
21

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

Journal of Computer Science Research
https://journals.bilpubgroup.com/index.php/jcsr

1. Introduction
Cyberattacks against federal information systems

in the USA are more and more sophisticated. The
probability of grave damages keeps increasing in
spite of efforts and the use of substantial resourc-
es. There are challenges in completely aggregating
heterogeneous data from various security tools, ana-
lyzing the collected data, prioritizing remediation

activities, and reporting in an approach to directing a
suitable response [1]. Cyberspace is a dynamic envi-
ronment. Targets are not always static. No offensive
or defensive capability keeps being indefinitely ef-
fective. There is no permanent advantage [2].

Cyber attackers generally have advantages over
the defender of an information system. The advan-
tages lie in: 1) Attackers can choose the place and
time of an attack; 2) Attackers can only exploit a sin-

*CORRESPONDING AUTHOR:
Lidong Wang, Institute for Systems Engineering Research, Mississippi State University, Vicksburg, MS 39180, USA; Email: lidong@iser.msstate.edu

ARTICLE INFO
Received: 26 January 2023 | Revised: 17 February 2023 | Accepted: 20 February 2023 | Published Online: 28 February 2023
DOI: https://doi.org/10.30564/jcsr.v5i1.5434

CITATION
Wang, L.D., Mosher, R.L., Falls, T.C., et al., 2023. Data Analytics of an Information System Based on a Markov Decision Process and a Partially
Observable Markov Decision Process. Journal of Computer Science Research. 5(1): 21-30. DOI: https://doi.org/10.30564/jcsr.v5i1.5434

COPYRIGHT
Copyright © 2023 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

ARTICLE

Data Analytics of an Information System Based on a Markov Decision
Process and a Partially Observable Markov Decision Process

Lidong Wang*, Reed L. Mosher, Terril C. Falls, Patti Duett

Institute for Systems Engineering Research, Mississippi State University, Vicksburg, MS 39180, USA

ABSTRACT
Data analytics of an information system is conducted based on a Markov decision process (MDP) and a partially

observable Markov decision process (POMDP) in this paper. Data analytics over a finite planning horizon and an
infinite planning horizon for a discounted MDP is performed, respectively. Value iteration (VI), policy iteration (PI),
and Q-learning are utilized in the data analytics for a discounted MDP over an infinite planning horizon to evaluate the
validity of the MDP model. The optimal policy to minimize the total expected cost of states of the information system
is obtained based on the MDP. In the analytics for a discounted POMDP over an infinite planning horizon of the
information system, the effects of various parameters on the total expected cost of the information system are studied.
Keywords: Predictive modelling; Information system; MDP; POMDP; Cybersecurity; Q-learning

https://doi.org/10.30564/jcsr.v5i1.5434

22

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

gle vulnerability while the defender has a much more
costly task of mitigating all kinds of vulnerabilities.
Human-centered cyber-defense practices have not
kept pace with threats of targeting and attacking
organizations. An integrated approach is needed
to speed up detection or responses and slow down
attacks. Security automation and intelligence shar-
ing can reduce the defender’s costs and save time.
Information sharing helps improve the efficiency in
detecting and responding to cyberattacks [3].

There are four major categories of attacks [4-6]:
1) Denial of service—trying to stop legitimate us-
ers from utilizing services; 2) Probe—trying to get
the information of a target host; 3) User to Root
(U2R)—unauthorized access to privileges of a local
super-user (root); and 4) Remote to Local (R2L)—
unauthorized access from a remote machine. Signa-
ture-based detection and anomaly-based detection
are the two main methods of detecting attacks.
Signature-based detection uses predefined attack
specifications that are clear and distinct signatures.
The database of signatures needs to be updated when
there are new signatures. Human security experts are
generally required to analyze data related to attacks
manually and formulate specifications regarding
attacks [7]. Anomaly-based detection is also called
behavior-based detection. It models behaviors of the
network, computer systems, and users; and raises an
alarm when there is a deviation from normal behav-
iors [8].

Many cyberattacks are characterized by a high
level of sophistication. Typically, an advanced per-
sistent threat (APT) is a kind of attack targeting an
asset or a physical system with high values. APT
attackers frequently leverage stolen credentials of
users or zero-day exploits to avoid triggering alerts.
This kind of attacks could continue over an extended
period of time [9]. Artificial intelligence (AI) or intel-
ligent agents are needed to fight attack, especially an
APT. Therefore, the mechanisms of cyber defense
should be 1) increasingly intelligent, 2) very flexi-
ble, and 3) robust enough to detect various threats
and mitigate them. Much research has been done on
intrusion detection and prevention systems. Various

methods and algorithms of artificial intelligence
have been used for cybersecurity. The algorithms in-
clude support vector machines (SVM), convolution
neural networks, recursive neural networks, general
artificial neural networks (ANN), Q-learning (QL),
decision trees (DT), k-means, k-nearest neighbors
(k-NN), etc. [10]. MDP and POMDP are used in this
paper because they deal with the optimal policy or
actions based on computed benefits or costs.

During an attack, both the attacker and the de-
fender are in the process of learning about each oth-
er. The knowledge evolution of the attacker and the
defender indicates the process of learning. A defend-
er’s knowledge includes, for example, attackers’ ob-
jectives, methods utilized, possible technical levels,
etc. An attacker’s knowledge can be the topology of
a defender’s network or information system, the op-
erating system version and applications running on
servers, etc. When an attack is detected, the defender
can expel the attacker or keep it in the information
system in order to observe or learn about it. The pol-
icy of always expelling the attacker is not optimal in
many situations. There is a trade-off between the op-
portunity of learning about the attacker and the risk
of the attacker’s damage during the defender’s learn-
ing process [11]. MDP and POMDP can handle the
trade-off and decide on optimal policies or actions.

