
31

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

Journal of Computer Science Research
https://journals.bilpubgroup.com/index.php/jcsr

1. Introduction
Software design and development research started

as a mathematical branch [1,2]. Since then and to the
end of the previous millennia, the emphasis was put
on tackling complexity and delivering high quality,
derived from rigor, and user-friendliness software [3,4].

Despite good fundamental textbooks on software
engineering [5-8], unfortunately, the state of the art in
the field became largely dominated by technologies
and glossy graphic user interfaces (GUI) [9], instead

of principles and sound methodology. However, for-
tunately, there is still research and results inspired by
the roots of this discipline. Among them, we were
always interested in constraint-driven approaches.

1.1 Literature survey

Almost three decades ago, for example, Hoog et al. [3]
put it forward as an alternative to the waterfall mod-
el. Then, Lano [10] added constraints to UML class
diagrams and state machines in the framework of

*CORRESPONDING AUTHOR:
Christian Mancas, Math. & Computer Science Department, Ovidius University, Constanta, 900720, Romania; Email: christian.mancas@gmail.com

ARTICLE INFO
Received: 14 February 2023 | Revised: 28 February 2023 | Accepted: 1 March 2023 | Published Online: 10 March 2023
DOI: https://doi.org/10.30564/jcsr.v5i1.5476

CITATION
Mancas, C., Serban, C., Mancas, D.C., 2023. On Software Application Database Constraint-driven Design and Development. Journal of Comput-
er Science Research. 5(1): 31-45. DOI: https://doi.org/10.30564/jcsr.v5i1.5476

COPYRIGHT
Copyright © 2023 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

ARTICLE

On Software Application Database Constraint-driven Design and
Development

Christian Mancas*, Cristina Serban, Diana Christina Mancas

Math. & Computer Science Department, Ovidius University, Constanta, 900720, Romania

ABSTRACT
This paper presents a methodology driven by database constraints for designing and developing (database)

software applications. Much needed and with excellent results, this paradigm guarantees the highest possible quality
of the managed data. The proposed methodology is illustrated with an easy to understand, yet complex medium-sized
genealogy software application driven by more than 200 database constraints, which fully meets such expectations.
Keywords: Database constraint-driven design and development; Database constraint; Data plausibility; Software
architecture; Design and development; The (elementary) mathematical data model; MatBase

mailto:christian.mancas@gmail.com

32

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

model-driven development (MDD), advocating for
constraint-driven development (CDD). In the after-
math, Demuth et al. [11] went further and explored
constraint-driven modeling (CDM), extended by
Rebmann et al. [12] who proposed to automate the
generation of model constraints instead of generating
entire models.

In parallel, constraint-driven approaches were
considered as well in narrower subfields of software
engineering. For example, Siddiqui [13] proposed his
Pike, a tool for checking code conformance to spec-
ifications; Shrotri et al. [14] use it for Machine Learn-
ing; Ciortuz [15] applies it to concurrent parsing of a
natural language.

Moreover, such approaches are used outside the
software engineering realm as well. For example,
in linguistics, Kumaran [16] extends correspondingly
Noam Chomsky’s Agree, while, in PCB hardware
design, OrCAD [17] makes heavy use of the con-
straint-driven paradigm.

Getting back to software engineering, let us first
note that most of the applications designed, devel-
oped, maintained, and used are database (db) ones:
extremely few software applications of today are not
managing databases (dbs). However, db constraints
are not systematically considered in software engi-
neering design and development approaches any-
more. Moreover, what is very intriguing for us is the
spreading of the JSON technology, which gives the
false impression that there is no need for db design
anymore: you just design objects for the applications
and JSON is automatically mapping them into db ta-
bles, with all needed constraints.

