
22

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

Journal of Computer Science Research
https://ojs.bilpublishing.com/index.php/jcsr

Copyright © 2022 by the author(s). Published by Bilingual Publishing Co. This is an open access article under the Creative Commons
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

DOI: https://doi.org/10.30564/jcsr.v4i1.4271

*Corresponding Author:
Suzanna Schmeelk,
St. John’s University, United States;
Email: schmeels@stjohns.edu

ARTICLE
A Case Study of Mobile Health Applications: The OWASP Risk of
Insufficient Cryptography

Suzanna Schmeelk1*● Lixin Tao2

1. St. John’s University, United States
2. Pace University, United States

ARTICLE INFO ABSTRACT

Article history
Received: 25 December 2021
Accepted: 9 February 2022
Published Online: 24 February 2022

Mobile devices are being deployed rapidly for both private and professional
reasons. One area of that has been growing is in releasing healthcare
applications into the mobile marketplaces for health management. These
applications help individuals track their own biorhythms and contain
sensitive information. This case study examines the source code of mobile
applications released to GitHub for the Risk of Insufficient Cryptography
in the Top Ten Mobile Open Web Application Security Project risks. We
first develop and justify a mobile OWASP Cryptographic knowledge-
graph for detecting security weaknesses specific to mobile applications
which can be extended to other domains involving cryptography. We then
analyze the source code of 203 open source healthcare mobile applications
and report on their usage of cryptography in the applications. Our findings
show that none of the open source healthcare applications correctly applied
cryptography in all elements of their applications. As humans adopt
healthcare applications for managing their health routines, it is essential
that they consider the privacy and security risks they are accepting when
sharing their data. Furthermore, many open source applications and
developers have certain environmental parameters which do not mandate
adherence to regulations. In addition to creating new free tools for security
risk identifications during software development such as standalone or
compiler-embedded, the article suggests awareness and training modules
for developers prior to marketplace software release.

Keywords:
OWASP mobile threats
Cryptography
Mobile application
mHealth
Healthcare
Android

1. Introduction

Smart mobile devices such as phones and tablets are
being integrated rapidly into human life. The device usag-
es range in mobility in that some are carried around daily

for communications and others rest standalone to coor-
dinate and provide human interaction for smart devices.
Mobile applications are therefore employed for a wide-
range of activities. The software assurance and resulting
security risks of these mobile applications continue to

http://orcid.org/0000-0003-1886-3798
https://orcid.org/0000-0003-0660-6743

23

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

increase every year far out pacing legal regulations and
ethical data training for the storage, use, and transfer of
such private and sensitive information.

This paper explores building a knowledge-graph spe-
cific to mobile-device applications for the mobile risk
of insufficient cryptography which can result in the loss
of both data confidentiality and integrity. We report on
a software assurance case study of healthcare specific
mobile applications hosted on GitHub with respect to the
OWASP Mobile Risk of Insecure Cryptography. Specifi-
cally we examine Android Java application source code as
Android is reported to have over 2.8 billion active users
with a global market share of 75 percent [1]. In fact, Curry
[1] reports that over one billion Android smartphones were
shipped in 2020. The loss of healthcare data confidential-
ity and integrity is further exacerbated with the fact that
mobile applications can be connected to device identifiers
and subsequently tracked. These aspects add higher de-
grees of risk to humans storing data and communicating
information with mobile device applications.

2. Literature Review

Literature related to the OWASP Top 10 mobile risk
of insufficient cryptography spans at least three pillars:
software assurance, weakness analysis with ontology de-
velopment, and other mobile device cryptography studies.

2.1 Cryptography Software Assurance

Software assurance specifically cryptographic best
practices for software development one domain of litera-
ture for developing higher degrees of software assurance.
A. M. Braga and R. Dahab [2] propose a methodology for
development of secure cryptographic software agnostic to
any programming language. The methodology is designed
to provide a structured way to approach cryptography into
secure development methods. The research is useful to
inform the software development process and lifecycle.

Haney, Garfinkel, and Theofanos [3] identified chal-
lenges organizations face when developing cryptographic
products. They are conducting a web-based survey of
121 individuals representing organizations involved in
the development of products that include cryptography.
The research found that participants used cryptography
for a wide range of purposes, with most relying on gen-
erally accepted, standards-based implementations as
guides. Their surveys reported on participants developing
their own cryptography implementations by drawing on
non-standard based resources during their development
and testing processes. These results show that perhaps due
to the lack of adequate resources and standardized train-

ing, cryptographic development and software assurance
remains challenging to implement correctly.

Damanik and Sunaringtyas [4] reviewed the Open Web
Application Security Testing Guide to determine and de-
fend vulnerabilities identified in a web application, Sistem
Informasi Akademik dan Pengasuhan (SIAP). Their re-
search was specific to one particular web application.

2.2 Cryptography Ontologies and Weaknesses

The development of known cryptographic weaknesses
and ontologies is another literature domain. Bojanova,
Black, Yesha [5] reported on Cryptography Classes in Bugs
Framework (BF): Encryption Bugs (ENC), Verification
Bugs (VRF), and Key Management Bugs (KMN) but
building a novel BF ontology with cryptography concerns
at the National Institute of Standards and Technology
(NIST). The ontology is currently updated and is linked
to related risks identified in the Common Weakness Enu-
meration (CWE) [6], for example the ‘CWE-780 Use of
RSA Algorithm without OAEP.’ The NIST BF encryption
ontology remains under development and is agnostic to
mobile devices.