This paper aims to conduct analytics of an in-
formation system based on an MDP and a POMDP.
Various methods and algorithms were used, includ-
ing value iteration (VI), policy iteration (PI), and
Q-learning in the analytics of a discounted MDP
over an infinite planning horizon to evaluate the
MDP model validity and parameters in the model. In
the modelling of a discounted POMDP over an in-
finite planning horizon, the effects of several impor-
tant parameters on the total expected reward of the
system were studied. The data analytics of the MDP
and POMDP in this paper was conducted using the R
language and its functions. The organization of this
paper is as follows: the next section introduces the
methods of MDP; Section 3 introduces the methods
of POMDP; Section 4 presents an MDP model of an
information system; Section 5 shows the analytics

23

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

of the information system based on MDP; Section
6 presents the analytics of the information system
based on POMDP; and the final section is the con-
clusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R,

γ> [12-14]: S refers to a set of states; A is a set of ac-
tions; P represents a transition probability matrix
that describes the transition from state s to state s'
(

possible technical levels, etc. An attacker’s knowledge can be the topology of a defender’s
network or information system, the operating system version and applications running on servers,
etc. When an attack is detected, the defender can expel the attacker or keep it in the information
system in order to observe or learn about it. The policy of always expelling the attacker is not
optimal in many situations. There is a trade-off between the opportunity of learning about the
attacker and a risk of the attacker’s damage during the defender’s learning process [11]. MDP and
POMDP can handle the trade-off and decide on optimal policy or actions.

This paper aims to conduct analytics of an information system based on an MDP and a
POMDP. Various methods and algorithms were used, including value iteration (VI), policy
iteration (PI), and Q-learning in the analytics of a discounted MDP over an infinite planning
horizon to evaluate the MDP model validity and parameters in the model. In the modelling of a
discounted POMDP over an infinite planning horizon, the effects of several important
parameters on the total expected reward of the system were studied. The data analytics of the
MDP and POMDP in this paper was conducted using the R language and its functions. The
organization of this paper is as follows: the next section introduces the methods of MDP; Section
3 introduces the methods of POMDP; Section 4 presents a MDP model of an information system;
Section 5 shows the analytics of the information system based on MDP; Section 6 presents the
analytics of the information system based on POMDP; and the final section is the conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '
( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state 
to the state ' after the action  .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 
  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat

∆ ← 0

) after action a (

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

); R refers to the
immediate reward after action a; and γ (

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

)
is a discounted reward factor. Solving an MDP is
often a process of finding an optimal policy to maxi-
mize the total expected reward or minimize the total
expected cost.

Policy iteration, value iteration, and Q-learning
are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms
of the three methods may be noticeably different, or
there can be convergence problems during iterations
if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure.
Therefore, the three methods are employed in this
paper, and results are compared to evaluate the mod-
el’s validity.

PI tries to find a better policy (compared to the
previous policy). An iterative process of policy eval-
uation and policy improvement is stopped when two
successive policy iterations result in the same policy,
indicating the optimal policy is achieved. The policy
iteration is described in Algorithm 1 [15,16].

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

is the probability of the transition. R(s, a, s') is the
immediate transition reward from the state s to the
state s' after the action a. V(s) and V(s') are the ex-
pected total reward of state s and state s', respective-
ly. π(s) is an optimal policy of state s.

An optimal policy of the MDP can also be
achieved by utilizing VI [15,17]. The stopping criterion
is that the value difference of two successive itera-
tive steps is less than the tolerance τ (a very small
positive number). Algorithm 2 shows the value itera-
tion process.

Algorithm 1. Policy Iteration.

1
Initial policy
Choose an initial policy arbitrarily for all

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

 R and π(s)

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

 A

2

Policy evaluation
Repeat

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

 For each

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← ('(, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (,) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
episode. The best action at state  is chosen according to the optimal policy ().

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← '(, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 
  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (' (, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← ' (, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

3 Output the optimal policy and maximal values of states

3. Partially observable Markov decision process

until

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 
  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (' (, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← ' (, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

3 Output the optimal policy and maximal values of states

3. Partially observable Markov decision process

 (a very small positive number)

3
Policy improvement routine
For each state s

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← ('(, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (,) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
episode. The best action at state  is chosen according to the optimal policy ().

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← '(, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

4 Stopping rule
If policy is stable, then stop; else go to step 2

Algorithm 2. Value Iteration.

1 Initialization
Select V(s) arbitrarily (e.g., V(s) = 0 for all

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

)

2

Value iteration process
Repeat

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

 For each

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← ('(, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (,) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
episode. The best action at state  is chosen according to the optimal policy ().

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← '(, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 
  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (' (, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← ' (, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

3 Output the optimal policy and maximal values of states

3. Partially observable Markov decision process

until

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 
  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (' (, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← ' (, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

3 Output the optimal policy and maximal values of states

3. Partially observable Markov decision process

3 Output the optimal policy and the maximal values of V(s)

Q-learning [17,18] enables an agent to learn the
Q-value function which is an optimal action-value
function. It can be employed to solve a discounted
MDP. Specifically, it is used to compute the expected
total reward (or cost) and find the optimal policy in
this paper. It can be used to perform data analytics
and simulation of a discounted MDP over an in-
finite planning horizon if the number of iterations
to perform is large enough. A Q-learning algorithm
is shown in Algorithm 3. Q(s,a) is the action-value
function.

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping criterion
is that the value difference of two successive iterative steps is less than the tolerance  (a very small
positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ < 

3 Output the optimal policy and the maximal values of  

Q-learning [17,18] enables an agent to learn the Q-value function which is an optimal action-value
function. It can be employed to solve a discounted MDP. Specifically, it is used to compute the expected
total reward (or cost) and find the optimal policy in this paper. It can be used to perform data analytics
and simulation of a discounted MDP over an infinite planning horizon if the number of iterations to
perform is large enough. A Q-learning algorithm is shown in Algorithm 3. (,) is the action-value
function.  ∈ (0, 1) is the learning rate and it is often chosen to be decreased appropriately, e.g.,  =
1 (+2) (n is the iteration step number or the epoch number). The iterative process and the Q-learning
update continue until the final step of an episode. The best action at state  is chosen according to the
optimal policy ().