We advocate a dual approach: you should care-
fully design and implement a db and then use an
advanced tool of the 5th generation of programming
languages, e.g., MatBase [18], to automatically gener-
ate accordingly the software application for manag-
ing that db. It is true that the Relational Data Model
(RDM) [19,20], which is powering most of today’s
DB Management Systems (DBMS), as well as the
NoSQL datastores are not at all suited for such an
approach: RDM provides only six constraint types,
while NoSQL, practically, only one of them. This is

probably why even otherwise excellent recent text-
books on db software application design like, for ex-
ample, the one by Kleppmann [21], is almost not even
mentioning db constraints.

In fact, while software engineering is still crafts-
manship, dbs are pure applied math, namely the naïve
algebraic theory of sets, relations, and functions, plus
the first-order predicate logic (FOPL). In particu-
lar, db constraints are formalized by closed FOPL
expressions, while db queries by the open ones [20]
(recall that a FOPL expression is closed whenever all
of its variable occurrences are bound to at least one
quantifier and open when at least one of them is free,
i.e. not bound to any quantifier; for example, all var-
iable occurrences within a SQL SELECT clause are
free, while all those in either WHERE or HAVING
ones are bounded to a universal quantifier).

MatBase is a prototype intelligent db and knowl-
edge base management system, based mainly on
the (Elementary) Mathematical Data Model ((E)
MDM) [22], but also on the Entity-Relationship (E-R)
one (E-RDM) [20,23], RDM, and Datalog [19,24]. Its (E)
MDM GUI accepts mathematical db schemes, trans-
lates them into both RDM and E-RDM ones, and
automatically generates corresponding db software
applications for managing them.

(E)MDM provides 73 constraint types on sets, re-
lations, and functions (that includes, either explicitly,
or implicitly, the 6 relational ones provided by the
RDM). All these 73 types belong to the Horn clauses
class, the largest FOPL one for which the implication
problem is decidable.

1.2 Paper outline

MatBase’s strategy to enforce constraints (which
was manually used by Mancas [9]), based on our pro-
posed DB Constraint-Driven Design and Develop-
ment (DBCDDD) approach, is presented in the next
section of this paper.

The third section presents and discusses the re-
sults of applying it to an interesting sub-universe
centered around the genealogy trees. The paper ends
with conclusions and references.

33

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

2. The DB constraint-driven design
and development approach in software
engineering

2.1 Proposed methodology

The DB Constraint-Driven Design and Develop-
ment (DBCDDD) approach that we are proposing in
this paper is made up of the 6 methodological steps
summarized in Figure 1.

2.2 Sub-universe analysis

You might want to apply in this step Algo-
rithm A0 from Mancas [20], such as to obtain for the
sub-universe of interest an E-R data model [20], which
is made of the following 3 deliverables:

(i) A comprehensive set of E-R diagrams (E-RDs);
(ii) An associated set of restrictions (business rules);
(iii) An informal description of the corresponding

sub-universe.
This E-R data model (the only one that busi-

ness-oriented people may understand) should be ob-
tained with the help of and, finally, negotiated with,
and approved by our customers. The E-R GUI of

MatBase [25] may be used to draw, store, and main-
tain E-RDs.

During this step, the domain-driven approach [5,7]
is very useful as well.

Obviously, not even Artificial Intelligence (AI)
might ever fulfill this task, but only, at most, help
software architects!

2.3 Translation of the resulting E-R data model
into a(n) (E)MDM scheme

This step, detailed in Algorithm A1 from Man-
cas [26], can be partially done automatically, with the
help of an intelligent DBMS like MatBase, which is
translating E-RDs into (E)MDM schemes, but only
software architects may formalize restrictions (busi-
ness rules) as FOPL constraints.

2.4 (E)MDM scheme validation and enhance-
ment

For validation, you might want to apply in this
step the Algorithm A2 from Mancas [26], to correct
any modeling errors done in the first step (e.g., de-
claring a set as being of the relationship type when,

1.2. Paper outline

MatBase‘s strategy to enforce constraints (which was manually used by Mancas [9]), based on
our proposed DB Constraint-Driven Design and Development (DBCDDD) approach, is presented
in the next section of this paper.