Similar to categorizing weaknesses as in the CWE, the
Common Vulnerability Enumeration (CVE) is a MITRE
program to identify, define, and catalog publicly disclosed
cybersecurity vulnerabilities. Lazar, Chen, Wang, and
Zeldovich [7] examined reports to the 269 cryptographic
vulnerabilities reported in the MITRE CVE from January
2011 to May 2014. Their results show that 17% of the
bugs were in cryptographic libraries, and 83% of the re-
ports were individual application misuses of cryptograph-
ic libraries. Overall, properly implementing cryptographic
libraries and APIs remains a challenge across many do-
mains.

2.3 Mobile Application Cryptography Studies

Mobile application research studies for the improve-
ment of cryptography have been researched in the past
few years. As cryptographic best practices change nearly
annually, study reanalysis is necessary to keep pace with
the changing cryptographic landscape. Egele, Brumley,
Fratantonio, and Kruegel [8] introduced a static analysis
tool CryptoLint to automatically check programs on the
Google Play marketplace. They found that 88% applica-
tions of employing cryptographic APIs did not implement
cryptography correctly.

Shuai, Guowei, Tao, Tianchang and Chenjie [9] intro-
duced Cryptography Misuse Analyzer (CMA). Gao, Kong,
Li, Bissyandé, and Klein [10] introduced CogniCryptSAST.
Singleton, R. Zhao, M. Song and H. Siy, [11] introduced

24

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

FIREBugs. These static analysis tools were built to identi-
fy weaknesses in cryptography development based on best
practices of that timeframe.

Gajrani, Tripathi, Laxmi, Gaur, Conti, and Rajarajan
[12] introduce sPECTRA as an automated framework for
analyzing wide range of cryptographic vulnerabilities in
Android finding that 90% of the applications analyzed had
cryptographic weaknesses.

As cryptography industry requirements change rapidly
with changes to language APIs and the identification of
both novel attacks and found weaknesses, actual weakness
identification through static analysis tool pattern matching
also must be updated to reflect the changing industry land-
scape causing the need for program reanalysis based on
current best practices, regulations, and industry needs.

3. OWASP Top Mobile Risk Ontologies

The Open Web Application Security Project (OWASP)
is a nonprofit foundation that works to improve the securi-
ty of software with global participation and collaboration.
The organization creates a forum for industry, academic,
and government leads to discuss current best computing
practices. One of the projects maintained by OWASP is a
list of the reported Top 10 Mobile Risks to mobile appli-
cations. The list notes security concerns for mobile appli-
cations’ data, internal/external device communications,
among other risks. The actual OWASP risks have re-
mained since the last publication in 2016. The last risk it-
eration was a variation from the risks reported in 2014. Al-
though the risks remain the same, the supporting OWASP
best practice guidance appears to be dynamically updated
periodically. We develop a knowledge graph based on the
OWASP guidance. A useful attribute of knowledge graphs
is that they can expand with time so that we can see what
has changed in security concerns over time. Building such
a domain graph aids both software assurance tools and
techniques. Deprecated security concerns can easily be
traced in the graph along with design changes benefiting
all phases of the secure software development lifecycle
(sSDLC).

3.1 2014 Threat 6: Broken Cryptography

The OWASP 2014 Mobile Threat 6 is Broken Cryptog-
raphy. Broken cryptography can potentially lead to data
compromise in both confidentiality and integrity. To con-
trol data confidentiality, cryptography is primarily imple-
mented with key-centric encryption/decryption methodol-
ogies. To mitigate from data integrity risks, cryptography
can be used to generate cryptographic message digests to
numerically validate data. These techniques coexist with

repudiation techniques, for example with digital signa-
tures.

Other security concerns in the CIA-model revolve
around data and service availability. Availability is typi-
cally controlled with other primary mitigation controls;
however, if there exists a lack of direct mitigating con-
trols, further cryptographic weaknesses further expose
services breaking defense-in-depth.

Figure 1 shows our knowledge graph for the OWASP
threat of Broken Cryptography, labeled M6_Broken_
Cryptography. Since the knowledge graph for the OWASP
threat of Broken Cryptography is extensive, we review
each sub-tree from Figure 1 in different figures, specifi-
cally Figures 2-9. Figure 1 is shown to give a full over-
view of the breadth and inter-connections for the OWASP
threat.

From the perspective of an application, there are four
main relationships for insufficient cryptography. First, in-
sufficient cryptography can potentially resultFrom device
specific issues such as compromised hardware. In addi-
tion, insufficient cryptography can resultFrom cryptogra-
phy application programming interface (API) weaknesses
or misuses. Third, insufficient cryptography can result-
From improper key generation and management. Forth,
broken cryptography can resultFrom entirely not using
cryptography when it is needed.