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 

 , ←
'

(, , ')( , , ' + ('))

Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

3 Output the optimal policy and maximal values of states

3. Partially observable Markov decision process

In many applications, a POMDP is a more realistic model than the classic MDP [19]. The
transition model  ' , , actions A (s), and the reward function  , , ' in a POMDP are the same

 is the learning rate and it is of-
ten chosen to be decreased appropriately, e.g., β =

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping criterion
is that the value difference of two successive iterative steps is less than the tolerance  (a very small
positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ < 

3 Output the optimal policy and the maximal values of  

Q-learning [17,18] enables an agent to learn the Q-value function which is an optimal action-value
function. It can be employed to solve a discounted MDP. Specifically, it is used to compute the expected
total reward (or cost) and find the optimal policy in this paper. It can be used to perform data analytics
and simulation of a discounted MDP over an infinite planning horizon if the number of iterations to
perform is large enough. A Q-learning algorithm is shown in Algorithm 3. (,) is the action-value
function.  ∈ (0, 1) is the learning rate and it is often chosen to be decreased appropriately, e.g.,  =
1 (+2) (n is the iteration step number or the epoch number). The iterative process and the Q-learning
update continue until the final step of an episode. The best action at state  is chosen according to the
optimal policy ().

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 

 , ←
'

(, , ')( , , ' + ('))

Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

3 Output the optimal policy and maximal values of states

3. Partially observable Markov decision process

In many applications, a POMDP is a more realistic model than the classic MDP [19]. The
transition model  ' , , actions A (s), and the reward function  , , ' in a POMDP are the same

 (n is the iteration step number or the ep-
och number). The iterative process and the Q-learning
update continue until the final step of an episode.
The best action a at state s is chosen according to the
optimal policy π(s).

24

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

Algorithm 3. Q-learning.

1 Initialization
Initialize Q(s,a) arbitrarily (e.g., Q(s,a) = 0,

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 
  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (' (, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  ' (, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← ' (, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

3 Output the optimal policy and maximal values of states

3. Partially observable Markov decision process

)

2

Iterative process and Q-learning update
Repeat
 For each

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + ('))

∆ ← max (∆,   − )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (')))

4 Stopping rule
If policy is stable, then stop; else go to step 2

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← ('(, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (,) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
episode. The best action at state  is chosen according to the optimal policy ().

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← '(, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episode

 Q-learning update is as follows:

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← ('(, , ')( , , ' + (')∑))

4 Stopping rule
If policy is stable, then stop; else go to step 2

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )

2 Value iteration process
Repeat

∆ ← 0
For each  ∈ 

 ← ()
  ←  '(, (), ')( , (), ' + (')∑)
∆ ← max (∆,   − )

until ∆ < 

3 Output the optimal policy and the maximal values of  

Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (,) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
episode. The best action at state  is chosen according to the optimal policy ().

Algorithm 3. Q-learning.

1 Initialization
Initialize  , arbitrarily (e.g.,  , = 0, ∀ ∈ , ∀ ∈ )

2 Iterative process and Q-learning update
Repeat

For each  ∈ 
 , ← '(, , ')( , , ' + (')∑)
Q-learning update is as follows:
 , ← 1 −   , + [ , , ' + max

(',)]

until the final step of episodeuntil the final step of episode

3 Output the optimal policy and maximal values of states

3. Partially observable Markov decision
process

In many applications, a POMDP is a more real-
istic model than the classic MDP [19]. The transition
model P(s'|s, a), actions A (s), and the reward func-
tion R(s, a, s') in a POMDP are the same elements as
those in an MDP. The optimal action of the POMDP
depends only on the agent’s current belief state. The
agent does not know its real state; all it knows is the
belief state [20]. Besides the three elements, there are
a set of observations O =

elements as those in an MDP. The optimal action of the POMDP depends only on the agent’s current
belief state. The agent does not know its real state; all it knows is the belief state [20]. Besides the three
elements, there are a set of observations O = 1, 2, …,  and a set of conditional observation
probabilities   ',  in a POMDP [21].

If b was the previous belief state, and the agent takes action a and then perceives evidence o, then
the new belief state [20] is obtained using the following formula:

' ' =   '
 ' ,  () (1)

where  is a normalizing constant, making the belief state sum to 1.

The optimal value of any belief state b is the infinite expected sum of discounted rewards starting
in state b, and executing the optimal policy. The value function, V*(b), is expressed as follows [22]:

∗  ===∈ () ,  +  ∈  ,  ∗(') (2)

4. A Markov decision process model of the information system

4.1 The structure of the MDP model

The information system has the following states: State 1—no attacker is connected to the
information system; state 2—an attacker is connected to the information system, but it has not been
detected; and state 3—the attacker is detected. The defender needs to make a decision: wait (no action) or
expel only when an attack is detected (state 3). After an expelling action, the system will return to state 1.

The MDP model of the information system is established. State transitions among three states
(states 1-3) of two decisions are shown in Figure 1.

(a) (b)

Figure 1. State transitions of two decisions: (a) decision 1 (wait) and (b) decision 2 (expel).

4.2 State transitions and rewards

Transitions among states in the created MDP model of the information system rely on decisions
and there are two main probabilities 1 and 2 . 1 is the probability of the transition from state 1 (no
attacker’s connection) to state 2 (connected). 2 is the probability of the transition from state 2 to state 3
(detected). There are no transitions from state 1 to state 3 directly and no transitions from the state 3 to the
state 2. The probability of a transition from state 3 to state 1 is 0 for decision 1 and 1 for decision 2. The

 and a set of
conditional observation probabilities B(o|s', a) in a
POMDP [21].