The third section presents and discusses the results of applying it to an interesting sub-universe
centered around the genealogy trees. The paper ends with conclusions and references.

2. The DB Constraint-Driven Design and Development Approach in Software
Engineering

The DB Constraint-Driven Design and Development (DBCDDD) approach that we are proposing
in this paper is made up of the 6 methodological steps summarized in Figure 1.

2.1. Proposed methodology

sub-universe analysis

translation of the resulting E-R data model into a(n) (E)MDM scheme

(E)MDM scheme validation and enhancement

corresponding RDM db generation

corresponding db software application generation driven by the non-relational db constraints

for all constraints, detect all use cases in which they might be violated

based on the above, establish the corresponding event-driven procedures needed to be coded

generate needed code to enforce all constraints that cannot be enforced by the host DBMS

ergonomic polishing of the generated application GUI

Figure 1. The DBCDDD methodology steps

2.2. Sub-universe analysis

You might want to apply in this step the Algorithm A0 from Mancas [20], such as to obtain for the
sub-universe of interest an E-R data model [20], which is made of the following 3 deliverables:

Figure 1. The DBCDDD methodology steps.

34

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

in fact, it can only be of the entity one or adding a
constraint that does not exist in reality).

In our opinion, data correctness is utopian: for
example, very probably, almost nobody knows or
will ever know what the height of HM Queen Eliza-
beth II in Her last days on Earth was (moreover, we
bet that most of us do not exactly know our current
height, most of the time). Dually, anybody should be
sure that the height in centimeters of any world per-
son, any time, is a number between 20 (under which
no premature baby managed to survive) and 275 (as
the tallest man recorded was 272), so that only the
values in this interval are plausible for the Height
property of persons.

We understand by plausible data value (abbrevi-
ated as plausible data), in any sub-universe of dis-
course, any value of the data associated with a prop-
erty (i.e., function codomain) that is satisfying all the
business rules of that universe (or, equivalently, is
not violating any of them). As such, data plausibility,
i.e., the fact that a db instance stores only plausible
values, is the highest possible form of data quality.

Beware that any existing constraint in the mod-
eled sub-universe which is missing in your (E)MDM
(or any other data model) scheme allows for storing
unplausible data in your db (e.g., two persons with
the same SSN (i.e., US Social Security Number), two
countries with a same name, persons living a neg-
ative number of days or more than 120 years, etc.);
dually, any constraint in your data model scheme
that does not exist in the corresponding sub-uni-
verse prevents your software application end-users
to store valid data in your db (e.g., enforcing for
a MARRIAGES set/table the constraint Husband •
Wife minimally one-to-one, i.e., declaring this set a
relationship, instead of an entity type one, prevents
storing data on remarriages, like, for example, the
famous ones between Richard Burton and Elizabeth
Taylor).

Moreover, enforcing redundant constraints (e.g.,
that Mother: PEOPLE → PEOPLE is not only acy-
clic, i.e., nobody may be his/her own mother, neither
directly, nor indirectly, but also irreflexive and asym-
metric, as acyclicity implies both of them), while

not tampering with the db instances plausibility, is
slowing down your corresponding software applica-
tion for nothing. Consequently, redundant constraints
should never be enforced, but only minimal con-
straint sets must be [22].

Dually, and much more important, we always
need to make sure that our constraint sets are always
coherent [22]: For example, if a constraint set contains
both the constraint CurrentCity acyclic, i.e., no city
may be its current one, neither directly, nor indirect-
ly, and the constraint CurrentCity reflexive, i.e. the
current city of any city is itself, then the correspond-
ing CurrentCity column (of a CITIES table) would
ever remain void (i.e., the corresponding function’s
image would always be the empty set), because
acyclicity implies reflexivity, and any set containing
both reflexivity and reflexivity is incoherent. Conse-
quently, we should always remove incoherence from
our constraint sets, preferably before coding an inco-
herent one.