Cryptography algorithms with weak environment pa-
rameters, shown in Figure 2, can cause higher security
risks. The mobile threat of broken cryptography due to
the implementation of a weak parameters can resultFrom
from four main issues. First, cryptographic parameters
such as weak initialization vector (IV) and improper salts
will increase the risk of the output cipher text to be easily
decoded. Second, weak algorithms [13] (e.g. DES, 3DES,
SHA1, MD5) are known to have exploits and have been
deprecated by industry and the U.S. Federal government.
Third, weak key generation (e.g. less than 128-bits,
non-random, etc.) and management are also known sus-
ceptible to brute force attacks [14]. Fourth, other predictable
environment components such as imported flawed librar-
ies or flawed cryptographic providers are means for se-
curity concerns. These four predominate issues can cause
weak cryptographic output increasing the risk of informa-
tion exposure to the loss of integrity and confidentiality.

Improperly implemented cryptography algorithms,
shown in Figure 3, can cause higher security risks. Two
main groups of algorithms that fall into this category are
improperly implemented message digests and ciphers.
Figure 4 shows sample best practice code for encryption
from the Carnegie Mellon University Software Engineer-
ing Institute rules and recommendations [13].

25

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

Figure 1. OWASP Mobile 2014 Threat: Broken Cryptography

Figure 2. Improper_Cryptographic_Algorithm_Parameters

Figure 3. Deprecated Algorithm Parameters

Five common risks can be specific to devices, our
knowledge-graph can be seen in Figure 5. Although we
show the relationship with broken cryptography in our
knowledge graph, software analysis of these underlying
concerns breaking cryptography are directions for future
research. First, a common device specific concern is re-

lated to hardware—either directly through compromised
hardware, or indirectly through a side channel attack
on the system power analysis. This issue is difficult to
detect in a mobile application unless a watchdog appli-
cation is involved but it faces similar issues. Insufficient
hardware-specific power constraints can also cause in-

26

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

effective cryptography. Devices can linger on networks
for many years [18]. Device platforms may not be able to
keep up with modern cryptographic requirements for mul-
tiple reasons [19]. Second, a rooted or jail-broken device
compromises application access controls. In such cases,
applications should detect that they are running on a com-
promised system. Third, tools that harvest keys and pass-
words from memory are another device specific concern.
Fourth, and improperly constructed file system for data
storage can result in broken cryptography. Lastly, lack of
device and/or file based encryption can also cause broken
cryptography.

Improperly implemented cryptography algorithms, shown in Figure 3, can cause
higher security risks. Two main groups of algorithms that fall into this category are
improperly implemented message digests and ciphers. Figure 4 shows sample best
practice code for encryption from the Carnegie Mellon University Software Engineering
Institute rules and recommendations [13].

Figure 3. Deprecated Algorithm Parameters

public static byte[] encrypt_cbc(SecretKey skey, String
plaintext) {
/* Precondition: skey is valid … . */
try {
byte[] ciphertext = null; Cipher =

Cipher.getInstance("AES/CBC/PKCS5Padding");
final int blockSize = cipher.getBlockSize();
byte[] initVector = new byte[blockSize];
(new SecureRandom()).nextBytes(initVector);
IvParameterSpec ivSpec = new

IvParameterSpec(initVector);
cipher.init(Cipher.ENCRYPT_MODE, skey, ivSpec);
byte[] encoded =
plaintext.getBytes(java.nio.charset.StandardCharsets.UTF_8);
ciphertext = new byte[initVector.length +
cipher.getOutputSize(encoded.length)]; ….
// Perform encryption
cipher.doFinal(encoded, 0, encoded.length, ciphertext,

initVector.length);
return ciphertext; } catch …

Figure 4. Condensed CMU SEI AES Implementation [13]

Five common risks can be specific to devices, our knowledge-graph can be seen
in Figure 5. Although we show the relationship with broken cryptography in our
knowledge graph, software analysis of these underlying concerns breaking cryptography
are directions for future research. First, a common device specific concern is related to
hardware—either directly through compromised hardware, or indirectly through a side
channel attack on the system power analysis. This issue is difficult to detect in a mobile

Figure 4. Condensed CMU SEI AES Implementation [13]

Insufficient cryptography can also arise from not
properly encrypting certain sensitive data (i.e. physical
domain). This lack of sufficient cryptography can occur
on an endpoint communication channel during transmis-
sion. This lack of sufficient cryptography can occur on

device without device based encryption (DBE) as DBE
is a feature of only Android 5 [20]. Google has also issued
a warning for pre-Android5 devices which have been
upgraded, “Caution: Devices upgraded to Android 5.0
and then encrypted may be returned to an unencrypted
state by factory data reset.” [20] DBE will be deprecated in
future versions of Android, perhaps due to performance
constraints [86]. Google currently has posted, “Caution:
Support for full-disk encryption is going away. If you’re
creating a new device, you should use file-based encryp-
tion.” [21] This lack of sufficient cryptography can occur
on a file without file based encryption (FBE) [22]. Google
has already issued OS version specific issues in relation to
FBE. For example, the Android Application API currently
reads, “Caution: On devices running Android 7.0-8.1, file-
based encryption can’t be used together with adoptable
storage [22]”. On devices using FBE, new storage media
(such as an external card) must be used as traditional stor-
age. Devices running Android 9 and higher can use adopt-
able storage and FBE [22].

Cipher keys and passwords are known to have soft-
ware assurance concerns for different reasons, as shown
in Figure 6. First, keys may not be stored correctly (e.g.
in Android KeyStore [14]) and therefore subject to com-
promise. An example of such a broken scenario is when a
cryptographic key or password is stored in plaintext on a
shared space next to the encrypted data.

