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There are numerous studies about Z-numbers since its inception in 
2011. Because Z-number concept reflects human ability to make rational 
decisions, Z-number based multi-criteria decision making problems are one 
of these studies. When the problem is translated from linguistic information 
into Z-number domain, the important question occurs that which Z-number 
should be selected. To answer this question, several ranking methods have 
been proposed. To compare the performances of these methods, benchmark 
set of fuzzy Z-numbers has been created in time. There are relatively new 
methods that their performances are not examined yet on this benchmark 
problem. In this paper, we worked on these studies which are relative 
entropy based Z-number ranking method and a method for ranking 
discrete Z-numbers. The authors tried to examine their performances on 
the benchmark problem and compared the results with the other ranking 
algorithms. The results are consistent with the literature, mostly. The 
advantages and the drawbacks of the methods are presented which can be 
useful for the researchers who are interested in this area. 
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1. Introduction

L. Zadeh introduced the Z-number concept to the lit-
erature in 2011 [1]. Actually, he was working on the topics 
combining fuzzy and probabilistic information such as 
probability measures with fuzzy events [2], fuzzy random 
variables [3], fuzzy sets and information granularity [4] 
before put forward the Z-number theory. He claims that 
Z-numbers can represent the rational decision making 
ability of the humans under uncertain conditions. Thus, 
a Z-number contains an uncertainty degree in addition to 

fuzzy information. A Z-number notation can be shown as
Z = (A, B) or Z = (X, A, B) (1)

X is a set of random variables, A is the restriction part 
on X and B is the reliability of A. (X, A) is similar for 
fuzzy researchers, because it is exactly the same with 
Type-I Fuzzy Logic. And addition of B part makes it 
Z-number. There is also an extension on Z-number shown 
as Z+-number. Whereas Z-number has reliability degree B 
on A, Z+-number has probability distribution of reliability 
degree, B on A. 

In recent times, the concept of Z-number is gaining 

mailto:firat.bilgin@ege.edu.tr


2

Journal of Computer Science Research | Volume 04 | Issue 02 | April 2022

much popularity among the researchers. Firstly, generat-
ing Z-number was an open issue. For solving this, ordered 
weighted averaging operators(OWA) based and logistic 
regression based studies were made [5,6]. Although there 
were studies about generating Z-number, most of them 
about Z-number were linguistic [7-9]. We know that the 
fuzzy systems are good for translating linguistic knowl-
edge into mathematics [10]. After creating Z-number fuzzy 
if-then rules from the linguistic information, Z-number 
based calculations play a vital role. For doing these cal-
culations, R. Aliev et al. showed up the formulas for basic 
algebraic operations such as addition, subtraction etc. [11].  
All Z-numbers can be translated into linguistic expres-
sions or vice versa. In this situation, each Z-number con-
tains linguistic or mathematical restrictions. Combining 
these restrictions with probabilistic restrictions, the prob-
ability distribution of the Z-number can be obtained [12].  
After having a command of fundamental Z-number terms 
and calculations, some linguistic based studies have been 
done. Using Z-number in control problem was one of 
these studies. In 2018, R. Abiyev et al. controlled an om-
nidirectional soccer robot with linguistic Z-number rule 
base[9]. In 2019, M. Shalabi et al. modelled and controlled 
automotive air-spring suspension system with Z-number 
based fuzzy system [13]. In 2020, M. Abdelwahab et al.  
worked on trajectory tracking of a mobile robot with 
Z-number [14]. As another branch of work, W. Jiang et al.  
proposed a novel method combining Z-number with 
Dempster - Shafer evidence theory and they made an 
application in sensor data fusion problem [15]. As a cluster-
ing/classifying problem, Z-number was used with fuzzy 
c-means and k-means clustering, respectively [16,17]. The 
effectiveness of the proposed methods was shown on 
well-known datasets such as iris dataset, wine dataset etc.

As the Z-number based studies are examined in the 
literature, we make calculations with Z-numbers accord-
ing to the rule base and we get another Z-number in final. 
To use final Z-number, B. Kang et al. proposed a method 
for converting Z-number into classical fuzzy number [18]. 
Lastly, the researchers have said that converting Z-number 
into a crisp number may cause information loss. There-
fore, using it as Z-number form is more preferable [19].  
For doing this, we need Z-number based if-then rules 
and Z-number based inference engine. At the moment, 
there is not any study about Z-number inference without 
converting Z-number into crisp number. Instead of this, 
ranking Z-numbers are more popular. And there are stud-
ies on multi-criteria decision making problems by ranking 
Z-numbers [20,21]. The results of these applications are 
mostly consistent with the studies done by mathematical 
and classical fuzzy operations. But, the issue about this 