Enhancements involve constraint discovery, as
well as guaranteeing the coherence and minimality of
the constraint sets. This second sub-step is the crucial
one in the process and needs thorough deep think-
ing. Both (E)MDM and MatBase provide assistance
algorithms for detecting all missing constraints [26-30],
as well as for guaranteeing the coherence and mini-
mality of the constraint sets [22,26].

Obviously, this step too may only be taken by
software and db architects: For example, only humans
may decide whether, in a given sub-universe, a func-
tion is a one-to-one, or a function product is minimally
one-to-one or not (e.g. Mormons, some Arabs, some
Chinese, etc. may have several simultaneous marriag-
es, orthodox Christians may have at most 4 sequential
marriages in a lifetime, catholic ones only one, except
for exceptional papal approvals, etc.).

2.5 Corresponding RDM db generation

This step may be fully automated by an intelli-
gent DBMS and MatBase is successfully doing it.
Alternatively, you might do it manually, by using
Algorithm A7 from Mancas [26].

This step also produces the sets of the non-rela-

35

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

tional constraints and of the relational ones that can-
not be enforced by the target DBMS (e.g., MS SQL
Server wrongly assumes implicitly that the NULLS
set contains only one value, not infinite many ones;
as such, it cannot enforce uniqueness constraints on
table columns that might contain more than one null
value). All constraints from both these sets must be
enforced in the next step.

2.6 Corresponding db software application
generation

This step is the core DBCDDD one: It takes as
input the two above constraint sets that cannot be
enforced by the DBMS host and generates the corre-
sponding software application, which must enforce
them instead. This step has the 3 sub-steps separated
in Figure 1 by dashed lines.

Especially this step might never be totally entrust-
ed to anything or anybody else than a software and
db architect. (E)MDM and MatBase are only assist-
ing this process with Algorithm A9 from Mancas [26]
and are automatically generating corresponding code
whenever possible.

2.7 Ergonomic polishing of the generated ap-
plication GUI

Even when using an intelligent tool like MatBase,
at the end of the previous step you end up with only
a set of MS Windows forms and their classes that are
enforcing all the constraints. However, they must be
ergonomically architectured in a hierarchy of forms
and sub-forms that are called by a menu of the corre-
sponding application.

Moreover, basic ergonomic principles should
incite you to replace all context-independent (and,
generally, incomprehensible to application’s end-us-
ers, as they are hard to understand sometimes even
by senior db developers) DBMS error messages with
context-sensitive ones, to add facilities like pre-pro-
grammed queries and reports, navigation shortcuts
between related data, to embellish the standard GUI
with end-users fancied options, etc.

Obviously, all these may only be accomplished

manually, by developers.

3. Results and discussion on applying
DBCDDD to a genealogy sub-universe

Mancas [9] considered an extended genogram
sub-universe, by adding to the genealogy trees data
on countries, cities, monuments, marriages, and
reigns of rulers over countries.

The MS SQL Server 2022 Developer edition was
chosen as the application db host.

3.1 The sub-universe objects and their main
properties

The corresponding E-R data model contains the
following 13 object types (with their main properties
in parentheses):

1) PERSONS (Name, Sex, Birth and PassedAway
Dates and Cities, Mother, Father, Killer, BurialMon-
ument, Family/Dynasty, Title, Nationality, Website,
Picture, Notes);

2) DYNASTIES/FAMILIES (Name, Country,
Founder, ParentHouse);

3) TITLES (Name);
4) MARRIAGES (Husband, Wife, Marriage, and

Divorce Dates);
5) COUNTRIES (Name, Capital city, Current-

Country, MainNationality);
6) CITIES (Name, Country, CurrentCity);
7) COUNTRIES_CAPITALS (Country, City, Es-

tablishingYear);
8) CITIES_PICTURES (City, Picture, PictDe-

scription);
9) MONUMENTS (Name, Type, City, Website,

Notes);
10) MONUMENT_TYPES (Name);
11) MONUMENTS_PICTURES (Monument,

Picture, PictDescription);
12) REIGNS (Person, Title, Country, Start and

End Dates, Notes);
13) PARAMS (maxLifeYears, minMFertileAge,

minFFertileAge, maxMFertileAge, maxFFertileAge,
maxSurvivalMDays, maxSurvivalFDays).