If b was the previous belief state, and the agent
takes action a and then perceives evidence o, then
the new belief state [20] is obtained using the follow-
ing formula:
b'(s') = αP (o|s') Σs P (s'|s, a) b(s) (1)
where a is a normalizing constant, making the belief
state sum to 1.

The optimal value of any belief state b is the in-
finite expected sum of discounted rewards starting in
state b, and executing the optimal policy. The value
function, V*(b), is expressed as follows [22]:

elements as those in an MDP. The optimal action of the POMDP depends only on the agent’s current
belief state. The agent does not know its real state; all it knows is the belief state [20]. Besides the three
elements, there are a set of observations O = 1, 2, …,  and a set of conditional observation
probabilities   ',  in a POMDP [21].

If b was the previous belief state, and the agent takes action a and then perceives evidence o, then
the new belief state [20] is obtained using the following formula:

' ' =   '
 ' ,  () (1)

where  is a normalizing constant, making the belief state sum to 1.

The optimal value of any belief state b is the infinite expected sum of discounted rewards starting
in state b, and executing the optimal policy. The value function, V*(b), is expressed as follows [22]:

∗  ===∈ () ,  +  ∈  ,  ∗(') (2)

4. A Markov decision process model of the information system

4.1 The structure of the MDP model

The information system has the following states: State 1—no attacker is connected to the
information system; state 2—an attacker is connected to the information system, but it has not been
detected; and state 3—the attacker is detected. The defender needs to make a decision: wait (no action) or
expel only when an attack is detected (state 3). After an expelling action, the system will return to state 1.

The MDP model of the information system is established. State transitions among three states
(states 1-3) of two decisions are shown in Figure 1.

(a) (b)

Figure 1. State transitions of two decisions: (a) decision 1 (wait) and (b) decision 2 (expel).

4.2 State transitions and rewards

Transitions among states in the created MDP model of the information system rely on decisions
and there are two main probabilities 1 and 2 . 1 is the probability of the transition from state 1 (no
attacker’s connection) to state 2 (connected). 2 is the probability of the transition from state 2 to state 3
(detected). There are no transitions from state 1 to state 3 directly and no transitions from the state 3 to the
state 2. The probability of a transition from state 3 to state 1 is 0 for decision 1 and 1 for decision 2. The

 (2)

4. A Markov decision process model
of the information system

4.1 The structure of the MDP model

The information system has the following states:
State 1—no attacker is connected to the information
system; state 2—an attacker is connected to the in-
formation system, but it has not been detected; and
state 3—the attacker is detected. The defender needs
to make a decision: wait (no action) or expel only
when an attack is detected (state 3). After an expel-
ling action, the system will return to state 1.

The MDP model of the information system is es-
tablished. State transitions among three states (states
1-3) of two decisions are shown in Figure 1.

4.2 State transitions and rewards

Transitions among states in the created MDP
model of the information system rely on decisions
and there are two main probabilities P1 and P2. P1
is the probability of the transition from state 1 (no
attacker’s connection) to state 2 (connected). P2 is
the probability of the transition from state 2 to state
3 (detected). There are no transitions from state 1 to
state 3 directly and no transitions from the state 3 to
the state 2. The probability of a transition from state

been detected; and state 3—the attacker is detected. The defender needs to make a decision: wait
(no action) or expel only when an attack is detected (state 3). After an expelling action, the
system will return to state 1.

The MDP model of the information system is established. State transitions among three
states (states 1-3) of two decisions are shown in Figure 1.

(a) (b)

Figure 1. State transitions of two decisions: (a) decision 1 (wait) and (b) decision 2 (expel).

4.2 State transitions and rewards

Transitions among states in the created MDP model of the information system rely on
decisions and there are two main probabilities 1 and 2 . 1 is the probability of the transition
from the state 1 (no attacker’s connection) to the state 2 (connected). 2 is the probability of the
transition from the state 2 to the state 3 (detected). There are no transitions from the state 1 to the
state 3 directly and no transitions from the state 3 to the state 2. The probability of a transition
from the state 3 to the state 1 is 0 for decision 1 and 1 for decision 2. The probability matrix of
state transitions  and the reward matrix  for the two decisions are expressed as follows:

1)  and  for decision 1 are:

 =
1 − 1 1 0

0 1 − 2 2
0 0 1

(3)

 =
0 12 0
0 22 23
0 0 33

=
0 −  0
0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting
information during the learning process of knowing about the attack.

2)  and  for decision 2 are:

 (a) (b)
Figure 1. State transitions of two decisions: (a) decision 1 (wait) and (b) decision 2 (expel).

25

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

3 to state 1 is 0 for decision 1 and 1 for decision 2.
The probability matrix of state transitions Pd and the
reward matrix Rd for the two decisions are expressed
as follows:

1) Pd and Rd for decision 1 are:

probability matrix of state transitions  and the reward matrix  for the two decisions are expressed as
follows:

1)  and  for decision 1 are:

 =
1− 1 1 0

0 1 − 2 2
0 0 1

(3)

 =
0 12 0
0 22 23
0 0 33

=
0 −  0
0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting information during
the learning process of knowing about the attack.

2)  and  for decision 2 are:

 =
1− 1 1 0

0 1 − 2 2
1 0 0

(5)

 =
0 12 0
0 22 23
31 0 0

=
0 −  0
0 −   − 

−  0 0
(6)

where  is the cost due to expelling.

5. Data analytics of the information system based on the MDP

5.1 Analytics based on MDP over an infinite planning horizon

Let 1 = 0.15, 2 = 0.15,  = 1,  =3,  = 5. The analytics of the information system with a
discount  = 0.85 over an infinite planning horizon is conducted. Policy iteration and value iteration are
used in the data analytics and the obtained optimal policies in both the two methods are d (1, 1, 2),
indicating that decision 1, decision 1, and decision 2 are made on the state 1, the state 2, and the state 3,
respectively. The total expected costs of the two methods and Q-learning are listed in Table 1 to evaluate
the model validity in this paper. Gauss-Seidel’s algorithm is employed in VI for an improved convergence
speed. The accuracy is also improved compared with the result of Jacob’s algorithm. In Q-learning, the
learning rate  is set to 1 +2 in this paper and N is the number of iterations to perform. The results of
policy iteration and the Gauss-Seidel method are the same and are close to that of Q-learning, which
indicates the parameters in the MDP model are reasonable, and the created model is valid.

