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Mobile devices are being deployed rapidly for both private and professional 
reasons. One area of that has been growing is in releasing healthcare 
applications into the mobile marketplaces for health management. These 
applications help individuals track their own biorhythms and contain 
sensitive information. This case study examines the source code of mobile 
applications released to GitHub for the Risk of Insufficient Cryptography 
in the Top Ten Mobile Open Web Application Security Project risks. We 
first develop and justify a mobile OWASP Cryptographic knowledge-
graph for detecting security weaknesses specific to mobile applications 
which can be extended to other domains involving cryptography. We then 
analyze the source code of 203 open source healthcare mobile applications 
and report on their usage of cryptography in the applications. Our findings 
show that none of the open source healthcare applications correctly applied 
cryptography in all elements of their applications. As humans adopt 
healthcare applications for managing their health routines, it is essential 
that they consider the privacy and security risks they are accepting when 
sharing their data. Furthermore, many open source applications and 
developers have certain environmental parameters which do not mandate 
adherence to regulations. In addition to creating new free tools for security 
risk identifications during software development such as standalone or 
compiler-embedded, the article suggests awareness and training modules 
for developers prior to marketplace software release.
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1. Introduction 

Smart mobile devices such as phones and tablets are 
being integrated rapidly into human life. The device usag-
es range in mobility in that some are carried around daily 

for communications and others rest standalone to coor-
dinate and provide human interaction for smart devices. 
Mobile applications are therefore employed for a wide-
range of activities. The software assurance and resulting 
security risks of these mobile applications continue to 
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increase every year far out pacing legal regulations and 
ethical data training for the storage, use, and transfer of 
such private and sensitive information.

This paper explores building a knowledge-graph spe-
cific to mobile-device applications for the mobile risk 
of insufficient cryptography which can result in the loss 
of both data confidentiality and integrity. We report on 
a software assurance case study of healthcare specific 
mobile applications hosted on GitHub with respect to the 
OWASP Mobile Risk of Insecure Cryptography. Specifi-
cally we examine Android Java application source code as 
Android is reported to have over 2.8 billion active users 
with a global market share of 75 percent [1]. In fact, Curry 
[1] reports that over one billion Android smartphones were 
shipped in 2020. The loss of healthcare data confidential-
ity and integrity is further exacerbated with the fact that 
mobile applications can be connected to device identifiers 
and subsequently tracked. These aspects add higher de-
grees of risk to humans storing data and communicating 
information with mobile device applications.

2. Literature Review

Literature related to the OWASP Top 10 mobile risk 
of insufficient cryptography spans at least three pillars: 
software assurance, weakness analysis with ontology de-
velopment, and other mobile device cryptography studies. 

2.1 Cryptography Software Assurance

Software assurance specifically cryptographic best 
practices for software development one domain of litera-
ture for developing higher degrees of software assurance. 
A. M. Braga and R. Dahab [2] propose a methodology for 
development of secure cryptographic software agnostic to 
any programming language. The methodology is designed 
to provide a structured way to approach cryptography into 
secure development methods. The research is useful to 
inform the software development process and lifecycle.

Haney, Garfinkel, and Theofanos [3] identified chal-
lenges organizations face when developing cryptographic 
products. They are conducting a web-based survey of 
121 individuals representing organizations involved in 
the development of products that include cryptography. 
The research found that participants used cryptography 
for a wide range of purposes, with most relying on gen-
erally accepted, standards-based implementations as 
guides. Their surveys reported on participants developing 
their own cryptography implementations by drawing on 
non-standard based resources during their development 
and testing processes. These results show that perhaps due 
to the lack of adequate resources and standardized train-

ing, cryptographic development and software assurance 
remains challenging to implement correctly.

Damanik and Sunaringtyas [4] reviewed the Open Web 
Application Security Testing Guide to determine and de-
fend vulnerabilities identified in a web application, Sistem 
Informasi Akademik dan Pengasuhan (SIAP). Their re-
search was specific to one particular web application.

2.2 Cryptography Ontologies and Weaknesses

The development of known cryptographic weaknesses 
and ontologies is another literature domain. Bojanova, 
Black, Yesha [5] reported on Cryptography Classes in Bugs 
Framework (BF): Encryption Bugs (ENC), Verification 
Bugs (VRF), and Key Management Bugs (KMN) but 
building a novel BF ontology with cryptography concerns 
at the National Institute of Standards and Technology 
(NIST). The ontology is currently updated and is linked 
to related risks identified in the Common Weakness Enu-
meration (CWE) [6], for example the ‘CWE-780 Use of 
RSA Algorithm without OAEP.’ The NIST BF encryption 
ontology remains under development and is agnostic to 
mobile devices. 