Weak keys are known to cause other insufficient cryp-
tographic problems. Second, the key derivation function
may not be best practice, based on cryptographic random
numbers, or have sufficient iterations. Third, the key
length changes with industry best practices based on com-
putational power. In such cases, legacy systems relying on
shorter keys increase the risk around real time brute force
attempts [15]. Finally, key rotations may not follow best
practices.

Figure 5. Device Specific Issue

27

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

Weak keys are known to cause other insufficient cryptographic problems. Second,
the key derivation function may not be best practice, based on cryptographic random
numbers, or have sufficient iterations. Third, the key length changes with industry best
practices based on computational power. In such cases, legacy systems relying on shorter
keys increase the risk around real time brute force attempts [15]. Finally, key rotations may
not follow best practices.

public static SecretKey generateKey() {
try {
KeyGenerator kgen =
KeyGenerator.getInstance("AES");
kgen.init(256);
return kgen.generateKey();
} catch (NoSuchAlgorithmException e)
{ throw new
IllegalStateException(e.toString());} }

Figure 7. Condensed CMU SEI Key Generation [14]

CMU SEI [16] provides an example of a more secure implementation for storing
passwords. Software can be analyzed by employing static analysis techniques (e.g.
context sensitive analysis, string analysis, variable propagation, etc.) to detect the
concerns on to password algorithms, iterations, salts, and other issues.

Figure 7. Condensed CMU SEI Key Generation [14]

CMU SEI [16] provides an example of a more secure
implementation for storing passwords. Software can be
analyzed by employing static analysis techniques (e.g.
context sensitive analysis, string analysis, variable prop-
agation, etc.) to detect the concerns on to password algo-
rithms, iterations, salts, and other issues.

final class Password {
private SecureRandom random = …
private final int SALT_BYTE_LENGTH = 12;
private final int ITERATIONS = 100000;
private final String ALGORITHM =
"PBKDF2WithHmacSHA256";
/* Set password to new value, zeroing … */
void setPassword(char[] pass) throws …
byte[] salt = new
byte[SALT_BYTE_LENGTH];
random.nextBytes(salt);
saveBytes(salt, "salt.bin");
byte[] hashVal = hashPassword(pass, salt); …
} ...
/* Encrypts password & salt and zeroes both */
private byte[] hashPass (char[] pass, byte[]
salt)
throws GeneralSecurityException {
KeySpec spec = new PBEKeySpec(pass, salt,
ITERATIONS); …
SecretKeyFactory f =
SecretKeyFactory.getInstance(ALGORITHM);
return f.generateSecret(spec).getEncoded();} ...

Figure 8. Condensed CMU Passwords Implementation [16]

3.2 2016 Threat 5: Insufficient Cryptography
The OWASP 2016 Mobile Threat Insufficient Cryptography (IC) is the fifth risk,

labeled in Figure 9 as OWASP_2016_M5_Insufficient_Cryptography. The 2016 threat has
the same implications as the 2014 [17]. The knowledge graph shows that the same general
cryptographic concerns from 2014 directly translates into the risks of 2016, unlike many
other risks from 2014 that were rearranged, removed, or merged together in the 2016
OWASP list. Differences between the years lie in identified weaknesses within the
ciphers, digests, devices, and key management.

Figure 9. OWASP 2016 M5 Insufficient Cryptography

In summary, we have identified sub-areas where software assurance
methodologies can be developed and improved to detect the OWASP Mobile Threat of
Insufficient Cryptography. The standard Android encryption API calls include creating

Figure 8. Condensed CMU Passwords Implementation [16]

3.2 2016 Threat 5: Insufficient Cryptography

The OWASP 2016 Mobile Threat Insufficient Cryp-
tography (IC) is the fifth risk, labeled in Figure 9 as

OWASP_2016_M5_Insufficient_Cryptography. The
2016 threat has the same implications as the 2014 [17].
The knowledge graph shows that the same general cryp-
tographic concerns from 2014 directly translates into the
risks of 2016, unlike many other risks from 2014 that
were rearranged, removed, or merged together in the 2016
OWASP list. Differences between the years lie in identi-
fied weaknesses within the ciphers, digests, devices, and
key management.

Figure 9. OWASP 2016 M5 Insufficient Cryptography

In summary, we have identified sub-areas where soft-
ware assurance methodologies can be developed and im-
proved to detect the OWASP Mobile Threat of Insufficient
Cryptography. The standard Android encryption API calls
include creating keys, encrypting, and decrypting, are all
detectable using assurance methodologies such as pro-
gram analysis.

4. Analysis Results

We examined the source code of 203 mobile applica-
tions written to store, track, and communicate healthcare
related data. Healthcare data is typically sensitive infor-
mation and is only regulated under certain conditions. For
example, research shows that HIPAA and HITECH only
apply to covered entities [23]. For data not covered under
HIPAA, the FCC becomes involved when breaches affect
> 500 individuals [24]. Smaller mobile applications, which
may only serve a small population segment, may not fall
under any regulations.

Specifically, we examined the source code of healthcare
applications with publicly available source code to gain a
sense of how they were implementing cryptography, if at
all, in their programs.

