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For a tridiagonal two-layer real six-neuron model, the Hopf bifurcation 
was investigated by studying the eigenvalue equations of the related linear 
system in the literature. In the present paper, we extend this two-layer real 
six-neuron network model into a complex-valued delayed network model. 
Based on the mathematical analysis method, some sufficient conditions 
to guarantee the existence of periodic oscillatory solutions are established 
under the assumption that the activation function can be separated into its 
real and imaginary parts. Our sufficient conditions obtained by the mathe-
matical analysis method in this paper are simpler than those obtained by the 
Hopf bifurcation method. Computer simulation is provided to illustrate the 
correctness of the theoretical results.
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1. Introduction
Recently, various complex-valued network models 

with or without time delays have been studied [1-4,6-20]. 
For example, Ji et al. have investigated the following 
complex-valued Wilson-Cowan neural network model:

  (1)

By using proper translations and coordinate transfor-
mations, system (1) has been decomposed the functions 

and  into their real and im-
aginary parts, thus an equivalent real-valued system has 

been constructed. Then, the sufficient conditions for the 
Hopf bifurcation and its directions were provided [1]. Hang 
et al. have investigated a two-node network system as 
follows [2]:

  (2)

About the dynamical behaviors, local asymptotical 
stability and the Hopf bifurcation were studied, the 
important conditions of emergence of bifurcation were 
also given. Li et al. [3]extended a real-valued network 
model into a complex-valued model as the following:
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 (3)

Regarding the discrete time delay as the bifurcating 
parameter, the problem of the Hopf bifurcation in the 
newly-proposed complex-valued neural network model 
was investigated under the assumption that the activation 
function can be separated into its real and imaginary parts. 
Based on the normal form theory and center manifold 
theorem, some sufficient conditions which determine the 
direction of the Hopf bifurcation and the stability of the 
bifurcating periodic solutions were established. Zhang 
et al. have considered a complex value delayed Hopfield 
neural networks model [4]:

 (4)

By using the basic bifurcation theory of delay 
differential equations, and the theory of Lie groups, the 
authors have discussed the bifurcating periodic solutions. 
The existence of multiple branches of the bifurcating 
periodic solution was also provided.

 In this paper, we extend a real six-neuron network [5] to 
the following complex-valued model:

 (5)

where  are real numbers,  are 
activation functions, .We will discuss the 
dynamic behavior of the solutions of system (5).

We point out that the bifurcating method is not 
easy to deal with system (5) if all  are 
different real numbers. In this paper, by means of 
the mathematical analysis method, we discuss the 
periodic oscillation for system (5). For convenience, let  

( ) .  

Then the complex-valued system (5) can be expressed 
by separating it into real and imaginary parts as the 
following:

 (6)

Therefore, in order to discuss the periodic solution of 
model (5), we only consider the periodic solution of 
system (6). Suppose that the derivative of  

with respect to and exist, continuous, and 
, . Then the linearized system of (6) 

is the following:

 (7)

where  

,  

, .

The matrix form of system (7) is the following: 

 (8)
where  

. Both A and B are 12 
by 12 matrices as follows:
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2. Preliminaries

Lemma 1 Assume that  
when  while 

 when ,   
 is a nonsingular matrix, then system (6) has a 

unique equilibrium.

Proof An equilibrium  of sys-
tem (8) is a constant solution of the following algebraic 
equation:

 (9)
Since  is a nonsingular matrix, then system 

(9) only has zero solution according to the linear algebra 
basic theorem. Noting that  (k, j= 
1,2,...,6). Therefore, zero is a solution of system (6). 
Obviously, zero is the unique equilibrium of system (6)  
since   when  while  

 when .
Lemma 2 Assume that  (k, j=1,2, 

...,6) are continuous bounded functions, 
. Then all solutions of system (6) are 

uniformly bounded.

Proof Since  (k, j=1,2,...,6) are 
continuous bounded functions, then from system (6) we 
have

 (10)

where  are some positive constants. It is easily to 
see that all solutions of system (10) are uniformly bound-
ed since , implying that all 

solutions of system (6) are uniformly bounded.

3. Main Results

It is known that the instability of the trivial solution of 
system (7) guarantees the instability of the trivial solution 
of system (6). Thus, we have the following theorems.

Theorem 1 Assume that Lemma 1 and Lemma 2 hold  
for selecting parameter values of , , , 

. Let the eigenvalues of matrices A, B be   and  
 respectively. If there exists at least one 

eigenvalue  such that 

or  ,  where .  Then 
system (6) generates a periodic oscillatory solution.