Similar to categorizing weaknesses as in the CWE, the 
Common Vulnerability Enumeration (CVE) is a MITRE 
program to identify, define, and catalog publicly disclosed 
cybersecurity vulnerabilities. Lazar, Chen, Wang, and 
Zeldovich [7] examined reports to the 269 cryptographic 
vulnerabilities reported in the MITRE CVE from January 
2011 to May 2014. Their results show that 17% of the 
bugs were in cryptographic libraries, and 83% of the re-
ports were individual application misuses of cryptograph-
ic libraries. Overall, properly implementing cryptographic 
libraries and APIs remains a challenge across many do-
mains.

2.3 Mobile Application Cryptography Studies

Mobile application research studies for the improve-
ment of cryptography have been researched in the past 
few years. As cryptographic best practices change nearly 
annually, study reanalysis is necessary to keep pace with 
the changing cryptographic landscape. Egele, Brumley, 
Fratantonio, and Kruegel [8] introduced a static analysis 
tool CryptoLint to automatically check programs on the 
Google Play marketplace. They found that 88% applica-
tions of employing cryptographic APIs did not implement 
cryptography correctly.

Shuai, Guowei, Tao, Tianchang and Chenjie [9] intro-
duced Cryptography Misuse Analyzer (CMA). Gao, Kong, 
Li, Bissyandé, and Klein [10] introduced CogniCryptSAST. 
Singleton, R. Zhao, M. Song and H. Siy, [11] introduced 
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FIREBugs. These static analysis tools were built to identi-
fy weaknesses in cryptography development based on best 
practices of that timeframe.

Gajrani, Tripathi, Laxmi, Gaur, Conti, and Rajarajan 
[12] introduce sPECTRA as an automated framework for 
analyzing wide range of cryptographic vulnerabilities in 
Android finding that 90% of the applications analyzed had 
cryptographic weaknesses.

As cryptography industry requirements change rapidly 
with changes to language APIs and the identification of 
both novel attacks and found weaknesses, actual weakness 
identification through static analysis tool pattern matching 
also must be updated to reflect the changing industry land-
scape causing the need for program reanalysis based on 
current best practices, regulations, and industry needs. 

3. OWASP Top Mobile Risk Ontologies

The Open Web Application Security Project (OWASP) 
is a nonprofit foundation that works to improve the securi-
ty of software with global participation and collaboration. 
The organization creates a forum for industry, academic, 
and government leads to discuss current best computing 
practices. One of the projects maintained by OWASP is a 
list of the reported Top 10 Mobile Risks to mobile appli-
cations. The list notes security concerns for mobile appli-
cations’ data, internal/external device communications, 
among other risks. The actual OWASP risks have re-
mained since the last publication in 2016. The last risk it-
eration was a variation from the risks reported in 2014. Al-
though the risks remain the same, the supporting OWASP 
best practice guidance appears to be dynamically updated 
periodically. We develop a knowledge graph based on the 
OWASP guidance. A useful attribute of knowledge graphs 
is that they can expand with time so that we can see what 
has changed in security concerns over time. Building such 
a domain graph aids both software assurance tools and 
techniques. Deprecated security concerns can easily be 
traced in the graph along with design changes benefiting 
all phases of the secure software development lifecycle 
(sSDLC). 

3.1 2014 Threat 6: Broken Cryptography

The OWASP 2014 Mobile Threat 6 is Broken Cryptog-
raphy. Broken cryptography can potentially lead to data 
compromise in both confidentiality and integrity. To con-
trol data confidentiality, cryptography is primarily imple-
mented with key-centric encryption/decryption methodol-
ogies. To mitigate from data integrity risks, cryptography 
can be used to generate cryptographic message digests to 
numerically validate data. These techniques coexist with 

repudiation techniques, for example with digital signa-
tures. 

Other security concerns in the CIA-model revolve 
around data and service availability. Availability is typi-
cally controlled with other primary mitigation controls; 
however, if there exists a lack of direct mitigating con-
trols, further cryptographic weaknesses further expose 
services breaking defense-in-depth. 