The analyzed applications stored health data for many
health-related concerns including mental health, pregnan-

Figure 6. Knowledge graph for weak keys concerns

28

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

cy, exercise management, hypertension, among other sen-
sitive issues.

In total, we examined each application based on the
knowledge-graphs reported in Section 3 to gain insights
into these applications’ source code confidentiality and in-
tegrity security for data-at-rest. We applied pattern-match-
ing criteria to identify source code with concerns reported
in our knowledge-graph.

Our main finding was that some of the 203 mobile
applications made attempts at data-at-rest cryptography
but were unsuccessful in perfectly implementing all data-
at-rest knowledge graph elements reported in Section 3.
These weaknesses in implementation cause a breakdown
in confidentiality and integrity for people storing, using,
and transmitting their health data with any of these appli-
cations.

4.1 Application Cryptography Utilization

Historically there have been two main packages in
the Oracle Application Programming Interface (API) for
Java cryptographic implementations. The message digests
(hash) functions, secure random number generator for
cryptography, certificates, key management implementa-
tions are contained in the java.security packages, known
as the Java Cryptography Architecture (JCA). The key
generation, agreement, and cipher algorithms are con-
tained in the javax.crypto package, known as the Java
Cryptography Extension (JCE). “Prior to JDK 1.4, the
JCE was an unbundled product, and as such, the JCA and
JCE were regularly referred to as separate, distinct compo-
nents. As JCE is now bundled in the JDK, the distinction
is becoming less apparent. Since the JCE uses the same
architecture as the JCA, the JCE should be more proper-
ly thought of as a part of the JCA. [25]” When analyzing
source code, one key indicator of properly implemented
cryptography is by employing the standard Oracle API.
Implementing one’s own cryptographic algorithms can be
successful but is highly prone to error.

Of the 203 mobile application source code analyzed,
25 imported the Oracle API cryptography libraries in their
java source code, with three of these applications import-
ing only cryptography policies, keys, or crypto related ex-
ceptions rather than importing libraries needed for cipher
and/or hash algorithms. Analysis showed that a few source
repositories may contain cryptography within embedded
mobile application bytecode and is outside the scope of
this research due to its low-likelihood that it adequately
protects the confidentiality and integrity of the contained
healthcare data.

4.2 Proper Confidentiality Implementations

Confidentiality mitigation implementation which re-
sults in low risk of data exposure have many elements that
need to be satisfied as reported in Section 3. In this section
we report on the 22 mobile applications which imported
the proper cryptography libraries. Of these 22 applica-
tions, only 10 applications imported JCE extensions. We
report on these 10 applications cryptography implementa-
tions in the following subsections.

4.2.1 Proper Cipher Algorithms

One important aspect to properly implementing cryp-
tography is to employ the non-deprecated ciphers. Sheth
[26] and CMU SEI [27] indicated that AES remains a com-
pliant symmetric key algorithm for storing data-at-rest.
Other properly implemented algorithms such as RSA are
not entirely wrong given certain data-exchange use cases
but may not be the best choice meeting same-device data-
at-rest requirements. One application did interface with
a blockchain therefore an RSA implementation could be
needed. Of the 10 applications which imported JCE librar-
ies, 6 applications employed the AES (5 apps) only, RSA
(1 app) only, and 2 applications used both AES and RSA
algorithms. One application employed DES algorithm
which has been deprecated for years. The remainder either
had their own encryption generation or did not import JCE
libraries for encryption.

4.2.2 Proper Cipher Modes

In general, a cipher mode of operation lowers risks
of generating predictable ciphertext. Sheth [26] reports on
GCM and CBC mode as having lower risks from crypta-
nalyses attacks. The JCR currently supports other non-
best practice mode operations, perhaps for legacy systems.
Of the six applications that implemented non-deprecated
ciphers, only four had known proper cipher modes im-
plemented. Two applications relied on the defaults by
employing either Cipher.getInstance ("AES") or "RSA"
which do not default to best practices as guided by CMU
SEI [27]. Four applications properly implemented the
symmetric cipher mode. One of these four proper imple-
mentations also had an improper implementation of their
key storage using the symmetric algorithm with transfor-
mation string "AES/ECB/PKCS5Padding" for key storage
rather than storing a salted hash of the password as de-
scribed by CMU SEI in Figure 7. Of the three applications
with RSA implementations, one application employed the
default “RSA” mode, one employed “ECB” mode, and
one employed “NONE” mode subject to conflicting RSA

29

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

mode guidance.

4.2.3 Proper Cipher Padding.

Padding schemes can be employed to pad cleartext into
acceptable cipher algorithm block sizes. Sheth [26] reports
the best practice of employing PKCS5Padding or OAEP-
With* padding schemas, although the JCR supports other
non-best practice padding schemas. Of the applications
with properly implemented modes, only one application
properly implemented one of these padding schema.

4.2.4 Other Confidentiality Parameters

Other best practice parameters to consider during the
encryption processes are employing cryptographically
random numbers as initialization vectors (IVs) (i.e., nonc-
es) [28,29]. Sheth [26] advised to make sure only a small num-
ber of plaintexts are encrypted with the same key and IV
pair. The one application which properly implemented the
symmetric cipher transformations string did not initialize
the cipher with a cryptographically random IV therefore
not implementing cryptography correctly.