type of works is that there are so many different decision 
making problems. So, comparing the performances of the 
proposed ranking methods is impossible. To make this 
possible, a Z-number fuzzy set has been created. Thus, 
the researchers can try their proposed method on this set 
and compare the results with the other methods. As in 
other Z-number applications, there are two approaches for 
ranking of Z-numbers. First one is converting Z-number 
into classical fuzzy, then ranking obtained fuzzy number. 
The second one is done without converting Z-number into 
classical fuzzy. In 2014, D. Mohamad et al. converted 
Z-number into generalized fuzzy number(GFN) because 
of simpler calculations and they used the standard devi-
ation of GFNs to order them [22]. In 2015, A. Bakar and 
A. Gegov called their work as multi-layer decision meth-
odology. According to them, conversion process, from 
Z-number to fuzzy number, is realized in the first layer 
and in the second layer ranking process is realized. For 
ranking process, they used centroid point in addition to 
the spread, called CPS [23]. In 2017, S. Ezadi and T. Allah-
viranloo proposed a method to rank fuzzy numbers. The 
method is based on hyperbolic tangent function and con-
vex combination. They turned Z-numbers into generalized 
normalized fuzzy numbers(GNFS) with B. Kang’s formu-
la, and then tried to rank converted fuzzy numbers with 
their proposed methods [24]. Later, S. Ezadi et al. proposed 
another method to rank fuzzy numbers by using the sim-
ilarity between hyperbolic tangent and sigmoid function. 
By converting the Z-numbers into GNFS, they adapted 
their method into ranking of Z-numbers [25]. In 2017, Jiang 
W. et al. proposed a novel method to ranking GFNs. Ac-
cording to this method, a score function is produced based 
on the centroid of the membership function, spread and 
Minkowski degree of fuzziness. And the ranking process 
is realized with produced score value. For ranking Z-num-
bers, they made some assumptions. According to them, 
the constraint part of Z-number is more important than the 
reliability part and it must be the main part of a Z-num-
ber. Therefore, the weight of constraint part should be 
greater than the weight of the reliability. In addition, the 
information of Z-numbers should be retained without con-
verting into fuzzy or crisp numbers. In the light of these 
assumptions, they obtained scores for both constraint and 
reliability part via their proposed method, and they com-
bined these scores with a formula by considering the dis-
tance between scores and a reference point [26]. In 2020, R. 
Chutia proposed a method to rank GFNs according to the 
concept of value and ambiguity. They obtained values and 
ambiguities for both constraint and reliability part. After 
that, they combined the scores as in the method of Jiang W. 
et al. [27].
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There are new methods which are relative entropy of 
Z-numbers [28] and a method for ranking discrete Z-num-
bers [29]; but, these methods were not tried on the bench-
mark set of fuzzy Z-numbers before. In this paper, we 
examine the performances of these methods on ordering 
Z-numbers. According to the results, we want to present 
the drawbacks and advantages of these methods.

2. Materials and Methods

2.1 Materials

The materials of this study are Z-numbers. Let Z1 and 
Z2 be two Z-numbers defined as 
Z1 = (A1, B1) and Z2 = (A2, B2) (2)

 (3)

In Equations (2) and (3),  and  are the membership 
functions of a Z-number where A defines fuzzy part of a 
variable which are  and B defines the reliabil-
ity of A. Since we have two Z-numbers, s=1, 2.  ,  

 are the membership degree of given varia-
bles whose indices are i=1,2,…,m and j=1,2,…n. 

Instead of Equation (3), we will use more compact 
expression to show Z-numbers. Most of time, the fuzzy 
membership functions are triangular, trapezoidal, Gauss-
ian etc. And the benchmark fuzzy sets in this work only 
consist of triangular and trapezoidal membership func-
tions. For example, a triangular membership function of 
reliability, B, can be described as given in Equation (4).
B = (0.6, 0.8, 1.0; 1.0) (4)

The first three component of B describes the critical 
values and the last component of B, describes the peak 
membership value of B as seen in the Figure 1.

Figure 1. Triangular membership function given in Equa-
tion (4).

As in triangular membership function, sample trapezoidal 
membership functions can be written as in Equation (5).
B = (0.4, 0.8, 1.0; 1.0) (5)

As in Equation (4), the first four components of Equa-
tion (5) give the critical values and the last component of 
B, corresponds to the peak membership value of B as seen 
in the Figure 2.

Figure 2. Trapezoidal membership function given in 
Equation (5).

2.2 Relative Entropy of Z-numbers

L. Yangsue et al. suggested to use relative entropy for 
ranking Z-numbers. Because the paper is based on the 
entropy, the underlying probability distributions of the 
Z-numbers must be found before attempting to find rela-
tive entropy. We do not know the underlying probability 
distributions; but, according to L. Zadeh, there are some 
restrictions about Z-numbers, called Z-restriction, such as

 (6)
This information can be formulated as given in Equa-

tion (7).