Figure 1 shows our knowledge graph for the OWASP 
threat of Broken Cryptography, labeled M6_Broken_
Cryptography. Since the knowledge graph for the OWASP 
threat of Broken Cryptography is extensive, we review 
each sub-tree from Figure 1 in different figures, specifi-
cally Figures 2-9. Figure 1 is shown to give a full over-
view of the breadth and inter-connections for the OWASP 
threat.

From the perspective of an application, there are four 
main relationships for insufficient cryptography. First, in-
sufficient cryptography can potentially resultFrom device 
specific issues such as compromised hardware. In addi-
tion, insufficient cryptography can resultFrom cryptogra-
phy application programming interface (API) weaknesses 
or misuses. Third, insufficient cryptography can result-
From improper key generation and management. Forth, 
broken cryptography can resultFrom entirely not using 
cryptography when it is needed.

Cryptography algorithms with weak environment pa-
rameters, shown in Figure 2, can cause higher security 
risks. The mobile threat of broken cryptography due to 
the implementation of a weak parameters can resultFrom 
from four main issues. First, cryptographic parameters 
such as weak initialization vector (IV) and improper salts 
will increase the risk of the output cipher text to be easily 
decoded. Second, weak algorithms [13] (e.g. DES, 3DES, 
SHA1, MD5) are known to have exploits and have been 
deprecated by industry and the U.S. Federal government. 
Third, weak key generation (e.g. less than 128-bits, 
non-random, etc.) and management are also known sus-
ceptible to brute force attacks [14]. Fourth, other predictable 
environment components such as imported flawed librar-
ies or flawed cryptographic providers are means for se-
curity concerns. These four predominate issues can cause 
weak cryptographic output increasing the risk of informa-
tion exposure to the loss of integrity and confidentiality. 

Improperly implemented cryptography algorithms, 
shown in Figure 3, can cause higher security risks. Two 
main groups of algorithms that fall into this category are 
improperly implemented message digests and ciphers. 
Figure 4 shows sample best practice code for encryption 
from the Carnegie Mellon University Software Engineer-
ing Institute rules and recommendations [13].
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Figure 1. OWASP Mobile 2014 Threat: Broken Cryptography

Figure 2. Improper_Cryptographic_Algorithm_Parameters

Figure 3. Deprecated Algorithm Parameters

Five common risks can be specific to devices, our 
knowledge-graph can be seen in Figure 5. Although we 
show the relationship with broken cryptography in our 
knowledge graph, software analysis of these underlying 
concerns breaking cryptography are directions for future 
research. First, a common device specific concern is re-

lated to hardware—either directly through compromised 
hardware, or indirectly through a side channel attack 
on the system power analysis. This issue is difficult to 
detect in a mobile application unless a watchdog appli-
cation is involved but it faces similar issues. Insufficient 
hardware-specific power constraints can also cause in-
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effective cryptography. Devices can linger on networks 
for many years [18]. Device platforms may not be able to 
keep up with modern cryptographic requirements for mul-
tiple reasons [19]. Second, a rooted or jail-broken device 
compromises application access controls. In such cases, 
applications should detect that they are running on a com-
promised system. Third, tools that harvest keys and pass-
words from memory are another device specific concern. 
Fourth, and improperly constructed file system for data 
storage can result in broken cryptography. Lastly, lack of 
device and/or file based encryption can also cause broken 
cryptography.

Improperly implemented cryptography algorithms, shown in Figure 3, can cause
higher security risks. Two main groups of algorithms that fall into this category are
improperly implemented message digests and ciphers. Figure 4 shows sample best
practice code for encryption from the Carnegie Mellon University Software Engineering
Institute rules and recommendations [13].

Figure 3. Deprecated Algorithm Parameters

public static byte[] encrypt_cbc(SecretKey skey, String
plaintext) {
/* Precondition: skey is valid … . */
try {
byte[] ciphertext = null; Cipher =

Cipher.getInstance("AES/CBC/PKCS5Padding");
final int blockSize = cipher.getBlockSize();
byte[] initVector = new byte[blockSize];
(new SecureRandom()).nextBytes(initVector);
IvParameterSpec ivSpec = new

IvParameterSpec(initVector);
cipher.init(Cipher.ENCRYPT_MODE, skey, ivSpec);
byte[] encoded =
plaintext.getBytes(java.nio.charset.StandardCharsets.UTF_8);
ciphertext = new byte[initVector.length +
cipher.getOutputSize(encoded.length)]; ….
// Perform encryption
cipher.doFinal(encoded, 0, encoded.length, ciphertext,

initVector.length);
return ciphertext; } catch …

Figure 4. Condensed CMU SEI AES Implementation [13]

