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1. Introduction
Cyberattacks against federal information systems 

in the USA are more and more sophisticated. The 
probability of grave damages keeps increasing in 
spite of efforts and the use of substantial resourc-
es. There are challenges in completely aggregating 
heterogeneous data from various security tools, ana-
lyzing the collected data, prioritizing remediation 

activities, and reporting in an approach to directing a 
suitable response [1]. Cyberspace is a dynamic envi-
ronment. Targets are not always static. No offensive 
or defensive capability keeps being indefinitely ef-
fective. There is no permanent advantage [2]. 

Cyber attackers generally have advantages over 
the defender of an information system. The advan-
tages lie in: 1) Attackers can choose the place and 
time of an attack; 2) Attackers can only exploit a sin-
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gle vulnerability while the defender has a much more 
costly task of mitigating all kinds of vulnerabilities. 
Human-centered cyber-defense practices have not 
kept pace with threats of targeting and attacking 
organizations. An integrated approach is needed 
to speed up detection or responses and slow down 
attacks. Security automation and intelligence shar-
ing can reduce the defender’s costs and save time. 
Information sharing helps improve the efficiency in 
detecting and responding to cyberattacks [3].

There are four major categories of attacks [4-6]: 
1) Denial of service—trying to stop legitimate us-
ers from utilizing services; 2) Probe—trying to get 
the information of a target host; 3) User to Root 
(U2R)—unauthorized access to privileges of a local 
super-user (root); and 4) Remote to Local (R2L)—
unauthorized access from a remote machine. Signa-
ture-based detection and anomaly-based detection 
are the two main methods of detecting attacks. 
Signature-based detection uses predefined attack 
specifications that are clear and distinct signatures. 
The database of signatures needs to be updated when 
there are new signatures. Human security experts are 
generally required to analyze data related to attacks 
manually and formulate specifications regarding 
attacks [7]. Anomaly-based detection is also called 
behavior-based detection. It models behaviors of the 
network, computer systems, and users; and raises an 
alarm when there is a deviation from normal behav-
iors [8].

Many cyberattacks are characterized by a high 
level of sophistication. Typically, an advanced per-
sistent threat (APT) is a kind of attack targeting an 
asset or a physical system with high values. APT 
attackers frequently leverage stolen credentials of 
users or zero-day exploits to avoid triggering alerts. 
This kind of attacks could continue over an extended 
period of time [9]. Artificial intelligence (AI) or intel-
ligent agents are needed to fight attack, especially an 
APT. Therefore, the mechanisms of cyber defense 
should be 1) increasingly intelligent, 2) very flexi-
ble, and 3) robust enough to detect various threats 
and mitigate them. Much research has been done on 
intrusion detection and prevention systems. Various 

methods and algorithms of artificial intelligence 
have been used for cybersecurity. The algorithms in-
clude support vector machines (SVM), convolution 
neural networks, recursive neural networks, general 
artificial neural networks (ANN), Q-learning (QL), 
decision trees (DT), k-means, k-nearest neighbors 
(k-NN), etc. [10]. MDP and POMDP are used in this 
paper because they deal with the optimal policy or 
actions based on computed benefits or costs.

During an attack, both the attacker and the de-
fender are in the process of learning about each oth-
er. The knowledge evolution of the attacker and the 
defender indicates the process of learning. A defend-
er’s knowledge includes, for example, attackers’ ob-
jectives, methods utilized, possible technical levels, 
etc. An attacker’s knowledge can be the topology of 
a defender’s network or information system, the op-
erating system version and applications running on 
servers, etc. When an attack is detected, the defender 
can expel the attacker or keep it in the information 
system in order to observe or learn about it. The pol-
icy of always expelling the attacker is not optimal in 
many situations. There is a trade-off between the op-
portunity of learning about the attacker and the risk 
of the attacker’s damage during the defender’s learn-
ing process [11]. MDP and POMDP can handle the 
trade-off and decide on optimal policies or actions.