 (7)

The second restriction is given in Equation (8) if the 
centroids of  and  are coincident.

 (8)

And we know the probability restrictions as in Equa-
tion (9).

 (9)

There can be more than one solution that satisfies these 
restrictions. So, the solution that gives maximum Shannon 
entropy is chosen.

 (10.a)

Or in other words,

 (10.b)

In continuous form, it is hard to solve this equation 
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subject to given equalities and inequalities. To overcome 
this issue, some assumptions are made such as discretiza-
tion or having Gaussian probability distributions. But, we 
do not have any information whether the probability dis-
tribution is Gaussian, uniform etc. So, by making the cal-
culations discrete form, we hope that the obtained solution 
is close to continuous probability distribution with ad-
missible error. Note that there will be n solutions for ,  
because there are n pieces of v value in Equation (3).

After getting the probability distributions  and ,  
the relative entropy must be calculated as step two. For 
calculating this, the authors used Kullback - Leibler diver-
gence. The divergence is defined in Equation (11.a) and 
(11.b).

 (11.a)

 (11.b)

In meaning, the divergence, , gives the infor-
mation gain if  is used instead of . As third step, the 
authors proposed to create another fuzzy subset with ob-
tained relative entropy values as follows.

 (12)

 (13)

We mentioned about there are n probability distribu-
tions for each . And here,  is the relative en-
tropy between  probability distributions of  and .

The centroid of these subsets will be the score of each 
Z-number. According to this score, ranking process will 
be realized. The Z-number with greater score will have a 
better rating in ranking.

2.3 A Method for Ranking Discrete Z-numbers

Gong Y. et al convert the Z-number into classical fuzzy 
set, and then try to rank different Z-numbers. Unlike the 
other works in the literature, they proposed a different 
method to convert Z-number into classical fuzzy instead 
of B. Kang’s conversion formula. According to them, 
the reliability part, B, is the weight of the constraint part 
A. But, not just the values of B affect the weight, other 
criteria such as range (cardinality), linguistic order of the 
fuzzy set should be important to determine the weight. At 
the first step, measure of uncertainty, , is calculated 
as follows.

 (14)

Here  is the number of elements (cardinality) that 
 have.  is the complementary set of  as in Equation 

(15).

 (15)

According to the authors, there are linguistic fuzzy 
clusters both for reliability and constraint part. Here,  
is the number of these fuzzy clusters for reliability part 
and  is the order of  in . To illustrate, 
assume a fuzzy set .

 (16)

Here,  =4 and =1.
We know that  is the measure of uncertainty, 

 gives the measure of certainty, analogously.
At the second step, the constraint part can be weighted 

with , and the new fuzzy set, , occurs as a result 
of this process.

 (17)
For ranking discrete fuzzy sets, H. Basirzadeh et al. 

proposed a method in 2012 [30]. Gong Y. et al. followed the 
same procedure to rank  in their work. According to 
this method, the regions where the membership function 
increases or decreases are checked. And an α-value is de-
fined as follows.

 
 

(18)

For both of the regions, increasing and decreasing, a 
score is calculated. For increasing part, the score is, .  
For decreasing part, the score is, . They are given be-
low equations.

 (19)

 (20)

And the total score of Z-number is the sum of   
and .

 (21)

As in relative entropy based ranking method, the Z-number 
with greater score will have a better rating.

The main disadvantage of this method is that it needs 
 and number of fuzzy clusters, . If we want 

to rank just two Z-numbers, the multiplier will be 0.5 
and 1.0 from Equation (15). Even if the reliability parts 
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of Z-numbers have small differences, the difference be-
tween multipliers will be enormous. Moreover, assume 
two Z-numbers that have B parts, B1=(0.4,0.6,0.8) and 
B2=(0.4,0.5,0.7,0.8). These are so similar and they may 
be called with same linguistic information “sometimes”, 
although they are different membership functions. In this 
situation, how we will decide to order of these Z-numbers 
is another important issue. Thus, we proposed an exten-
sion to overcome this drawback. It is known that the range 
of membership functions is between [0,1]. Even if it is not 
in this range, it can be scaled by normalization.

As a first step, we will divide [0,1] into 20 parts with 
0.05 steps. Thus, the  will be equal to 20 whatever 
the Z-number is. To determine , the centroid 
method will be used, centroid of Bs can be found via 
Equation (22). To which region the centroid is closer, the 
number of that region corresponds to the .

 (22)

 is used in Equation (15) to calculate the 
weight, . By arranging the  in the 
method proposed from Gong Y. et al., we have aimed to 
obtain more accurate weight term. With this improvement, 
we are expecting the minor differences that roots from 
the reliability membership functions can be distinguished 
and can be taken into account. Actually, the calculations 
continue to both get a new fuzzy set and produce a score 
from this new fuzzy set after determining . There-
fore, the effect of this improvement may not be observed 
directly from the scores given in Equation (21). However, 
when Equation (15) is examined, both  and 

 are the multiplier of  which is a measure 
of certainty. Given the importance of using knowledge in 
uncertain conditions, any improvements in certainty will 
have a positive effect on the results. 