Five common risks can be specific to devices, our knowledge-graph can be seen
in Figure 5. Although we show the relationship with broken cryptography in our
knowledge graph, software analysis of these underlying concerns breaking cryptography
are directions for future research. First, a common device specific concern is related to
hardware—either directly through compromised hardware, or indirectly through a side
channel attack on the system power analysis. This issue is difficult to detect in a mobile

Figure 4. Condensed CMU SEI AES Implementation [13]

Insufficient cryptography can also arise from not 
properly encrypting certain sensitive data (i.e. physical 
domain). This lack of sufficient cryptography can occur 
on an endpoint communication channel during transmis-
sion. This lack of sufficient cryptography can occur on 

device without device based encryption (DBE) as DBE 
is a feature of only Android 5 [20]. Google has also issued 
a warning for pre-Android5 devices which have been 
upgraded, “Caution: Devices upgraded to Android 5.0 
and then encrypted may be returned to an unencrypted 
state by factory data reset.” [20] DBE will be deprecated in 
future versions of Android, perhaps due to performance 
constraints [86]. Google currently has posted, “Caution: 
Support for full-disk encryption is going away. If you’re 
creating a new device, you should use file-based encryp-
tion.” [21] This lack of sufficient cryptography can occur 
on a file without file based encryption (FBE) [22]. Google 
has already issued OS version specific issues in relation to 
FBE. For example, the Android Application API currently 
reads, “Caution: On devices running Android 7.0-8.1, file-
based encryption can’t be used together with adoptable 
storage [22]”. On devices using FBE, new storage media 
(such as an external card) must be used as traditional stor-
age. Devices running Android 9 and higher can use adopt-
able storage and FBE [22].

Cipher keys and passwords are known to have soft-
ware assurance concerns for different reasons, as shown 
in Figure 6. First, keys may not be stored correctly (e.g. 
in Android KeyStore [14]) and therefore subject to com-
promise. An example of such a broken scenario is when a 
cryptographic key or password is stored in plaintext on a 
shared space next to the encrypted data. 

Weak keys are known to cause other insufficient cryp-
tographic problems. Second, the key derivation function 
may not be best practice, based on cryptographic random 
numbers, or have sufficient iterations. Third, the key 
length changes with industry best practices based on com-
putational power. In such cases, legacy systems relying on 
shorter keys increase the risk around real time brute force 
attempts [15]. Finally, key rotations may not follow best 
practices. 

Figure 5. Device Specific Issue
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Weak keys are known to cause other insufficient cryptographic problems. Second,
the key derivation function may not be best practice, based on cryptographic random
numbers, or have sufficient iterations. Third, the key length changes with industry best
practices based on computational power. In such cases, legacy systems relying on shorter
keys increase the risk around real time brute force attempts [15]. Finally, key rotations may
not follow best practices.

public static SecretKey generateKey() {
try {
KeyGenerator kgen =
KeyGenerator.getInstance("AES");
kgen.init(256);
return kgen.generateKey();
} catch (NoSuchAlgorithmException e)
{ throw new
IllegalStateException(e.toString());} }

Figure 7. Condensed CMU SEI Key Generation [14]

CMU SEI [16] provides an example of a more secure implementation for storing
passwords. Software can be analyzed by employing static analysis techniques (e.g.
context sensitive analysis, string analysis, variable propagation, etc.) to detect the
concerns on to password algorithms, iterations, salts, and other issues.

Figure 7. Condensed CMU SEI Key Generation [14]

CMU SEI [16] provides an example of a more secure 
implementation for storing passwords. Software can be 
analyzed by employing static analysis techniques (e.g. 
context sensitive analysis, string analysis, variable prop-
agation, etc.) to detect the concerns on to password algo-
rithms, iterations, salts, and other issues.

final class Password {
private SecureRandom random = …
private final int SALT_BYTE_LENGTH = 12;
private final int ITERATIONS = 100000;
private final String ALGORITHM =
"PBKDF2WithHmacSHA256";
/* Set password to new value, zeroing … */
void setPassword(char[] pass) throws …
byte[] salt = new
byte[SALT_BYTE_LENGTH];
random.nextBytes(salt);
saveBytes(salt, "salt.bin");
byte[] hashVal = hashPassword(pass, salt); …
} ...
/* Encrypts password & salt and zeroes both */
private byte[] hashPass (char[] pass, byte[]
salt)
throws GeneralSecurityException {
KeySpec spec = new PBEKeySpec(pass, salt,
ITERATIONS); …
SecretKeyFactory f =
SecretKeyFactory.getInstance(ALGORITHM);
return f.generateSecret(spec).getEncoded();} ...