Table 1. Total expected costs of three states in the information system based on
various algorithms over an infinite planning horizon ( = 0.85).

Algorithms   
VI (Jacob’ algorithm) 12.68322 21.77953 11.77344

VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208

 (3)

probability matrix of state transitions  and the reward matrix  for the two decisions are expressed as
follows:

1)  and  for decision 1 are:

 =
1− 1 1 0

0 1 − 2 2
0 0 1

(3)

 =
0 12 0
0 22 23
0 0 33

=
0 −  0
0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting information during
the learning process of knowing about the attack.

2)  and  for decision 2 are:

 =
1− 1 1 0

0 1 − 2 2
1 0 0

(5)

 =
0 12 0
0 22 23
31 0 0

=
0 −  0
0 −   − 

−  0 0
(6)

where  is the cost due to expelling.

5. Data analytics of the information system based on the MDP

5.1 Analytics based on MDP over an infinite planning horizon

Let 1 = 0.15, 2 = 0.15,  = 1,  =3,  = 5. The analytics of the information system with a
discount  = 0.85 over an infinite planning horizon is conducted. Policy iteration and value iteration are
used in the data analytics and the obtained optimal policies in both the two methods are d (1, 1, 2),
indicating that decision 1, decision 1, and decision 2 are made on the state 1, the state 2, and the state 3,
respectively. The total expected costs of the two methods and Q-learning are listed in Table 1 to evaluate
the model validity in this paper. Gauss-Seidel’s algorithm is employed in VI for an improved convergence
speed. The accuracy is also improved compared with the result of Jacob’s algorithm. In Q-learning, the
learning rate  is set to 1 +2 in this paper and N is the number of iterations to perform. The results of
policy iteration and the Gauss-Seidel method are the same and are close to that of Q-learning, which
indicates the parameters in the MDP model are reasonable, and the created model is valid.

Table 1. Total expected costs of three states in the information system based on
various algorithms over an infinite planning horizon ( = 0.85).

Algorithms   
VI (Jacob’ algorithm) 12.68322 21.77953 11.77344

VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208

 (4)

where Ca is the cost due to attacking and Bi is the de-
fender’s benefit due to collecting information during
the learning process of knowing about the attack.

2) Pd and Rd for decision 2 are:

probability matrix of state transitions  and the reward matrix  for the two decisions are expressed as
follows:

1)  and  for decision 1 are:

 =
1− 1 1 0

0 1 − 2 2
0 0 1

(3)

 =
0 12 0
0 22 23
0 0 33

=
0 −  0
0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting information during
the learning process of knowing about the attack.

2)  and  for decision 2 are:

 =
1− 1 1 0

0 1 − 2 2
1 0 0

(5)

 =
0 12 0
0 22 23
31 0 0

=
0 −  0
0 −   − 

−  0 0
(6)

where  is the cost due to expelling.

5. Data analytics of the information system based on the MDP

5.1 Analytics based on MDP over an infinite planning horizon

Let 1 = 0.15, 2 = 0.15,  = 1,  =3,  = 5. The analytics of the information system with a
discount  = 0.85 over an infinite planning horizon is conducted. Policy iteration and value iteration are
used in the data analytics and the obtained optimal policies in both the two methods are d (1, 1, 2),
indicating that decision 1, decision 1, and decision 2 are made on the state 1, the state 2, and the state 3,
respectively. The total expected costs of the two methods and Q-learning are listed in Table 1 to evaluate
the model validity in this paper. Gauss-Seidel’s algorithm is employed in VI for an improved convergence
speed. The accuracy is also improved compared with the result of Jacob’s algorithm. In Q-learning, the
learning rate  is set to 1 +2 in this paper and N is the number of iterations to perform. The results of
policy iteration and the Gauss-Seidel method are the same and are close to that of Q-learning, which
indicates the parameters in the MDP model are reasonable, and the created model is valid.

Table 1. Total expected costs of three states in the information system based on
various algorithms over an infinite planning horizon ( = 0.85).

Algorithms   
VI (Jacob’ algorithm) 12.68322 21.77953 11.77344

VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208

 (5)

probability matrix of state transitions  and the reward matrix  for the two decisions are expressed as
follows:

1)  and  for decision 1 are:

 =
1− 1 1 0

0 1 − 2 2
0 0 1

(3)

 =
0 12 0
0 22 23
0 0 33

=
0 −  0
0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting information during
the learning process of knowing about the attack.

2)  and  for decision 2 are:

 =
1− 1 1 0

0 1 − 2 2
1 0 0

(5)

 =
0 12 0
0 22 23
31 0 0

=
0 −  0
0 −   − 

−  0 0
(6)

where  is the cost due to expelling.

5. Data analytics of the information system based on the MDP

5.1 Analytics based on MDP over an infinite planning horizon

Let 1 = 0.15, 2 = 0.15,  = 1,  =3,  = 5. The analytics of the information system with a
discount  = 0.85 over an infinite planning horizon is conducted. Policy iteration and value iteration are
used in the data analytics and the obtained optimal policies in both the two methods are d (1, 1, 2),
indicating that decision 1, decision 1, and decision 2 are made on the state 1, the state 2, and the state 3,
respectively. The total expected costs of the two methods and Q-learning are listed in Table 1 to evaluate
the model validity in this paper. Gauss-Seidel’s algorithm is employed in VI for an improved convergence
speed. The accuracy is also improved compared with the result of Jacob’s algorithm. In Q-learning, the
learning rate  is set to 1 +2 in this paper and N is the number of iterations to perform. The results of
policy iteration and the Gauss-Seidel method are the same and are close to that of Q-learning, which
indicates the parameters in the MDP model are reasonable, and the created model is valid.