Optimization of the number of fuzzy membership 
functions is an important topic in fuzzy applications. In-
creasing the number of membership functions may cause 
the system lose the capability of generalization and may 
require large computation time. At the same time, using 
few membership functions may cause incomplete mod-
eling and inaccurate results [31]. At this stage, converting 
linguistic information to the fuzzy Z-number accurately 
with a sufficient number of membership functions can be 
another work topic. In this study,  was chosen as 20 and 
the results were given in Results section. Getting a better 

ranking performance will be possible by optimizing . 

3. Results

R. Chutia divided the benchmark set of fuzzy Z-num-
bers into three examples in his work. We will follow this 
tradition and we will give the results in this order. In 
example 1, there are 6 fuzzy sets that have same restric-
tion part, A which is given in Equation (23). This means 
that the information, e.g. a sensor data, is same for each 
Z-number, but the reliabilities of information will differ 
with changing B parts which are given Equations (24), 
(25), and (26). 

 (23)

In Set 1,

 (24)

In Set 2,

 

 

(25)

In Set 3,

 (26)

Figure 3. Reliability membership functions of first three 
sets of example 1

When first three sets of example 1 are examined, the 
reliability membership functions differ in shape, wideness 
and peak value. In Set 1, the peak values and shape of the 
membership functions are same. But, B1 is wider than B2. 
We can infer that B1 is more fuzzy than B2. So, we will 
be able to see the effect, when the fuzziness of the relia-
bility changes. In Set 2, the membership functions differ 
in shape where the first one is triangular membership 
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function and the latter is trapezoidal. Although their peak 
values, centroids and wideness are same, we will be able 
to examine the effect of the membership function’s shape. 
Different from the first two sets, we can predict a result 
for this set intuitively that the membership function with 
higher peak value is more preferable than the other. From 
this point of view, Set 3 can be more distinctive while 
comparing the ranking methods.

In Set 4,

 

 
(27)

In Set 5,

 

 
(28)

In Set 6,

 (29)

The above membership functions in Equations (27), 
(28), (29) which belongs the Set 4, Set 5 and Set 6 can 
be seen in the Figure 4. All these sets try to measure the 
effects of membership functions that differ in shape. Set 4 
tries to measure the effect of peak values, additionally.

Figure 4. Reliability membership functions of last three 
sets of example 1

The results from the literature and the methods exam-
ined in this study for example 1 are given in Table 1. It is 
seen from the Table 1 that some of the proposed methods 
are failed to rank Z-numbers. Although the differences 
between membership functions in Set 1 are clear, the 
produced scores are exactly same. It can be said that the 
performances of the methods producing same scores for 
different membership functions are poor. These methods 
were proposed by Mohamad et al. [22], Bakar and Gegov [23], 
Ezadi and Allahviranloo [24], Ezadi et al. [25].

Jiang et al., R. Chutia, Yongsue et al. and Gong et al. 
succeed to rank these Z-numbers and their ranking results 
are same. Another important point about the study of R. 

Chutia et al., the score is inversely proportional to the 
rank. From decision making aspect, the score can be inter-
preted as cost criterion instead of benefit criterion.

Different from Table 1, R. Chutia orders the Z-numbers 
contrarily to Jiang et al. and Gong et al. in Table 2. Anoth-
er difference from the previous results that Yangsue et al.  
do not differ the two Z-numbers. Their score for each 
Z-number is zero. Because the method of Yangsue et al. 
is based on the underlying probability distributions, they 
obtain same probability distributions when the range of 
reliability and the constraint membership functions are 
same. Thus, the relative entropy turns zero when the two 
probability distributions are same.