The Sex property accepts 3 values: ‘F’ for fe-

36

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

males, ‘M’ for males, and ‘N’ for anything else (e.g.,
military occupations, international bodies adminis-
trations, etc.).

The corresponding structural E-RD [20] is shown
in Figure 2.

3.2 The sub-universe constraints

This sub-universe is governed by 210 business
rules. Their corresponding constraints are grouped as
follows:

(i) 172 relational constraints, out of which:
- 21 domain (range) ones;
- 53 totality (not-null) ones;
- 2 default value ones;
- 12 primary key ones;
- 26 unique ones;
- 28 reference integrity (foreign key) ones;
- 30 tuple (check) ones.

(ii) 38 non-relational constraints.
Out of these 210 constraints, only the following

65 might raise issues (as the domain, totality, except
for 2 of them, the ones for pictures, default, primary
and foreign keys, as well as most of the tuple/check
ones are simple to have them enforced by the MS
SQL Server):
	C1: There may not be two persons of the same

dynasty (family) born in the same year and
having the same names.

	C2: No mother gives the same names to two of
her children.

	C3: No father gives the same names to two of
his children.

	C4: No person may live less than 0 days and
more than maxLifeYears years.

	C5: Mothers’ sex must be ‘F’.
	C6: Wives’ sex must be ‘F’.
	C7: Fathers’ sex must be ‘M’.
	C8: Husbands’ sex must be ‘M’.
	C9: Nobody may be his/her own mother, nei-

ther directly, nor indirectly (i.e., no ancestor,
other than his/her mother, or descendant of
somebody may be that somebody’s mother).

	C10: Nobody may be his/her own father, nei-
ther directly, nor indirectly (i.e., no ancestor,
other than his/her father, or descendant of
somebody may be that somebody’s father).

	C11: Nobody may be his/her ancestor or de-
scendant.

	C12: No woman may give birth before being
minFertileFAge or after being maxFertileFAge
years old, or after her death.

	C13: No man may have a child before being
minMertileFAge or after being maxMer-
tileFAge years old, or more than maxMSurviv-
alDays after his death.

	C14: Nobody may get married before being
born or after death.

Figure 2. The structural E-RD of the genealogy db from Mancas [9].

37

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

	C15: Nobody may divorce before being born or
after death.

	C16: Nobody may divorce before getting mar-
ried.

	C17: Nobody may get married twice on a same
date.

	C18: Nobody may get divorced twice on a
same date.

	C19: Nobody can get married while still being
married.

	C20: For any marriage, both spouses must be
simultaneously alive for at least one day.

	C21: No woman may be the wife of one of her
ancestors or descendants.

	C22: No man may be the husband of one of his
ancestors or descendants.

	C23: Nobody may be killed by somebody who
was not alive when the assassination occurred.

	C24: Nobody may belong to a dynasty (family)
founded after his/her death.

	C25: The founder of a dynasty (family) must
belong to that dynasty or to its parent house.

	C26: Nobody may have found more than one
dynasty (family).

	C27: There may not exist two dynasties with
the same name.

	C28: Any parent house must be established be-
fore any of its child dynasties.

	C29: No dynasty (family) may be its ancestor
or descendant, neither directly, nor indirectly.

	C30: It does not make sense to store more than
once a title.

	C31: Nobody may reign before birth or after
death.

	C32: No country may be simultaneously ruled
by two persons, except for spouses and for re-
gencies.

	C33: No reign may end before its start.
	C34: It does not make sense to store more than

once the fact that somebody started his/her
rule in a country at any given date.