This paper aims to conduct analytics of an in-
formation system based on an MDP and a POMDP. 
Various methods and algorithms were used, includ-
ing value iteration (VI), policy iteration (PI), and 
Q-learning in the analytics of a discounted MDP 
over an infinite planning horizon to evaluate the 
MDP model validity and parameters in the model. In 
the modelling of a discounted POMDP over an in-
finite planning horizon, the effects of several impor-
tant parameters on the total expected reward of the 
system were studied. The data analytics of the MDP 
and POMDP in this paper was conducted using the R 
language and its functions. The organization of this 
paper is as follows: the next section introduces the 
methods of MDP; Section 3 introduces the methods 
of POMDP; Section 4 presents an MDP model of an 
information system; Section 5 shows the analytics 
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of the information system based on MDP; Section 
6 presents the analytics of the information system 
based on POMDP; and the final section is the con-
clusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, 

γ> [12-14]: S refers to a set of states; A is a set of ac-
tions; P represents a transition probability matrix 
that describes the transition from state s to state s' 
(
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a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state 
to the state ' after the action  .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 
  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat

∆ ← 0
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is a discounted reward factor. Solving an MDP is 
often a process of finding an optimal policy to maxi-
mize the total expected reward or minimize the total 
expected cost. 

Policy iteration, value iteration, and Q-learning 
are often used to obtain an optimal policy for an 
MDP. Data analytics results based on the algorithms 
of the three methods may be noticeably different, or 
there can be convergence problems during iterations 
if the MDP model is not reasonable due to unsuitable 
model parameters or an incorrect model structure. 
Therefore, the three methods are employed in this 
paper, and results are compared to evaluate the mod-
el’s validity.

PI tries to find a better policy (compared to the 
previous policy). An iterative process of policy eval-
uation and policy improvement is stopped when two 
successive policy iterations result in the same policy, 
indicating the optimal policy is achieved. The policy 
iteration is described in Algorithm 1 [15,16]. 
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is the probability of the transition. R(s, a, s') is the 
immediate transition reward from the state s to the 
state s' after the action a. V(s) and V(s') are the ex-
pected total reward of state s and state s', respective-
ly. π(s) is an optimal policy of state s.

An optimal policy of the MDP can also be 
achieved by utilizing VI [15,17]. The stopping criterion 
is that the value difference of two successive itera-
tive steps is less than the tolerance τ (a very small 
positive number). Algorithm 2 shows the value itera-
tion process.

Algorithm 1. Policy Iteration.
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An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.

1 Initialization
Select   arbitrarily (e.g.,   = 0 for all  ∈ )
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Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (, ) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
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3 Output the optimal policy and the maximal values of V(s)

Q-learning [17,18] enables an agent to learn the 
Q-value function which is an optimal action-value 
function. It can be employed to solve a discounted 
MDP. Specifically, it is used to compute the expected 
total reward (or cost) and find the optimal policy in 
this paper. It can be used to perform data analytics 
and simulation of a discounted MDP over an in-
finite planning horizon if the number of iterations 
to perform is large enough. A Q-learning algorithm 
is shown in Algorithm 3. Q(s,a) is the action-value 
function. 

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping criterion
is that the value difference of two successive iterative steps is less than the tolerance  (a very small
positive number). Algorithm 2 shows the value iteration process.
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In many applications, a POMDP is a more realistic model than the classic MDP [19]. The
transition model  ' ,  , actions A (s), and the reward function  , , ' in a POMDP are the same
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conclusions.
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An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of
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the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
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4 Stopping rule
If policy is stable, then stop; else go to step 2

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.

Algorithm 2. Value Iteration.
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Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (, ) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
episode. The best action  at state  is chosen according to the optimal policy ().
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until the final step of episodeuntil the final step of episode
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3. Partially observable Markov decision 
process

In many applications, a POMDP is a more real-
istic model than the classic MDP [19]. The transition 
model P(s'|s, a), actions A (s), and the reward func-
tion R(s, a, s') in a POMDP are the same elements as 
those in an MDP. The optimal action of the POMDP 
depends only on the agent’s current belief state. The 
agent does not know its real state; all it knows is the 
belief state [20]. Besides the three elements, there are 
a set of observations O = 

elements as those in an MDP. The optimal action of the POMDP depends only on the agent’s current
belief state. The agent does not know its real state; all it knows is the belief state [20]. Besides the three
elements, there are a set of observations O = 1, 2, …,  and a set of conditional observation
probabilities   ',  in a POMDP [21].