Table 1. Results for Set 1 of Example 1

Set 1

Methods Z1 Z2 Result

Bakar and Gegov 0.0508 0.0508 Z1 ~ Z2

Jiang et al. 0.1953 0.2024 Z1 < Z2

Mohamad et al. 0.0706 0.0706 Z1 ~ Z2

Ezadi et al. 0.5224 0.5224 Z1 ~ Z2

Ezadi and Allahviranloo
0.3564 0.3564 Z1 ~ Z2

0.2996 0.2996 Z1 ~ Z2

0.0897 0.0897 Z1 ~ Z2

Ezadi et al.
0.5921 0.5921 Z1 ~ Z2

0.5719 0.5719 Z1 ~ Z2

0.5224 0.5224 Z1 ~ Z2

R. Chutia
0.0648 0.0557 Z1 < Z2

0.0333 0.0286 Z1 < Z2

0.0018 0.0016 Z1 < Z2

Yangsue et al. 0.0105 0.0110 Z1 < Z2

Gong et al. 0.2375 0.2672 Z1 < Z2

Table 2. Results for Set 2 of Example 1

Set 2

Methods Z1 Z2 Result

Bakar and Gegov 0.0508 0.0508 Z1 ~ Z2

Jiang et al. 0.2049 0.1953 Z1 ﹥ Z2

Mohamad et al. 0.0706 0.0706 Z1 ~ Z2

Ezadi et al. 0.5224 0.5224 Z1 ~ Z2

Ezadi and Allahviranloo
0.3564 0.3564 Z1 ~ Z2

0.2821 0.2821 Z1 ~ Z2

0.0897 0.0897 Z1 ~ Z2
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Set 2

Methods Z1 Z2 Result

Ezadi et al.
0.5921 0.5921 Z1 ~ Z2

0.5719 0.5719 Z1 ~ Z2

0.5224 0.5224 Z1 ~ Z2

R. Chutia
0.0906 0.0648 Z1 < Z2

0.0571 0.0333 Z1 < Z2

0.0101 0.0018 Z1 < Z2

Yangsue et al. 0.0000 0.0000 Z1 ~ Z2

Gong et al. 0.3117 0.2375 Z1 ﹥ Z2

Jiang et al., R. Chutia and Gong et al. ranked the 
Z-numbers successfully in Table 3. We say they ranked 
successfully, because the ranking, Z1 < Z2, can be done in-
tuitively, too. When the Set 3 is examined, it can be seen 
that the membership functions of reliability are same in 
range and shape. They only differ in maximum member-
ship value, so one can expect that the membership func-
tion with greater value takes greater order in ranking.

Table 3. Results for Set 3 of Example 1

Set 3

Methods Z1 Z2 Result

Bakar and Gegov 0.0508 0.0508 Z1 ~ Z2

Jiang et al. 0.1916 0.1953 Z1 < Z2

Mohamad et al. 0.0706 0.0706 Z1 ~ Z2

Ezadi et al. 0.5224 0.5224 Z1 ~ Z2

Ezadi and Allahviranloo
0.3564 0.3564 Z1 ~ Z2

0.2821 0.2821 Z1 ~ Z2

0.0897 0.0897 Z1 ~ Z2

Ezadi et al.
0.5921 0.5921 Z1 ~ Z2

0.5719 0.5719 Z1 ~ Z2

0.5224 0.5224 Z1 ~ Z2

R. Chutia
0.2649 0.2970 Z1 < Z2

0.1945 0.2250 Z1 < Z2

0.1261 0.1530 Z1 < Z2

Yangsue et al. 0.0000 0.0000 Z1 ~ Z2

Gong et al. 0.2215 0.2375 Z1 < Z2

In Table 4, Z1 ﹥ Z2 according to Jiang et al., R. Chutia 
and Gong et al. Set 4 looks like Set 2 from many perspec-
tives. Differently, the reliability membership value of  in 
Set 4 is less than the Z2 in Set 2. While the decisions of 
Jiang et al. and Gong et al. are staying same as expected, 
R. Chutia changes his order preference as Z1 ﹥ Z2 for Set 
4 comparing to the decision in Set 2.

Table 4. Results for Set 4 of Example 1

Set 4

Methods Z1 Z2 Result

Bakar and Gegov 0.0508 0.0508 Z1 ~ Z2

Jiang et al. 0.2049 0.1916 Z1 ﹥ Z2

Mohamad et al. 0.0706 0.0706 Z1 ~ Z2

Ezadi et al. 0.5224 0.5224 Z1 ~ Z2

Ezadi and Allahviranloo
0.3564 0.3564 Z1 ~ Z2

0.2821 0.2821 Z1 ~ Z2

0.0897 0.0897 Z1 ~ Z2

Ezadi et al.
0.5921 0.5921 Z1 ~ Z2

0.5719 0.5719 Z1 ~ Z2

0.5224 0.5224 Z1 ~ Z2

R. Chutia
0.2970 0.2649 Z1 ﹥ Z2

0.2250 0.1945 Z1 ﹥ Z2

0.1530 0.1261 Z1 ﹥ Z2

Yangsue et al. 0.0000 0.0000 Z1 ~ Z2

Gong et al. 0.3117 0.2215 Z1 ﹥ Z2

For Table 5 which gives the results for Set 5 of ex-
ample 1, Jiang et al., R. Chutia, Yangsue et al., Gong et 
al. positioned above Z1. Because the range of reliability 
part membership functions are different, the method of 
Yangsue et al. produced a meaningful output for this set.