Figure 8. Condensed CMU Passwords Implementation [16]

3.2 2016 Threat 5: Insufficient Cryptography
The OWASP 2016 Mobile Threat Insufficient Cryptography (IC) is the fifth risk,

labeled in Figure 9 as OWASP_2016_M5_Insufficient_Cryptography. The 2016 threat has
the same implications as the 2014 [17]. The knowledge graph shows that the same general
cryptographic concerns from 2014 directly translates into the risks of 2016, unlike many
other risks from 2014 that were rearranged, removed, or merged together in the 2016
OWASP list. Differences between the years lie in identified weaknesses within the
ciphers, digests, devices, and key management.

Figure 9. OWASP 2016 M5 Insufficient Cryptography

In summary, we have identified sub-areas where software assurance
methodologies can be developed and improved to detect the OWASP Mobile Threat of
Insufficient Cryptography. The standard Android encryption API calls include creating

Figure 8. Condensed CMU Passwords Implementation [16]

3.2 2016 Threat 5: Insufficient Cryptography

The OWASP 2016 Mobile Threat Insufficient Cryp-
tography (IC) is the fifth risk, labeled in Figure 9 as 

OWASP_2016_M5_Insufficient_Cryptography. The 
2016 threat has the same implications as the 2014 [17]. 
The knowledge graph shows that the same general cryp-
tographic concerns from 2014 directly translates into the 
risks of 2016, unlike many other risks from 2014 that 
were rearranged, removed, or merged together in the 2016 
OWASP list. Differences between the years lie in identi-
fied weaknesses within the ciphers, digests, devices, and 
key management.

Figure 9. OWASP 2016 M5 Insufficient Cryptography

In summary, we have identified sub-areas where soft-
ware assurance methodologies can be developed and im-
proved to detect the OWASP Mobile Threat of Insufficient 
Cryptography. The standard Android encryption API calls 
include creating keys, encrypting, and decrypting, are all 
detectable using assurance methodologies such as pro-
gram analysis.

4. Analysis Results 

We examined the source code of 203 mobile applica-
tions written to store, track, and communicate healthcare 
related data. Healthcare data is typically sensitive infor-
mation and is only regulated under certain conditions. For 
example, research shows that HIPAA and HITECH only 
apply to covered entities [23]. For data not covered under 
HIPAA, the FCC becomes involved when breaches affect 
> 500 individuals [24]. Smaller mobile applications, which 
may only serve a small population segment, may not fall 
under any regulations.

Specifically, we examined the source code of healthcare 
applications with publicly available source code to gain a 
sense of how they were implementing cryptography, if at 
all, in their programs.

The analyzed applications stored health data for many 
health-related concerns including mental health, pregnan-

Figure 6. Knowledge graph for weak keys concerns
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cy, exercise management, hypertension, among other sen-
sitive issues.

In total, we examined each application based on the 
knowledge-graphs reported in Section 3 to gain insights 
into these applications’ source code confidentiality and in-
tegrity security for data-at-rest. We applied pattern-match-
ing criteria to identify source code with concerns reported 
in our knowledge-graph.

Our main finding was that some of the 203 mobile 
applications made attempts at data-at-rest cryptography 
but were unsuccessful in perfectly implementing all data-
at-rest knowledge graph elements reported in Section 3. 
These weaknesses in implementation cause a breakdown 
in confidentiality and integrity for people storing, using, 
and transmitting their health data with any of these appli-
cations.