Table 1. Total expected costs of three states in the information system based on
various algorithms over an infinite planning horizon ( = 0.85).

Algorithms   
VI (Jacob’ algorithm) 12.68322 21.77953 11.77344

VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208

 (6)

where Ce is the cost due to expelling.

5. Data analytics of the information
system based on the MDP

5.1 Analytics based on MDP over an infinite
planning horizon

Let P1 = 0.15, P2 = 0.15, Ce = 1, Bi =3, Ca = 5. The
analytics of the information system with a discount
γ= 0.85 over an infinite planning horizon is conduct-
ed. Policy iteration and value iteration are used in
the data analytics and the obtained optimal policies
in both the two methods are d (1, 1, 2), indicating
that decision 1, decision 1, and decision 2 are made
on the state 1, the state 2, and the state 3, respective-
ly. The total expected costs of the two methods and
Q-learning are listed in Table 1 to evaluate the mod-
el validity in this paper. Gauss-Seidel’s algorithm is
employed in VI for an improved convergence speed.
The accuracy is also improved compared with the
result of Jacob’s algorithm. In Q-learning, the learn-
ing rate β is set to

probability matrix of state transitions  and the reward matrix  for the two decisions are expressed as
follows:

1)  and  for decision 1 are:

 =
1− 1 1 0

0 1 − 2 2
0 0 1

(3)

 =
0 12 0
0 22 23
0 0 33

=
0 −  0
0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting information during
the learning process of knowing about the attack.

2)  and  for decision 2 are:

 =
1− 1 1 0

0 1 − 2 2
1 0 0

(5)

 =
0 12 0
0 22 23
31 0 0

=
0 −  0
0 −   − 

−  0 0
(6)

where  is the cost due to expelling.

5. Data analytics of the information system based on the MDP

5.1 Analytics based on MDP over an infinite planning horizon

Let 1 = 0.15, 2 = 0.15,  = 1,  =3,  = 5. The analytics of the information system with a
discount  = 0.85 over an infinite planning horizon is conducted. Policy iteration and value iteration are
used in the data analytics and the obtained optimal policies in both the two methods are d (1, 1, 2),
indicating that decision 1, decision 1, and decision 2 are made on the state 1, the state 2, and the state 3,
respectively. The total expected costs of the two methods and Q-learning are listed in Table 1 to evaluate
the model validity in this paper. Gauss-Seidel’s algorithm is employed in VI for an improved convergence
speed. The accuracy is also improved compared with the result of Jacob’s algorithm. In Q-learning, the
learning rate  is set to 1 +2 in this paper and N is the number of iterations to perform. The results of
policy iteration and the Gauss-Seidel method are the same and are close to that of Q-learning, which
indicates the parameters in the MDP model are reasonable, and the created model is valid.

Table 1. Total expected costs of three states in the information system based on
various algorithms over an infinite planning horizon ( = 0.85).

Algorithms   
VI (Jacob’ algorithm) 12.68322 21.77953 11.77344

VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208

 in this paper and N is the

number of iterations to perform. The results of policy
iteration and the Gauss-Seidel method are the same
and are close to that of Q-learning, which indicates
the parameters in the MDP model are reasonable,
and the created model is valid.

Table 1. Total expected costs of three states in the information
system based on various algorithms over an infinite planning

horizon (γ = 0.85).

Algorithms C1 C2 C3

VI (Jacob’ algorithm) 12.68322 21.77953 11.77344
VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208
PI 12.73186 21.82816 11.82208
Q-learning (N = 120,000) 12.67515 21.63394 11.90482

5.2 Analytics over a finite planning horizon

The total expected costs of three states (states 1-3)
are calculated utilizing the VI algorithm over a 40-
step planning horizon with and without a discount,
respectively. The rewards (the negative values of the
costs in this paper) at the end of the planning horizon
are set to 0 for three states for the beginning of the
backward recursion of the VI. Table 2 and Table
3 show the computation results. C1(n), C2(n), and
C3(n) represent the total expected cost at step n for
the state 1, the state 2, and the state 3, respectively.
It is shown that the total expected costs C1(n), C2(n),
and C3(n) in Table 2 are very close to C1, C2, and C3
for infinite planning horizon in Table 1, respectively
when Epoch n≤10 for a 40-step planning horizon
(γ = 0.85).

5.3 Analytics of the information system with
various parameters of the transition probability

Analytics of the information system with various
state transition probability parameters P1 and P2 is
performed based on the PI over an infinite planning
horizon. The following data are utilized: P2 = 0.15,
Ce = 1, Bi =3, Ca = 5, and γ = 0.85. The total expect-
ed cost Ci (i = 1, 2, 3) for states 1-3 at various P1 is
analyzed and the result is shown in Figure 2. All the
values of C1, C2, and C3 are increased with the in-
crease of P1.

26

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

Table 2. Total expected costs of three states computed using the

VI algorithm over a 40-step planning horizon (γ = 0.85).

Epoch n C1(n) C2(n) C3(n)
0 12.7065 21.8028 11.7967

5 12.6746 21.7710 11.7649

10 12.6029 21.6992 11.6931

15 12.4412 21.5375 11.5315

20 12.0769 21.1731 11.1672

25 11.2565 20.3509 10.3471

30 9.4191 18.4836 8.5165

33 7.3930 16.3143 6.5226

35 5.4787 14.0296 4.6918

36 4.3432 12.4763 3.6503

37 3.1180 10.5134 2.5912

38 1.8720 7.9649 1.6375

39 0.75 4.55 1.00

40 0 0 0

Table 3. Total expected costs of three states computed using the

VI algorithm over a 40-step planning horizon (γ = 1.0).