4.3 Proper Integrity Implementations

We examined all 203 applications for proper data
integrity implementations. Integrity risks can be miti-
gated through the use of cryptographic hash algorithms.
In cases where data is changing on a regular basis and
cannot be properly compared against a known duplicate,
non-deprecated hash algorithms are essential to protect
data integrity. In the case of these applications which do
not contain data snapshot cryptographic hashes, non-dep-
recated algorithms are essential. In addition, when storing
cryptographic password hashes, best practice mandates
minimum generation iterations (e.g. NIST [30] standards
identify a minimum of 10,000 iterations based on com-
puting resources), certain creation algorithms, and adding
randomness via salting.

4.3.1 Proper Message Digest Algorithms

Current best-practices mandate SHA2 (with SHA-
512 or higher) or SHA3 family of cryptographic hash
algorithms. We identified only 11 applications employing
cryptographic hash algorithms, but all using MD5, SHA1,
or other SHA algorithms below SHA-512 for integrity
needs. Therefore, we were unable to identify any appli-
cations with proper cryptographic message digest algo-
rithms.

4.3.2 Other Integrity Parameters

Other integrity parameters to consider are needed when
storing cryptographic password hashes as reported by
CMU SEI in Figure 7. In such cases, the salting and itera-
tions are essential along with proper algorithms. We iden-
tified only one application attempting to store passwords
correctly. The application applied a secure password
generation algorithm of PBKDF2, but it was applied with
only 100 iterations, which is below industry best practice
standards such as NIST’s recommendation of at least
10,000 iterations [30].

4.4. Other Cryptographic Issues

During application analysis we identified some other
ancillary cryptographic issues within the mobile applica-
tion source code. These findings may more appropriately
belong in the OWASP secure storage knowledge-graph
discussion, but since they include cryptographic tech-
niques, we will reference the issues. We identified two
applications which had upgraded their internal database
from the standard SQLite database that comes with the
device to instead implement a more secure version, the
net.sqlcipher SQLiteDatabase [31]. This particular imple-
mentation claims to add cryptography to the database so
that stored information is not stored in plaintext as it is
in the standard SQLite database. The library analysis of
the sqlcipher database cryptography usage and respective
key management is outside the scope of this research. A
knowledge graph is ideal for representing hybrid security
concerns where mitigations overlap such as cryptographi-
cally secure storage implementations, where if any part of
the secure implementation contains weaknesses, the over-
all concept will be of high risk.

5. Future Work

Best practice cryptographic implementations require
community effort in maintain. Ancillary concerns such as
cryptographic key generation and management and cryp-
tography in commonly imported libraries are areas of fu-
ture research. Similarly, cryptography encompasses certain
aspects of data-in-motion however, there remains a vague
distinction between the OWASP top ten threat of insuffi-
cient cryptography and other OWASP top ten threats, such
as that of insecure communications. Knowledge-graphs
can be useful to show longitudinal relationships between
security concerns. These are other areas of future research.
Lastly, the case study shows the importance of building

30

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

new tools and techniques to aid the secure software devel-
opment lifecycle to identify weaknesses in cryptographic
implementations and provide secure software training—
whether developer or penetration testing. Currently, for
example, penetration testing remains an art rather than
science since the field lacks standardization. The creation
of knowledge-graphs can be useful to provide standard-
ization and to add risk ratings to inform sector-wide risk
likelihoods. There remains a lot of further research to de-
velop such standardized security ontologies.

6. Conclusions

This research examined the OWASP Top Ten mobile
device security threats focusing on the OWASP Mobile
Application Threat of insufficient cryptography. We first
contributed the development of mobile device specific
knowledge graph for insufficient cryptography. From the
knowledge-graph we analyzed 203 mobile device appli-
cations source code uploaded to GitHub. The analyzed
applications where healthcare applications that collect
sensitive human information such mental health, exercise
routines, pregnancy indicators, skin photographs, and
other important body information needed for health. We
were unable to identify any application that properly im-
plemented confidentiality and integrity needs.

As our world becomes more interconnected, it is es-
sential that we build more robust tools to identify privacy
and security weaknesses. Many different software and
software developers at large, such as developers of free
healthcare applications, are neither required by regulations
to implement security features nor have access, awareness,
or training for such security features. The industry need
has become dire for creating access to security training
and tools to develop more secure applications especially
when applications store extremely sensitive information
about humans greatly affecting both their own lives and
those of their family.

Conflict of Interest

The authors declare no conflict of interest.

References

[1] Curry, D., 2021. Android Statistics (2021) https://
www.businessofapps.com/data/android-statistics

[2] Braga, A.M., Dahab, R., 2016. Towards a Method-
ology for the Development of Secure Cryptographic
Software. 2016 International Conference on Software
Security and Assurance (ICSSA). pp. 25-30.

 DOI: https://doi.org/10.1109/ICSSA.2016.12
[3] Haney, J.M., Garfinkel, S.L., Theofanos, M.F., 2017.

Organizational practices in cryptographic develop-
ment and testing. 2017 IEEE Conference on Commu-
nications and Network Security (CNS). pp. 1-9.

 DOI: https://doi.org/10.1109/CNS.2017.8228643
[4] Nanisura Damanik, V.N., Sunaringtyas, S.U., 2020.