4.1 Application Cryptography Utilization

Historically there have been two main packages in 
the Oracle Application Programming Interface (API) for 
Java cryptographic implementations. The message digests 
(hash) functions, secure random number generator for 
cryptography, certificates, key management implementa-
tions are contained in the java.security packages, known 
as the Java Cryptography Architecture (JCA). The key 
generation, agreement, and cipher algorithms are con-
tained in the javax.crypto package, known as the Java 
Cryptography Extension (JCE). “Prior to JDK 1.4, the 
JCE was an unbundled product, and as such, the JCA and 
JCE were regularly referred to as separate, distinct compo-
nents. As JCE is now bundled in the JDK, the distinction 
is becoming less apparent. Since the JCE uses the same 
architecture as the JCA, the JCE should be more proper-
ly thought of as a part of the JCA. [25]” When analyzing 
source code, one key indicator of properly implemented 
cryptography is by employing the standard Oracle API. 
Implementing one’s own cryptographic algorithms can be 
successful but is highly prone to error.

Of the 203 mobile application source code analyzed, 
25 imported the Oracle API cryptography libraries in their 
java source code, with three of these applications import-
ing only cryptography policies, keys, or crypto related ex-
ceptions rather than importing libraries needed for cipher 
and/or hash algorithms. Analysis showed that a few source 
repositories may contain cryptography within embedded 
mobile application bytecode and is outside the scope of 
this research due to its low-likelihood that it adequately 
protects the confidentiality and integrity of the contained 
healthcare data.

4.2 Proper Confidentiality Implementations 

Confidentiality mitigation implementation which re-
sults in low risk of data exposure have many elements that 
need to be satisfied as reported in Section 3. In this section 
we report on the 22 mobile applications which imported 
the proper cryptography libraries. Of these 22 applica-
tions, only 10 applications imported JCE extensions. We 
report on these 10 applications cryptography implementa-
tions in the following subsections.

4.2.1 Proper Cipher Algorithms

One important aspect to properly implementing cryp-
tography is to employ the non-deprecated ciphers. Sheth 
[26] and CMU SEI [27] indicated that AES remains a com-
pliant symmetric key algorithm for storing data-at-rest. 
Other properly implemented algorithms such as RSA are 
not entirely wrong given certain data-exchange use cases 
but may not be the best choice meeting same-device data-
at-rest requirements. One application did interface with 
a blockchain therefore an RSA implementation could be 
needed. Of the 10 applications which imported JCE librar-
ies, 6 applications employed the AES (5 apps) only, RSA 
(1 app) only, and 2 applications used both AES and RSA 
algorithms. One application employed DES algorithm 
which has been deprecated for years. The remainder either 
had their own encryption generation or did not import JCE 
libraries for encryption.

4.2.2 Proper Cipher Modes

In general, a cipher mode of operation lowers risks 
of generating predictable ciphertext. Sheth [26] reports on 
GCM and CBC mode as having lower risks from crypta-
nalyses attacks. The JCR currently supports other non-
best practice mode operations, perhaps for legacy systems. 
Of the six applications that implemented non-deprecated 
ciphers, only four had known proper cipher modes im-
plemented. Two applications relied on the defaults by 
employing either Cipher.getInstance ("AES") or "RSA" 
which do not default to best practices as guided by CMU 
SEI [27]. Four applications properly implemented the 
symmetric cipher mode. One of these four proper imple-
mentations also had an improper implementation of their 
key storage using the symmetric algorithm with transfor-
mation string "AES/ECB/PKCS5Padding" for key storage 
rather than storing a salted hash of the password as de-
scribed by CMU SEI in Figure 7. Of the three applications 
with RSA implementations, one application employed the 
default “RSA” mode, one employed “ECB” mode, and 
one employed “NONE” mode subject to conflicting RSA 
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mode guidance.

4.2.3 Proper Cipher Padding. 

Padding schemes can be employed to pad cleartext into 
acceptable cipher algorithm block sizes. Sheth [26] reports 
the best practice of employing PKCS5Padding or OAEP-
With* padding schemas, although the JCR supports other 
non-best practice padding schemas. Of the applications 
with properly implemented modes, only one application 
properly implemented one of these padding schema. 

4.2.4 Other Confidentiality Parameters

Other best practice parameters to consider during the 
encryption processes are employing cryptographically 
random numbers as initialization vectors (IVs) (i.e., nonc-
es) [28,29]. Sheth [26] advised to make sure only a small num-
ber of plaintexts are encrypted with the same key and IV 
pair. The one application which properly implemented the 
symmetric cipher transformations string did not initialize 
the cipher with a cryptographically random IV therefore 
not implementing cryptography correctly.

