ques-
tion come from several factors such as user requirements,
the environment in which the application will be deve-
loped, the production environment, and the social envi-
ronment in which the application will be implemented.

Conflict of Interest

Authors declare no conflict of interests.

References

[1] ISO/IEC/IEEE International Standard, 2008. Systems
and software engineering -- Software life cycle pro-
cesses. IEEE STD 12207-2008. pp. 1-138.

 DOI: https://doi.org/10.1109/IEEESTD.2008.4475826
[2] Vale, T., Crnkovic, I., De Almeida, E.S., et al., 2016.

Twenty-eight years of component-based software
engineering. Journal of Systems and Software. 111,
128-148.

[3] Gorski, P.L., Acar, Y., Lo Iacono, L., et al., 2020.
Listen to Developers! A Participatory Design Study
on Security Warnings for Cryptographic APIs. In-
Proceedings of the 2020 CHI Conference on Human
Factors in Computing Systems. pp. 1-13.

[4] CVE Details, Vulnerabilities By Year . Available
from: https://www.cvedetails.com/browse-by-date.
php

[5] Shirey, R., 2007. Internet Security Glossary, Version 2.
 DOI: https://doi.org/10.17487/RFC4949
[6] Baldassarre, M.T., Santa Barletta, V., Caivano, D., et

al., 2020. Integrating security and privacy in software
development. Software Quality Journal. 28(3), 987-
1018.

[7] Microsoft SDL Practices. Available from: https://
www.microsoft.com/en-us/securityengineering/sdl/
practices

[8] OWASP Risk Rating Methodology. Available from:
https://owasp.org/www-community/

[9] Alwan, Z.S., Younis, M.F., 2017. Detection and
prevention of SQL injection attack: A survey. Inter-
national Journal of Computer Science and Mobile

https://www.cvedetails.com/browse-by-date.php
https://www.cvedetails.com/browse-by-date.php
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://owasp.org/www-community/

41

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

Computing. 6(8), 5-17.
[10] Sinha, S., 2019. Finding Command Injection Vul-

nerabilities. Bug Bounty Hunting for Web Security
2019. Apress, Berkeley, CA. pp. 147-165.

[11] Nadar, V.M., Chatterjee, M., Jacob, L., 2018. A De-
fensive Approach for CSRF and Broken Authenti-
cation and Session Management Attack. InAmbient
Communications and Computer Systems. Springer,
Singapore. pp. 577-588.

[12] Petracca, G., Capobianco, F., Skalka, C., et al., 2017.
On risk in access control enforcement. InProceedings
of the 22nd ACM on Symposium on Access Control
Models and Technologies. pp. 31-42.

[13] Tasevski, I., Jakimoski, K., 2020. Overview of SQL
Injection Defense Mechanisms. In2020 28th Tele-
communications Forum (TELFOR). IEEE. pp. 1-4.

[14] Budiman, E., Jamil, M., Hairah, U., et al., 2017.
Eloquent object relational mapping models for biodi-
versity information system. In 2017 4th International
Conference on Computer Applications and Informa-
tion Processing Technology (CAIPT). IEEE. pp. 1-5.

[15] Sinha, S., 2019. Database Migration and Eloquent.
Beginning Laravel. pp. 113-166.

[16] Apress, B., Stauffer, C.A., Laravel, M., 2019. Up &
running: A framework for building modern php apps.
O’Reilly Media.