If b was the previous belief state, and the agent takes action a and then perceives evidence o, then
the new belief state [20] is obtained using the following formula:

' ' =   '
  ' ,  () (1)

where  is a normalizing constant, making the belief state sum to 1.

The optimal value of any belief state b is the infinite expected sum of discounted rewards starting
in state b, and executing the optimal policy. The value function, V*(b), is expressed as follows [22]:

∗  ===∈ () ,  +  ∈   ,  ∗(') (2)

4. A Markov decision process model of the information system

4.1 The structure of the MDP model

The information system has the following states: State 1—no attacker is connected to the
information system; state 2—an attacker is connected to the information system, but it has not been
detected; and state 3—the attacker is detected. The defender needs to make a decision: wait (no action) or
expel only when an attack is detected (state 3). After an expelling action, the system will return to state 1.

The MDP model of the information system is established. State transitions among three states
(states 1-3) of two decisions are shown in Figure 1.
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Figure 1. State transitions of two decisions: (a) decision 1 (wait) and (b) decision 2 (expel).

4.2 State transitions and rewards

Transitions among states in the created MDP model of the information system rely on decisions
and there are two main probabilities 1 and 2 . 1 is the probability of the transition from state 1 (no
attacker’s connection) to state 2 (connected). 2 is the probability of the transition from state 2 to state 3
(detected). There are no transitions from state 1 to state 3 directly and no transitions from the state 3 to the
state 2. The probability of a transition from state 3 to state 1 is 0 for decision 1 and 1 for decision 2. The
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4.2 State transitions and rewards

Transitions among states in the created MDP model of the information system rely on
decisions and there are two main probabilities 1 and 2 . 1 is the probability of the transition
from the state 1 (no attacker’s connection) to the state 2 (connected). 2 is the probability of the
transition from the state 2 to the state 3 (detected). There are no transitions from the state 1 to the
state 3 directly and no transitions from the state 3 to the state 2. The probability of a transition
from the state 3 to the state 1 is 0 for decision 1 and 1 for decision 2. The probability matrix of
state transitions  and the reward matrix  for the two decisions are expressed as follows:

1)  and  for decision 1 are:

 =
1 − 1 1 0

0 1 − 2 2
0 0 1

(3)

 =
0 12 0
0 22 23
0 0 33

=
0 −  0
0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting
information during the learning process of knowing about the attack.

2)  and  for decision 2 are:
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Figure 1. State transitions of two decisions: (a) decision 1 (wait) and (b) decision 2 (expel).



25

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

3 to state 1 is 0 for decision 1 and 1 for decision 2. 
The probability matrix of state transitions Pd and the 
reward matrix Rd for the two decisions are expressed 
as follows:

1) Pd and Rd for decision 1 are:

probability matrix of state transitions  and the reward matrix  for the two decisions are expressed as
follows:

1)  and  for decision 1 are:
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=
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0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting information during
the learning process of knowing about the attack.

2)  and  for decision 2 are:

 =
1− 1 1 0

0 1 − 2 2
1 0 0

(5)

 =
0 12 0
0 22 23
31 0 0

=
0 −  0
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−  0 0
(6)

where  is the cost due to expelling.

5. Data analytics of the information system based on the MDP

5.1 Analytics based on MDP over an infinite planning horizon

Let 1 = 0.15, 2 = 0.15,  = 1,  =3,  = 5. The analytics of the information system with a
discount  = 0.85 over an infinite planning horizon is conducted. Policy iteration and value iteration are
used in the data analytics and the obtained optimal policies in both the two methods are d (1, 1, 2),
indicating that decision 1, decision 1, and decision 2 are made on the state 1, the state 2, and the state 3,
respectively. The total expected costs of the two methods and Q-learning are listed in Table 1 to evaluate
the model validity in this paper. Gauss-Seidel’s algorithm is employed in VI for an improved convergence
speed. The accuracy is also improved compared with the result of Jacob’s algorithm. In Q-learning, the
learning rate  is set to 1 +2 in this paper and N is the number of iterations to perform. The results of
policy iteration and the Gauss-Seidel method are the same and are close to that of Q-learning, which
indicates the parameters in the MDP model are reasonable, and the created model is valid.