Secure Code Recommendation Based on Code Re-
view Result Using OWASP Code Review Guide.
2020 International Workshop on Big Data and Infor-
mation Security (IWBIS). pp. 153-158.

 DOI: https://doi.org/10.1109/IWBIS50925.2020.9255559
[5] Bojanova, I., Black, P.E., Yesha, Y., September 25-

28, 2017. Cryptography Classes in Bugs Framework
(BF): Encryption Bugs (ENC), Verification Bugs
(VRF), and Key Management Bugs (KMN). IEEE
Software Technology Conference (STC 2017), NIST,
Gaithersburg, USA.

[6] MITRE, 2021. CWE-780 Use of RSA Algo-
rithm without OAEP. https://cwe.mitre.org/data/
definitions/780.html

[7] Lazar, D., Chen, H.G., Wang, X., Zeldovich, N.,
2014. Why does cryptographic software fail? a case
study and open problems. In Proceedings of 5th
Asia-Pacific Workshop on Systems (APSys '14). As-
sociation for Computing Machinery, New York, NY,
USA. Article 7, 1-7.

 DOI: https://doi.org/10.1145/2637166.2637237
[8] Egele, M., Brumley, D., Fratantonio, Y., Kruegel,

Ch., 2013. An empirical study of cryptographic misuse
in android applications. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communi-
cations security (CCS '13). Association for Computing
Machinery, New York, NY, USA. pp. 73-84.

 DOI: https://doi.org/10.1145/2508859.2516693
[9] Shuai, S., Guowei, D., Tao, G., Tianchang, Y., Chenjie,

S., 2014. Modelling Analysis and Auto-detection of
Cryptographic Misuse in Android Applications. 2014
IEEE 12th International Conference on Dependable,
Autonomic and Secure Computing. pp. 75-80.

 DOI: https://doi.org/10.1109/DASC.2014.22
[10] Gao, J., Kong, P., Li, L., Bissyandé, T.F., Klein, J.,

2019. Negative Results on Mining Crypto-API Us-
age Rules in Android Apps. 2019 IEEE/ACM 16th
International Conference on Mining Software Repos-
itories (MSR). pp. 388-398.

 DOI: https://doi.org/10.1109/MSR.2019.00065
[11] Singleton, L., Zhao, R., Song, M., Siy, H., 2019.

FireBugs: Finding and Repairing Bugs with Security
Patterns. 2019 IEEE/ACM 6th International Confer-
ence on Mobile Software Engineering and Systems
(MOBILESoft). pp. 30-34.

 DOI: https://doi.org/10.1109/MOBILESoft.2019.00014

https://www.businessofapps.com/data/android-statistics
https://www.businessofapps.com/data/android-statistics
https://doi.org/10.1109/ICSSA.2016.12
https://doi.org/10.1109/CNS.2017.8228643
https://doi.org/10.1109/IWBIS50925.2020.9255559
https://cwe.mitre.org/data/definitions/780.html
https://cwe.mitre.org/data/definitions/780.html
https://doi.org/10.1109/DASC.2014.22
https://doi.org/10.1109/MSR.2019.00065
https://doi.org/10.1109/MOBILESoft.2019.00014

31

Journal of Computer Science Research | Volume 04 | Issue 01 | January 2022

[12] Gajrani, J., Tripathi, M., Laxmi, V., Gaur, M.S., Con-
ti, M., Rajarajan, M., 2017. sPECTRA: A precise
framework for analyzing cryptographic vulnerabil-
ities in Android apps. 2017 14th IEEE Annual Con-
sumer Communications & Networking Conference
(CCNC). pp. 854-860.

 DOI: https://doi.org/ 10.1109/CCNC.2017.7983245
[13] CMU SEI, 2021. MSC61-J. Do not use insecure or

weak cryptographic algorithms https://wiki.sei.cmu.
edu/confluence/display/java/MSC61-J.+Do+not+use
+insecure+or+weak+cryptographic+algorithms

[14] Sabt, M., Traore, J., 2016. Breaking Into the Key-
Store: A Practical Forgery Attack Against Android
KeyStore. in 21st European Symposium on Re-
search in Computer Security (ESORICS), Heraklion,
Greece.

[15] Sincerbox, C., March/April 2014. Security Sessions:
Exploring Weak Ciphers. [Online]. Available: https://
electricenergyonline.com/energy/magazine/779/article/
Security-Sessions-Exploring-Weak-Ciphers.htm

[16] CMU SEI, 2021. MSC62-J. Store passwords using
a hash function https://wiki.sei.cmu.edu/confluence/
display/java/MSC62-J.+Store+passwords+using+a+h
ash+function

[17] OWASP, 2021. Mobile Top 10 2016-M5-Insufficient
Cryptography. [Online]. Available: https://www.
owasp.org/index.php/Mobile_Top_10_2016-M5-
Insufficient_Cryptography

[18] Cole, S., October 30 2018. New Study Suggests
People Are Keeping Their Phones Longer Because
There’s Not Much Reason to Upgrade.