Epoch n C1(n) C2(n) C3(n)
0 85.3155 93.7710 76.7897
5 75.1760 83.7475 66.7897
10 64.9085 73.6947 56.7897
15 54.4104 63.5756 46.7897
20 43.5248 53.3072 36.7897
25 32.0626 42.7023 26.7897
30 19.9701 31.3391 16.7897
33 12.6354 23.7993 10.7897
35 7.9649 18.2667 6.7897
36 5.7897 15.2911 4.7946
37 3.7946 12.0945 3.0700
38 2.0700 8.5675 1.7500
39 0.75 4.55 1.00
40 0 0 0

Let P1 = 0.15, Ce = 1, Bi =3, Ca = 5, and γ = 0.85.

The PI over an infinite planning horizon is utilized.

The total expected cost Ci (i = 1, 2, 3) at various P2

is shown in Figure 3. All the values of C1, C2, and C3

are decreased with the increase of P2.

Figure 2. Total expected cost Ci (i = 1, 2, 3) at various P1.

Figure 3. Total expected cost Ci (i = 1, 2, 3) at various P2.

5.4 Analytics of the information system with
various transition cost parameter Ca

Analytics of the information system with various
transition cost parameters Ca is performed based on the
PI over an infinite planning horizon. The following data
are used: P1 = 0.15, P2 = 0.15, Ce = 1, Bi =3, and γ = 0.85.
Figure 4 illustrates the total expected cost Ci (i = 1, 2, 3)
at various Ca. The greater the value of Ca, the larger the
value of the expected total cost Ci.

Figure 4. Total expected cost Ci (i = 1, 2, 3) at various Ca.

27

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

6. Data analytics of the information
system based on POMDP

6.1 Analytics based on the POMDP over an
infinite planning horizon

Analytics of the information system is performed
based on a discounted POMDP over an infinite plan-
ning horizon. The following data are utilized: P1 =
0.15, P2 = 0.15, Ce = 1, Bi =3, Ca = 5, and γ = 0.85.
The following solution methods or algorithms are used
in solving the POMDP problem: “grid”, “enum”, “two-
pass”, “witness”, “incprune”, and “SARSOP” [23]. The
total expected cost Ct is shown in Table 4, indicating
that the result of SARSOP is very close to the results
of the other five methods (with the same results).

6.2 The effects of various parameters on
POMDP solutions

The following data are used to study the effects
of various parameters on the total expected cost Ct:
Ce = 1, Bi =3, and γ = 0.85. Figure 5 shows the effect
of the connecting probability P1 on Ct at various P2
(0.03, 0.15, and 0.27) when Ca = 5. Figure 6 shows
the effect of P1 on Ct at various Ca (3.5, 5.0, and
6.5) when P2 = 0.15. It is shown that Ct is increased
with an increase of P1. Similarly, the effects of the
detecting probability P2 on the total expected cost Ct
are studied. The results are shown in Figure 7 and
Figure 8. It is shown that Ctis decreased with an
increase of P2. Figure 9 shows the effect of Ca on Ct
at various P1 (0.03, 0.15, and 0.27) when P2 = 0.15.
Figure 10 shows the effect of Ca on Ct at various P2
(0.03, 0.15, and 0.27) when P1 = 0.15. It is shown

that Ct is increased with the increase of Ca.

Figure 5. The effect of P1 on Ct at various P2 when Ca = 5.

Figure 6. The effect of P1 on Ct at various Ca when P2 = 0.15.

Figure 7. The effect of P2 on Ct at various P1 when Ca = 5.0.

Table 4. The total expected cost Ct based on six various methods.

Methods grid enum twopass witness incprune SARSOP

Ct 15.46070 15.46070 15.46070 15.46070 15.45570 15.46073

28

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

Figure 8. The effect of P2 on Ct at various Ca when P1 = 0.15.

Figure 9. The effect of Ca on Ct at various P1 when P2 = 0.15.

Figure 10. The effect of Ca on Ct at various P2 when P1 = 0.15.

7. Conclusions

Data analytics of an information system based
on the MDP demonstrates that the algorithms in this
paper are effective in achieving optimal policies to
minimize the total expected costs of states of the
information system. These algorithms are effective
in analytics over a finite planning horizon and an in-
finite planning horizon (for a discounted MDP). The

VI (Gauss-Seidel’s algorithm) and the PI achieve
the same results, and the result of Q-learning is very
close to the results of the VI and the PI, indicating
the MDP model is valid. The pros of data analytics
of the information system based on the MDP lie in:
1) Multiple methods can be used to check the valid-
ity of the created MDP model; 2) It is convenient to
perform predictive modelling and study the effects of
various parameters on the total expected cost of the
information system.

One of the main cons of the MDP-based method
is that the state uncertainty is not considered while
this problem is fixed in the POMDP method. In the
analytics of a discounted POMDP (over an infinite
planning horizon) of the information system, the
total expected cost of the information system is in-
creased with an increase in the connecting probabil-
ity and is decreased with an increase in the detecting
probability. The cost caused by the attacker is a pri-
mary factor in increasing the total expected cost of
the information system.

Conflict of Interest
There is no conflict of interest.

Funding
This research received no external funding.

Acknowledgement
This paper is based upon work supported by Mis-

sissippi State University, USA.

References
[1] AlSadhan, T., Park, J.S. (editors), 2021. Lever-

aging information security continuous monitor-
ing to enhance cybersecurity. 2021 International
Conference on Computational Science and
Computational Intelligence (CSCI); 2021 Dec
15-17; Las Vegas, NV, USA. USA: IEEE. p.
753-759.

29

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

[2] Un i t ed S ta t e s Cyber Command , 2018 .
Achieve and Maintain Cyberspace Superiority,
Command Vision for U.S. Cyber Command
[Internet]. Available from: https://www.
c y b e r c o m . m i l / P o r t a l s / 5 6 / D o c u m e n t s /
USCYBERCOM%20 Vision%20April%20
2018.pdf?ver=2018-06-14-152556-010

[3] Wendt, D., 2019. Addressing both sides of the
cybersecurity equation. Journal of the Cyber
Security & Information Systems Information
Analysis Center. 7(2).