Table 5. Results for Set 5 of Example 1

Set 5

Methods Z1 Z2 Result

Bakar and Gegov 0.0508 0.0508 Z1 ~ Z2

Jiang et al. 0.2049 0.2554 Z1 < Z2

Mohamad et al. 0.0706 0.0706 Z1 ~ Z2

Ezadi et al. 0.5224 0.5224 Z1 ~ Z2

Ezadi and Allahviranloo
0.3564 0.3564 Z1 ~ Z2

0.2821 0.2821 Z1 ~ Z2

0.0897 0.0897 Z1 ~ Z2

Ezadi et al.
0.5921 0.5921 Z1 ~ Z2

0.5719 0.5719 Z1 ~ Z2

0.5224 0.5224 Z1 ~ Z2

R. Chutia
0.0906 0.0521 Z1 < Z2

0.0571 0.0268 Z1 < Z2

0.0101 0.0015 Z1 < Z2

Yangsue et al. 0.0735 0.0813 Z1 ~ Z2

Gong et al. 0.3117 0.7125 Z1 < Z2

Table 2 continued
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Set 6 has the same membership function for as Set 5 
from other respects except for the shape. So, Jiang et al., R. 
Chutia, Yangsue et al., Gong et al. give same answer, Z1 < 
Z2 in Table 6.

Table 6. Results for Set 6 of Example 1

Set 6

Methods Z1 Z2 Result

Bakar and Gegov 0.0508 0.0508 Z1 ~ Z2

Jiang et al. 0.1953 0.2554 Z1 < Z2

Mohamad et al. 0.0706 0.0706 Z1 ~ Z2

Ezadi et al. 0.5224 0.5224 Z1 ~ Z2

Ezadi and Allahviranloo
0.3564 0.3564 Z1 ~ Z2

0.2821 0.2821 Z1 ~ Z2

0.0897 0.0897 Z1 ~ Z2

Ezadi et al.
0.5921 0.5921 Z1 ~ Z2

0.5719 0.5719 Z1 ~ Z2

0.5224 0.5224 Z1 ~ Z2

R. Chutia
0.0648 0.0521 Z1 < Z2

0.0333 0.0286 Z1 < Z2

0.0018 0.0015 Z1 < Z2

Yangsue et al. 0.0741 0.0823 Z1 < Z2

Gong et al. 0.2375 0.7125 Z1 < Z2

In example 2, there are 3 fuzzy sets that have same 
constraint part A. This means that the example 2 will try 
to rank Z-numbers according to the changing reliability 
parts as in example 1. The equations of the given fuzzy 
sets can be seen in Equations (30), (31), (32) and (33).

 (30)

In Set 1,

 (31)

In Set 2,

 

 (32)
In Set 3,

 (33)

The sets of example 2 consist of the membership func-
tions that differ in critical values. The critical values term 
can be defined as the limit and the peak values of the 
piecewise continuous function. Considering that the right 

side is more reliable, a result can be predicted for Set 3, 
intuitively. But, estimating the result for Set 1 and Set 2 is 
looking hard. The results for example 2 can be seen in the 
following tables: Tables 7, 8 and 9.

Figure 5. Reliability membership functions of example 2

Table 7. Results for Set 1 of Example 2

Set 1

Methods Z1 Z2 Result

Bakar and Gegov 0.0680 0.0736 Z1 < Z2

Jiang et al. 0.2303 0.2597 Z1 < Z2

Mohamad et al. 0.0987 0.1422 Z1 < Z2

Ezadi et al. 0.5332 0.5399 Z1 < Z2

Ezadi and Allahviranloo
0.5062 0.5257 Z1 < Z2

0.4081 0.4300 Z1 < Z2

0.1325 0.1586 Z1 < Z2

Ezadi et al.
0.6358 0.6420 Z1 < Z2

0.6066 0.6130 Z1 < Z2

0.5332 0.5399 Z1 < Z2

R. Chutia
0.3854 0.3960 Z1 < Z2

0.2945 0.3000 Z1 < Z2

0.0756 0.0760 Z1 < Z2

Yangsue et al. 0.0602 0.0640 Z1 < Z2

Gong et al. 0.0888 0.1035 Z1 < Z2

All of the methods in the literature order Z1 < Z2.

Table 8. Results for Set 2 of Example 2

Set 2

Methods Z1 Z2 Result

Bakar and Gegov 0.0736 0.0736 Z1 ~ Z2

Jiang et al. 0.2420 0.2597 Z1 < Z2

Mohamad et al. 0.1422 0.1422 Z1 ~ Z2

Ezadi et al. 0.5399 0.5399 Z1 ~ Z2
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Set 2

Methods Z1 Z2 Result

Ezadi and Allahviranloo
0.5257 0.5257 Z1 ~ Z2

0.4300 0.4300 Z1 ~ Z2

0.1586 0.1586 Z1 ~ Z2

Ezadi et al.
0.6420 0.6420 Z1 ~ Z2

0.6130 0.6130 Z1 ~ Z2

0.5399 0.5399 Z1 ~ Z2

R. Chutia
0.0972 0.1094 Z1 ﹥ Z2

0.0500 0.0658 Z1 ﹥ Z2

0.0028 0.0104 Z1 ﹥ Z2

Yangsue et al. 0.0121 0.0128 Z1 < Z2

Gong et al. 0.1294 0.1553 Z1 < Z2

As in the other sets, the results of Jiang et al., Yangsue et 
al. and Gong et al. are consistent and Z1 < Z2. Unlike these 
results, the results of R. Chutia give Z1 ﹥ Z2 for all  α-levels.