[19] Henry, J., 3 August 2018. 3DES is Officially
Being Retired. [Online]. Available: https://www.
cryptomathic.com/news-events/blog/3des-is-officially-
being-retired

[20] Google, 26 January 2019. Full-Disk Encryption. [On-
line]. Available: https://source.android.com/security/
encryption/full-disk

[21] Google, 26 January 2019. Encryption. [Online].
Available: https://source.android.com/security/en-
cryption

[22] Google, 1 January 2019. File-Based Encryption. [On-
line]. Available: https://source.android.com/security/
encryption/file-based

[23] HHS, 2021. Covered Entities and Business Associ-
ates. https://www.hhs.gov/hipaa/for-professionAls/
covered-entities/index.html

[24] FTC, 2021. Health Breach Notification Rule. https://
www.ftc.gov/enforcement/rules/rulemaking-regulatory-
reform-proceedings/health-breach-notification-rule

[25] Oracle, 2021. Java SE 14 Security Developer’s
Guide. https://docs.oracle.com/en/java/javase/14/
security/java-cryptography-architecture-jca-refer-
ence-guide.html

[26] Mansi Sheth, 2017. Encryption and Decryption in
Java Cryptography. https://www.veracode.com/blog/
research/encryption-and-decryption-java-cryptogra-
phy

[27] CMU SEI, 2021. DRD17-J. Do not use the Android
cryptographic security provider encryption default
for AES.

[28] CMU SEI, 2021. MSC63-J. Ensure that SecureRan-
dom is properly seeded https://wiki.sei.cmu.edu/
confluence/display/java/MSC63-J.+Ensure+that+Sec
ureRandom+is+properly+seeded

[29] CMU SEI, 2021. MSC02-J. Generate strong random
numbers.

[30] Grassi, P., Fenton, J., Newton, E., Perlner, R., Re-
gensheid, A., Burr, W., Richer, J., 2017. National In-
stitute of Standards and Technology (NIST) Special
Publication 800-63B https://pages.nist.gov/800-63-3/
sp800-63b.html

[31] Zetetic LLC, 2021. android-database-sqlcipher
https://github.com/sqlcipher/android-database-
sqlcipher

https://doi.org/ 10.1109/CCNC.2017.7983245
https://wiki.sei.cmu.edu/confluence/display/java/MSC61-J.+Do+not+use+insecure+or+weak+cryptographic+algorithms
https://wiki.sei.cmu.edu/confluence/display/java/MSC61-J.+Do+not+use+insecure+or+weak+cryptographic+algorithms
https://wiki.sei.cmu.edu/confluence/display/java/MSC61-J.+Do+not+use+insecure+or+weak+cryptographic+algorithms
https://electricenergyonline.com/energy/magazine/779/article/Security-Sessions-Exploring-Weak-Ciphers.htm
https://electricenergyonline.com/energy/magazine/779/article/Security-Sessions-Exploring-Weak-Ciphers.htm
https://electricenergyonline.com/energy/magazine/779/article/Security-Sessions-Exploring-Weak-Ciphers.htm
https://wiki.sei.cmu.edu/confluence/display/java/MSC62-J.+Store+passwords+using+a+hash+function
https://wiki.sei.cmu.edu/confluence/display/java/MSC62-J.+Store+passwords+using+a+hash+function
https://wiki.sei.cmu.edu/confluence/display/java/MSC62-J.+Store+passwords+using+a+hash+function
https://www.owasp.org/index.php/Mobile_Top_10_2016-M5-Insufficient_Cryptography
https://www.owasp.org/index.php/Mobile_Top_10_2016-M5-Insufficient_Cryptography
https://www.owasp.org/index.php/Mobile_Top_10_2016-M5-Insufficient_Cryptography
https://www.cryptomathic.com/news-events/blog/3des-is-officially-being-retired
https://www.cryptomathic.com/news-events/blog/3des-is-officially-being-retired
https://www.cryptomathic.com/news-events/blog/3des-is-officially-being-retired
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption/full-disk
https://source.android.com/security/encryption
https://source.android.com/security/encryption
https://source.android.com/security/encryption/file-based
https://source.android.com/security/encryption/file-based
https://www.hhs.gov/hipaa/for-professionAls/covered-entities/index.html
https://www.hhs.gov/hipaa/for-professionAls/covered-entities/index.html
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/health-breach-notification-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/health-breach-notification-rule
https://www.ftc.gov/enforcement/rules/rulemaking-regulatory-reform-proceedings/health-breach-notification-rule
https://docs.oracle.com/en/java/javase/14/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/14/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/14/security/java-cryptography-architecture-jca-reference-guide.html
https://www.veracode.com/blog/research/encryption-and-decryption-java-cryptography
https://www.veracode.com/blog/research/encryption-and-decryption-java-cryptography
https://www.veracode.com/blog/research/encryption-and-decryption-java-cryptography
https://wiki.sei.cmu.edu/confluence/display/java/MSC63-J.+Ensure+that+SecureRandom+is+properly+seeded
https://wiki.sei.cmu.edu/confluence/display/java/MSC63-J.+Ensure+that+SecureRandom+is+properly+seeded
https://wiki.sei.cmu.edu/confluence/display/java/MSC63-J.+Ensure+that+SecureRandom+is+properly+seeded
https://pages.nist.gov/800-63-3/sp800-63b.html
https://pages.nist.gov/800-63-3/sp800-63b.html
https://github.com/sqlcipher/android-database-sqlcipher
https://github.com/sqlcipher/android-database-sqlcipher