Table 1. Total expected costs of three states in the information system based on
various algorithms over an infinite planning horizon ( = 0.85).

Algorithms   
VI (Jacob’ algorithm) 12.68322 21.77953 11.77344

VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208
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where Ce is the cost due to expelling.
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 in this paper and N is the 

number of iterations to perform. The results of policy 
iteration and the Gauss-Seidel method are the same 
and are close to that of Q-learning, which indicates 
the parameters in the MDP model are reasonable, 
and the created model is valid. 

Table 1. Total expected costs of three states in the information 
system based on various algorithms over an infinite planning 

horizon (γ = 0.85).

Algorithms C1 C2 C3

VI (Jacob’ algorithm) 12.68322 21.77953 11.77344
VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208
PI 12.73186 21.82816 11.82208
Q-learning (N = 120,000) 12.67515 21.63394 11.90482

5.2 Analytics over a finite planning horizon

The total expected costs of three states (states 1-3) 
are calculated utilizing the VI algorithm over a 40-
step planning horizon with and without a discount, 
respectively. The rewards (the negative values of the 
costs in this paper) at the end of the planning horizon 
are set to 0 for three states for the beginning of the 
backward recursion of the VI. Table 2 and Table 
3 show the computation results. C1(n), C2(n), and 
C3(n) represent the total expected cost at step n for 
the state 1, the state 2, and the state 3, respectively. 
It is shown that the total expected costs C1(n), C2(n), 
and C3(n)  in Table 2 are very close to C1, C2, and C3 
for infinite planning horizon in Table 1, respectively 
when Epoch n≤10 for a 40-step planning horizon  
(γ =  0.85). 

5.3 Analytics of the information system with 
various parameters of the transition probability 

Analytics of the information system with various 
state transition probability parameters P1 and P2 is 
performed based on the PI over an infinite planning 
horizon. The following data are utilized: P2 = 0.15, 
Ce = 1, Bi =3, Ca = 5, and γ = 0.85. The total expect-
ed cost Ci (i = 1, 2, 3) for states 1-3 at various P1 is 
analyzed and the result is shown in Figure 2. All the 
values of C1, C2, and C3 are increased with the in-
crease of P1.
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Table 2. Total expected costs of three states computed using the 

VI algorithm over a 40-step planning horizon ( γ = 0.85).

Epoch n C1(n) C2(n) C3(n)
0 12.7065 21.8028 11.7967

5 12.6746 21.7710 11.7649

10 12.6029 21.6992 11.6931

15 12.4412 21.5375 11.5315

20 12.0769 21.1731 11.1672

25 11.2565 20.3509 10.3471

30 9.4191 18.4836 8.5165

33 7.3930 16.3143 6.5226

35 5.4787 14.0296 4.6918

36 4.3432 12.4763 3.6503

37 3.1180 10.5134 2.5912

38 1.8720 7.9649 1.6375

39 0.75 4.55 1.00

40 0 0 0

Table 3. Total expected costs of three states computed using the 

VI algorithm over a 40-step planning horizon (γ = 1.0).

Epoch n C1(n) C2(n) C3(n)
0 85.3155 93.7710 76.7897
5 75.1760 83.7475 66.7897
10 64.9085 73.6947 56.7897
15 54.4104 63.5756 46.7897
20 43.5248 53.3072 36.7897
25 32.0626 42.7023 26.7897
30 19.9701 31.3391 16.7897
33 12.6354 23.7993 10.7897
35 7.9649 18.2667 6.7897
36 5.7897 15.2911 4.7946
37 3.7946 12.0945 3.0700
38 2.0700 8.5675 1.7500
39 0.75 4.55 1.00
40 0 0 0

Let P1 = 0.15, Ce = 1, Bi =3, Ca = 5, and γ =  0.85. 

The PI over an infinite planning horizon is utilized. 

The total expected cost Ci (i = 1, 2, 3) at various P2 

is shown in Figure 3. All the values of C1, C2, and C3 

are decreased with the increase of P2.

Figure 2. Total expected cost Ci (i = 1, 2, 3) at various P1.

Figure 3. Total expected cost Ci (i = 1, 2, 3) at various P2.