Table 9. Results for Set 3 of Example 2

Set 3

Methods Z1 Z2 Result

Bakar and Gegov 0. 0736 0. 0736 Z1 ~ Z2

Jiang et al. 0.2577 0.2597 Z1 < Z2

Mohamad et al. 0.1422 0.1422 Z1 ~ Z2

Ezadi et al. 0.5399 0.5399 Z1 ~ Z2

Ezadi and Allahviranloo
0.5257 0.5257 Z1 ~ Z2

0.4300 0.4300 Z1 ~ Z2

0.1586 0.1586 Z1 ~ Z2

Ezadi et al.
0.6420 0.6420 Z1 ~ Z2

0.6130 0.6130 Z1 ~ Z2

0.5399 0.5399 Z1 ~ Z2

R. Chutia
0.0806 0.1094 Z1 ﹥ Z2

0.0415 0.0658 Z1 ﹥ Z2

0.0023 0.0104 Z1 ﹥ Z2

Yangsue et al. 0.0164 0.0165 Z1 < Z2

Gong et al. 0.1294 0.1553 Z1 < Z2

For Set 3, Jiang et al., Yangsue et al. and Gong et al. 
ranked the Z-numbers as Z1 < Z2. R. Chutia ranked as 
different from the other researchers. We were expecting 
the result, Z1 < Z2, intuitively. For the methods that fail to 
rank this set, we can interpret that as the fuzziness increas-
es, the ranking performances decrease.

In example 3, there are 3 fuzzy sets again. The con-
straint parts of these fuzzy sets are same with example 1 
and example 2. As in the other examples, we will try to 
measure the effect of the change in reliability on the rank-
ing. The related z-numbers and their membership func-
tions (Figure 6) are given below.

 (34)

The reliability part in Set 1,

 (35)

In Set 2,

 

 
(36)

In Set 3,

 (37)

Figure 6. Reliability membership functions of example 3

When the right side is considered more reliable, the 
sets of example 3 can be interpreted, intuitively. And this 
is an advantage while comparing the performances of the 
methods. From the perspective of algorithms, varying 
fuzziness can be challenging in Set 2. And for Set 3, the 
place of the peak values is different, although the limit 
values of the membership functions are same. This situa-
tion can also be challenging for the methods. The results 
of Set 1 from example 3 are given in the Table 10.

Table 8 continued
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Table 10. Results for Set 1 of Example 3

Set 1

Methods Z1 Z2 Result

Bakar and Gegov 0.0650 0.0809 Z1 < Z2

Jiang et al. 0.2220 0.2774 Z1 < Z2

Mohamad et al. 0.0715 0.1987 Z1 < Z2

Ezadi et al. 0.5299 0.5498 Z1 < Z2

Ezadi and Allahviranloo
0.4962 0.5541 Z1 < Z2

0.3969 0.4621 Z1 < Z2

0.1194 0.1973 Z1 < Z2

Ezadi et al.
0.6328 0.6511 Z1 < Z2

0.6034 0.6225 Z1 < Z2

0.5299 0.5498 Z1 < Z2

R. Chutia
0.3653 0.4308 Z1 < Z2

0.2768 0.3264 Z1 < Z2

0.0701 0.0827 Z1 < Z2

Yangsue et al. 0.2379 0.2523 Z1 < Z2

Gong et al. 0.0757 0.1514 Z1 < Z2

All of the methods in the literature give Z1 < Z2. It is 
seen from the Set 1 that  has a membership function closer 
to the right. The results are not surprising, when the right 
side is considered more reliable. 

In Table 11, the result of Yangsue et al. is different con-
trary to other methods. It may root from that Set 2 is less 
fuzzy than the other sets. And this may be compelling to 
find possible underlying distributions that represent the 
real distributions. We know that the number of underlying 
probability distributions will decrease, as the number of vi 
decreases.