4.3 Proper Integrity Implementations 

We examined all 203 applications for proper data 
integrity implementations. Integrity risks can be miti-
gated through the use of cryptographic hash algorithms. 
In cases where data is changing on a regular basis and 
cannot be properly compared against a known duplicate, 
non-deprecated hash algorithms are essential to protect 
data integrity. In the case of these applications which do 
not contain data snapshot cryptographic hashes, non-dep-
recated algorithms are essential. In addition, when storing 
cryptographic password hashes, best practice mandates 
minimum generation iterations (e.g. NIST [30] standards 
identify a minimum of 10,000 iterations based on com-
puting resources), certain creation algorithms, and adding 
randomness via salting. 

4.3.1 Proper Message Digest Algorithms

Current best-practices mandate SHA2 (with SHA-
512 or higher) or SHA3 family of cryptographic hash 
algorithms. We identified only 11 applications employing 
cryptographic hash algorithms, but all using MD5, SHA1, 
or other SHA algorithms below SHA-512 for integrity 
needs. Therefore, we were unable to identify any appli-
cations with proper cryptographic message digest algo-
rithms.

4.3.2 Other Integrity Parameters

Other integrity parameters to consider are needed when 
storing cryptographic password hashes as reported by 
CMU SEI in Figure 7. In such cases, the salting and itera-
tions are essential along with proper algorithms. We iden-
tified only one application attempting to store passwords 
correctly. The application applied a secure password 
generation algorithm of PBKDF2, but it was applied with 
only 100 iterations, which is below industry best practice 
standards such as NIST’s recommendation of at least 
10,000 iterations [30].

4.4. Other Cryptographic Issues 

During application analysis we identified some other 
ancillary cryptographic issues within the mobile applica-
tion source code. These findings may more appropriately 
belong in the OWASP secure storage knowledge-graph 
discussion, but since they include cryptographic tech-
niques, we will reference the issues. We identified two 
applications which had upgraded their internal database 
from the standard SQLite database that comes with the 
device to instead implement a more secure version, the 
net.sqlcipher SQLiteDatabase [31]. This particular imple-
mentation claims to add cryptography to the database so 
that stored information is not stored in plaintext as it is 
in the standard SQLite database. The library analysis of 
the sqlcipher database cryptography usage and respective 
key management is outside the scope of this research. A 
knowledge graph is ideal for representing hybrid security 
concerns where mitigations overlap such as cryptographi-
cally secure storage implementations, where if any part of 
the secure implementation contains weaknesses, the over-
all concept will be of high risk.

5. Future Work 

Best practice cryptographic implementations require 
community effort in maintain. Ancillary concerns such as 
cryptographic key generation and management and cryp-
tography in commonly imported libraries are areas of fu-
ture research. Similarly, cryptography encompasses certain 
aspects of data-in-motion however, there remains a vague 
distinction between the OWASP top ten threat of insuffi-
cient cryptography and other OWASP top ten threats, such 
as that of insecure communications. Knowledge-graphs 
can be useful to show longitudinal relationships between 
security concerns. These are other areas of future research. 
Lastly, the case study shows the importance of building 
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new tools and techniques to aid the secure software devel-
opment lifecycle to identify weaknesses in cryptographic 
implementations and provide secure software training—
whether developer or penetration testing. Currently, for 
example, penetration testing remains an art rather than 
science since the field lacks standardization. The creation 
of knowledge-graphs can be useful to provide standard-
ization and to add risk ratings to inform sector-wide risk 
likelihoods. There remains a lot of further research to de-
velop such standardized security ontologies.

6. Conclusions

This research examined the OWASP Top Ten mobile 
device security threats focusing on the OWASP Mobile 
Application Threat of insufficient cryptography. We first 
contributed the development of mobile device specific 
knowledge graph for insufficient cryptography. From the 
knowledge-graph we analyzed 203 mobile device appli-
cations source code uploaded to GitHub. The analyzed 
applications where healthcare applications that collect 
sensitive human information such mental health, exercise 
routines, pregnancy indicators, skin photographs, and 
other important body information needed for health. We 
were unable to identify any application that properly im-
plemented confidentiality and integrity needs. 

As our world becomes more interconnected, it is es-
sential that we build more robust tools to identify privacy 
and security weaknesses. Many different software and 
software developers at large, such as developers of free 
healthcare applications, are neither required by regulations 
to implement security features nor have access, awareness, 
or training for such security features. The industry need 
has become dire for creating access to security training 
and tools to develop more secure applications especially 
when applications store extremely sensitive information 
about humans greatly affecting both their own lives and 
those of their family. 
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