5.4 Analytics of the information system with 
various transition cost parameter Ca

Analytics of the information system with various 
transition cost parameters Ca is performed based on the 
PI over an infinite planning horizon. The following data 
are used: P1 = 0.15, P2 = 0.15, Ce = 1, Bi =3, and γ = 0.85. 
Figure 4 illustrates the total expected cost Ci (i = 1, 2, 3) 
at various Ca. The greater the value of Ca, the larger the 
value of the expected total cost Ci.

Figure 4. Total expected cost Ci (i = 1, 2, 3) at various Ca.
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6. Data analytics of the information 
system based on POMDP

6.1 Analytics based on the POMDP over an 
infinite planning horizon

Analytics of the information system is performed 
based on a discounted POMDP over an infinite plan-
ning horizon. The following data are utilized: P1 = 
0.15, P2 = 0.15, Ce = 1, Bi =3, Ca = 5, and γ =  0.85. 
The following solution methods or algorithms are used 
in solving the POMDP problem: “grid”, “enum”, “two-
pass”, “witness”, “incprune”, and “SARSOP” [23]. The 
total expected cost Ct is shown in Table 4, indicating 
that the result of SARSOP is very close to the results 
of the other five methods (with the same results). 

6.2 The effects of various parameters on 
POMDP solutions

The following data are used to study the effects 
of various parameters on the total expected cost Ct: 
Ce = 1, Bi =3, and γ = 0.85. Figure 5 shows the effect 
of the connecting probability P1 on Ct at various P2 
(0.03, 0.15, and 0.27) when Ca = 5. Figure 6 shows 
the effect of P1 on Ct at various Ca (3.5, 5.0, and 
6.5) when P2 = 0.15. It is shown that Ct is increased 
with an increase of P1. Similarly, the effects of the 
detecting probability P2 on the total expected cost Ct 
are studied. The results are shown in Figure 7 and 
Figure 8. It is shown that Ctis decreased with an 
increase of P2. Figure 9 shows the effect of Ca on Ct 
at various P1 (0.03, 0.15, and 0.27) when P2 = 0.15. 
Figure 10 shows the effect of Ca on Ct at various P2 
(0.03, 0.15, and 0.27) when P1 = 0.15. It is shown 

that Ct is increased with the increase of Ca.

Figure 5. The effect of P1 on Ct at various P2 when Ca = 5.

Figure 6. The effect of P1 on Ct at various Ca when P2 = 0.15.

Figure 7. The effect of P2 on Ct at various P1 when Ca = 5.0.

Table 4. The total expected cost Ct based on six various methods.

Methods grid enum twopass witness incprune SARSOP

Ct 15.46070 15.46070 15.46070 15.46070 15.45570 15.46073
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Figure 8. The effect of P2 on Ct at various Ca when P1 = 0.15.

Figure 9. The effect of Ca on Ct at various P1 when P2 = 0.15.

Figure 10. The effect of Ca on Ct at various P2 when P1 = 0.15.

7. Conclusions

Data analytics of an information system based 
on the MDP demonstrates that the algorithms in this 
paper are effective in achieving optimal policies to 
minimize the total expected costs of states of the 
information system. These algorithms are effective 
in analytics over a finite planning horizon and an in-
finite planning horizon (for a discounted MDP). The 

VI (Gauss-Seidel’s algorithm) and the PI achieve 
the same results, and the result of Q-learning is very 
close to the results of the VI and the PI, indicating 
the MDP model is valid. The pros of data analytics 
of the information system based on the MDP lie in: 
1) Multiple methods can be used to check the valid-
ity of the created MDP model; 2) It is convenient to 
perform predictive modelling and study the effects of 
various parameters on the total expected cost of the 
information system. 

One of the main cons of the MDP-based method 
is that the state uncertainty is not considered while 
this problem is fixed in the POMDP method. In the 
analytics of a discounted POMDP (over an infinite 
planning horizon) of the information system, the 
total expected cost of the information system is in-
creased with an increase in the connecting probabil-
ity and is decreased with an increase in the detecting 
probability. The cost caused by the attacker is a pri-
mary factor in increasing the total expected cost of 
the information system.
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