Table 11. Results for Set 2 of Example 3

Set 2

Methods Z1 Z2 Result

Bakar and Gegov 0.0650 0.1067 Z1 < Z2

Jiang et al. 0.2309 0.5799 Z1 < Z2

Mohamad et al. 0.0506 0.5623 Z1 < Z2

Ezadi et al. 0.5299 0.5987 Z1 < Z2

Ezadi and Allahviranloo
0.4962 0.6774 Z1 < Z2

0.3969 0.6043 Z1 < Z2

0.1194 0.3799 Z1 < Z2

Set 2

Methods Z1 Z2 Result

Ezadi et al.
0.6328 0.6951 Z1 < Z2

0.6034 0.6682 Z1 < Z2

0.5299 0.5986 Z1 < Z2

R. Chutia
0.3653 0.6346 Z1 < Z2

0.2768 0.4808 Z1 < Z2

0.0701 0.1218 Z1 < Z2

Yangsue et al. 2.2010 0.5341 Z1 ﹥ Z2

Gong et al. 0.1192 0.9083 Z1 < Z2

For Set 3, the method of Yangsue et al. does not pro-
duce meaningful output and we have already mentioned 
about its reasons in previous sets. Except this, the results 
that all the methods give the same result with Z1< Z2< Z3 
can be seen in Table 12. It was an expected result that the 
membership functions was closer to the reliable region 
from Z1 to Z3.

Table 12. Results for Set 3 of Example 3

Set 3

Table 6 Z1 Z2 Z3 Result

Bakar and Gegov 0.0892 0.0929 0. 0929 Z1 < Z2 < Z3 

Jiang et al. 0.3084 0.3295 0.3507 Z1 < Z2 < Z3 

Mohamad et al. 0.2695 0.3293 0.3774 Z1 < Z2 < Z3 

Ezadi et al. 0.5629 0.5695 0.5761 Z1 < Z2 < Z3 

Ezadi and Allahviranloo
0.5899 0.6071 0.6236 Z1 < Z2 < Z3 

0.5030 0.5227 0.5418 Z1 < Z2 < Z3 

0.2481 0.2729 0.2974 Z1 < Z2 < Z3 

Ezadi et al.
0.6632 0.6691 0.6750 Z1 < Z2 < Z3 

0.6349 0.6411 0.6472 Z1 < Z2 < Z3 

0.5630 0.5695 0.5761 Z1 < Z2 < Z3 

R. Chutia
0.4552 0.5082 0.5639 Z1 < Z2 < Z3 

0.3388 0.3850 0.4339 Z1 < Z2 < Z3 

0.0834 0.0976 0.1127 Z1 < Z2 < Z3 

Yangsue et al. 0.0000 0.0000 0.0000 Z1 ~ Z2 ~ Z3 

Gong et al. 0. 1817 0.2023 0.2168 Z1 < Z2 < Z3 

4. Conclusions

There has been a lot of study about using Z-numbers in 
multi-criteria decision making problems since the day they 
were introduced. Z-numbers are important for this kind of 
problems, because the idea at the root of their emergence 
is that better decisions can be made by imitating the hu-

Table 11 continued
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man decision making ability. However, after the linguistic 
information had been converted into Z-number, an impor-
tant issue occurred about which Z-number was better. To 
obtain an answer to this question, several ranking methods 
have been proposed in time. The performances of some of 
these ranking methods were measured on the benchmark 
problem, some of them were not. In this paper, we exam-
ined the performance of two Z-number ranking methods 
whose performances are not examined yet. We tried to 
rank Z-numbers in the benchmark problem and present-
ed the advantages and disadvantages of these methods. 
The first method was relative entropy of Z-numbers by 
L. Yangsue et al. Their method was entropy based and it 
was bounded to probability distributions of Z-numbers 
which have probabilistic and fuzzy restrictions. The main 
disadvantage of this method is that the underlying prob-
ability distributions are same for the Z-numbers which 
have same constraint membership function and reliabil-
ity membership function with the same range. When the 
probability distributions are same, the relative entropy 
cannot differ given Z-numbers. The results of this method 
are consistent with the literature for example 1 and ex-
ample 2. For the Set 2 from example 3, this method pro-
duced an output contrary to the other methods; this may 
root from the fuzziness of this set. When one examines 
this set, the membership function looks precise, so this 
may reduce the possible underlying probabilities and may 
cause incorrect ordering. As an advantage, the method 
makes ranking process without converting Z-numbers into 
fuzzy numbers. Considering converting Z-numbers leads 
to loss of information, the method can be beneficial for 
critical applications. The second method was for ranking 
of discrete Z-numbers. As the name implies, the method is 
for discrete Z-numbers. Extending the method for contin-
uous Z-numbers may be considered for the future works. 
To obtain a better ranking performance, an improvement 
is made by setting the number of reliability functions as 
constant. The purpose of doing this was to avoid inaccu-
rate ranking while ordering the similar Z-numbers. As the 
ranking results are examined, the scores are consistent 
with the other methods in the literature. Therefore, it can 
be mentioned as an improvement. However, studies may 
be done on optimizing this constant number for better 
results in the future. The outputs of this method are same 
with the results of Jiang et.al. In spite of their good per-
formances, these methods have to convert Z-numbers. So, 
these methods should be used where a small amount of 
information loss can be tolerated.
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