[4] Anuar, N.B., Sallehudin, H., Gani, A., et al.,
2008. Identifying false alarm for network in-
trusion detection system using hybrid data
mining and decision tree. Malaysian Journal of
Computer Science. 21(2), 101-115.

[5] Kukielka, P., Kotulski, Z. (editors), 2008. Analysis
of different architectures of neural networks for
application in intrusion detection systems. 2008
International Multiconference on Computer Sci-
ence and Information Technology; 2008 Oct 20-
22; Wisla, Poland. USA: IEEE. p. 807-811.

[6] Faisal, M.A., Aung, Z., Williams, J.R., et al.,
2012. Securing advanced metering infrastructure
using intrusion detection system with data stream
mining. In: Chau, M., Wang, G.A., Yue, W.T., et
al. (editors), intelligence and security informatics.
PAISI 2012. Lecture Notes in Computer Science.
Springer, Berlin: Heidelberg. pp. 96-111.

 DOI: https://doi.org/10.1007/978-3-642-30428-6_8
[7] Raiyn, J., 2014. A survey of cyber attack detec-

tion strategies. International Journal of Security
and Its Applications. 8(1), 247-256.

[8] Singh, J., Nene, M.J., 2013. A survey on ma-
chine learning techniques for intrusion detection
systems. International Journal of Advanced Re-
search in Computer and Communication Engi-
neering. 2(11), 4349-4355.

[9] Cardenas, A.A., Manadhata, P.K., Rajan, S.P.,
2013. Big data analytics for security. IEEE Se-
curity & Privacy. 11(6), 74-76.

[10] Wiafe, I., Koranteng, F.N., Obeng, E.N., et al.,
2020. Artificial intelligence for cybersecurity: A

systematic mapping of literature. IEEE Access.
8, 146598-146612.

[11] Bao, N., Musacchio, J., 2009. Optimizing the
decision to expel attackers from an information
system. 2009 47th Annual Allerton Conference
on Communication, Control, and Computing
(Allerton); 2009 Sep 30-Oct 2; Monticello, IL,
USA. USA: IEEE. p. 644-651.

[12] Mohri, M., Rostamizadeh, A., Talwalkar, A.,
2012. Foundations of machine learning. Adap-
tive computation and machine learning. MIT
Press: USA.

[13] Alsheikh, M.A., Hoang, D.T., Niyato, D., et al.,
2015. Markov decision processes with appli-
cations in wireless sensor networks: A survey.
IEEE Communications Surveys & Tutorials.
17(3), 1239-1267.

[14] Chen, Y., Hong, J., Liu, C.C., 2018. Modeling
of intrusion and defense for assessment of cyber
security at power substations. IEEE Transactions
on Smart Grid. 9(4), 2541-2552.

[15] van Otterlo, M., Wiering, M., 2012. Reinforce-
ment learning and Markov decision processes.
Reinforcement Learning. Springer, Berlin: Hei-
delberg. pp. 3-42.

[16] Sutton R.S., Barto, A.G., 2018. Reinforcement
learning: An introduction. MIT press: USA.

[17] Zanini, E., 2014. Markov Decision Processes
[Internet]. Available from: https://web.archive.
org/web/20170812131743id_/http://www.lancs.
ac.uk/~zaninie/MDP.pdf

[18] Liu, D., Khoukhi, L., Hafid, A. (editors), 2017.
Data offloading in mobile cloud computing: A
Markov decision process approach. 2017 IEEE In-
ternational Conference on Communications (ICC);
2017 May 21-25; Paris, France. USA: IEEE. p. 1-6.

[19] Xiang, X., Foo, S., 2021. Recent advances in
deep reinforcement learning applications for
solving partially observable Markov decision
processes (POMDP) problems: Part 1—funda-
mentals and applications in games, robotics and
natural language processing. Machine Learning
and Knowledge Extraction. 3(3), 554-581.

https://www.cybercom.mil/Portals/56/Documents/USCYBERCOM%20 Vision%20April%202018.pdf?ver=2018-06-14-152556-010
https://www.cybercom.mil/Portals/56/Documents/USCYBERCOM%20 Vision%20April%202018.pdf?ver=2018-06-14-152556-010
https://www.cybercom.mil/Portals/56/Documents/USCYBERCOM%20 Vision%20April%202018.pdf?ver=2018-06-14-152556-010
https://www.cybercom.mil/Portals/56/Documents/USCYBERCOM%20 Vision%20April%202018.pdf?ver=2018-06-14-152556-010
https://doi.org/10.1007/978-3-642-30428-6_8
https://web.archive.org/web/20170812131743id_/http://www.lancs.ac.uk/~zaninie/MDP.pdf
https://web.archive.org/web/20170812131743id_/http://www.lancs.ac.uk/~zaninie/MDP.pdf
https://web.archive.org/web/20170812131743id_/http://www.lancs.ac.uk/~zaninie/MDP.pdf

30

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

[20] Russell, S.J., Norvig, P., 2021. Artificial intelli-
gence a modern approach, 4th edition. Pearson
Education, Inc: UK.

[21] Kurniawati, H., Hsu, D., Lee, W.S., 2008. Sar-
sop: Efficient point-based pomdp planning by
approximating optimally reachable belief spac-
es. Robotics: Science and systems. MIT Press:

USA. pp. 65-72.
[22] Cassandra, A.R., Kaelbling, L.P., Littman, M.L.,

1994. Acting optimally in partially observable
stochastic domains. Aaai. 94, 1023-1028.

[23] Kamalzadeh, H., Hahsler, M., 2019. POMDP:
Introduction to Partially Observable Markov
Decision Processes.