Proof Obviously, we only need to consider the insta-
bility of the trivial solution of system (7). Suppose that 
the eigenvalues of matrix  are  then  

 , …, ,   
Therefore, the characteristic equation  corre-

sponding to system (8) is the following

 (11)

Noting that ,  and there exists some 
  or   thus system (11) has a positive real 

eigenvalue or an eigenvalue which has a positive real 
part. Therefore, the trivial solution of system (8) (or 
(7)) is unstable according to the basic result of delayed 
differential equation, implying that the trivial solution 
of system (6) is unstable. Since system (6) has a unique 
equilibrium point and all solutions are bounded, based on 
the extended Chafee’s criterion [21, 22], this instability of the 
trivial solution will force system (6) to generate a limit 
cycle, namely, a periodic oscillatory solution.

Now set , .  

Then we have
Theorem 2 Assume that Lemma 1 and Lemma 2 hold  

for selecting parameter values of , , , .  
If

 (12)
Then the unique equilibrium point of system (6) is 

unstable, implying that system (6) generates a periodic 
oscillatory solution.

Proof Similar to Theorem 1, we show that the trivial 
solution of system (7) is unstable, then the trivial 
solution of system (6) also is unstable. In system (7), let 

then we have
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 (13)

Corresponding to equation (13), we consider the 
following equation

 (14)

The characteristic equation associated with equation 
(14) is

 (15)
We claim that there exists a positive root of (15). Let  

. Obviously,  is a continuous  
function of . When we get  

 since On the other hand, there exists a suitably  
large say  such that  since  

 Based on the Intermediate Value Theorem,  

there exists a such that  
In other words,  is a positive characteristic root of 
equation (15). Therefore, the trivial solution of equation 
(14) is unstable. Noting that  So the instability 
of the trivial solution of (14) implies that the trivial 
solution of system (7) (thus system (6)) is unstable. This 
instability of the trivial solution such that system (6) has a 
limit cycle, namely, a periodic oscillatory solution.

4. Simulation Result

This simulation is based on system (6). We first select 
the parameters as  a3=0.48,  

   
  ,  

,  ,  ,    
, , , , , ,  

 ,  ,   
, , , , , ,  

. The activation functions  
, thus  

,  a n d 

 (k, j=1,2,...,6), time delay is 

0.5. We see that the eigenvalues of matrix B are 0.8903, 
-0.8903, 0.7645±0.6458 i, -07645±0.6558 i, 0, 0, 0, 0, 0, 0. 
Noting that there exists a positive eigenvalue .  
The conditions of Theorem 1 are satisfied. Based on 
Theorem 1, there exists a periodic oscillatory solution 
(see Figure 1). In order to see the effect of the time 
delay, we change time delay as 1.5, the other parameters 
are the same as in Figure 1, we see that the oscillatory 
frequency and oscillatory amplitude both are changed 

(see Figure 2). Then we change the activation function as 

 
, thus we still have  

 

a n d  ( k ,  j = 1 , 2 , . . . , 6 ) ,  t h e 

parameters are the same as in Figure 2, we see that 
the oscillatory frequency and oscillatory amplitude 
both are changed slightly (see Figure 3). This means 
that the activation functions effect the oscillatory 
behavior not too much. Now we select another set of 
parameters as  , , ,   

,  ,  ,  , 
, , , , ,  

, , , ,  
, , , , ,  , 

,  ,  ,  
, , , , , . 

The activation function is as in Figure 3, time delay is 0.6. 
We see that  .Therefore,  holds. 
Based on Theorem 2, there exists a periodic oscillatory 
solution (see Figure 4).

Figure 1. Oscillation of the solutions, activation function: 
tanh (z), time delay: 0.5.
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Figure 2. Oscillation of the solutions, activation function: tanh (z), time delay: 1.5.

    

Figure 3. Oscillation of the solutions, activation function: arctan (z), time delay: 0.5.

    

Figure 4. Oscillation of the solutions, activation function: arctan (z), time delay: 0.6.

5. Conclusions

The paper has discussed the oscillatory behavior of the 
solutions for a complex-valued neural network model with 
discrete delay. By means of the mathematical analysis method, 

two criteria to guarantee the existence of periodic oscillatory 
solution are provided which are easy to be checked. In 
this network, we decomposed the activation functions and 
connection weights into their real and imaginary parts, so as 
to discuss an equivalent real-valued system. The activation 
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functions affect the oscillatory behavior slightly.
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