	C35: It does not make sense to store more than
once the fact that somebody ended his/her rule
in a country at any given date.

	C36: There may not be two countries having
the same names.

	C37: No country maybe its current one, neither
directly, nor indirectly.

	C38: No former country may be a current one.
	C39: There may not be two cities of the same

country having the same names.
	C40: No city may be its current one, neither di-

rectly, nor indirectly.
	C41: No former city may be a current one.
	C42: The capital city of any country must either

belong to that country, or to the current coun-
try of it, or to a former country whose current
one is that country.

	C43: No country establishes more than one city
as its capital in any given year.

	C44: It does not make sense to store more than
once a picture from a city.

	C45: Picture descriptions for the same city
must be unique.

	C46: It does not make sense to store more than
once a picture of a monument.

	C47: Picture descriptions for the same monu-
ment must be unique.

	C48: There may not be two monuments in the
same city having the same names.

	C49: The website of a monument may not be
shared by another monument.

	C50: It does not make sense to store more than
once a monument type.

	C51: Whenever birth month and/or day are
known, the birth year must be known too.

	C52: Whenever the death month and/or day are
known, the death year must be known too.

	C53: Whenever the reign start month and/
or day is known, the reign start year must be
known too.

	C54: Whenever the reign end month and/or day
are known, the reign end year must be known
too.

	C55: Persons of sex ‘N’ may not have either
parents or children, may not marry, and may
not belong to dynasties (families).

	C56: There may not be two persons having no

38

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

parents, no birth year, but the same name, sex,
notes, and dynasty, or no dynasty.

	C57: Nobody may have a brother as his/her fa-
ther.

	C58: Nobody may have a sister as his/her
mother.

	C59: City pictures are mandatory.
	C60: Monument pictures are mandatory.
	C61: There may not be more than one value for

any application parameter.
	C62: Parameter values may not be deleted.
	C63: 0 < minMFertileAge < maxMFertileAge <

maxLifeYears
	C64: 0 < minFFertileAge < maxFFertileAge <

maxLifeYears
	C65: maxSurvivalFDays and maxSurvivalM-

Days parameter values may not be modified.
Out of these 65 constraints, 28 are relational

ones, but only the following 9 out of them may be
enforced by the MS SQL Server, namely: C27, C30,
C36, C39, C43, C48, C50, C63, and C64.

The 19 remaining ones (13 of type uniqueness,
namely C1, C2, C3, C17, C18, C26, C34, C35, C44, C45, C46,
C47, and C49, as well as 4 of type tuple/check, namely
C4, C16, C33, C55, and 2 of type totality, namely C59
and C60) may not be enforced through the MS SQL
Server, because the first 17 ones include at least one
table column (which corresponds to a function de-
fined on the set represented by its table, which corre-
sponds in its turn to an object property) that accepts
nulls, whereas the last two ones are on columns of
type VARBINARY, on which no constraints are al-
lowed. Consequently, all these 19 constraints must
be enforced by the software application, just like the
38 non-relational ones.

Unfortunately, in the end, two of these 57 con-
straints may not be enforced at all, namely C44 and
C46, as large, good quality pictures (for both cities
and monuments, in this case) may not be manipu-
lated in memory either, not even by the Variant type
of VBA (although they are linked or embedded as
OLEDB objects).

3.3 The use cases that might violate the 55
constraints to be enforced through applica-
tion code

Please note that, as expected, persons for whom
passed away dates are null are considered still alive.
Similarly, reigns for which end dates are null are
considered still ongoing. Marriages for which di-
vorce dates are nulls are considered still ongoing
only while both spouses are alive.

Constraint C1

(i) Current person’s dynasty (family) is replaced
by a not-null one;

(ii) Current person’s name is modified;
(iii) Current person’s birth year is replaced by a

not-null one.

Constraint C2

(i) Current person’s mother is replaced by a not-
null one;

(ii) Current person’s name is modified when his/
her mother is known.

Constraint C3

(i) Current person’s father is replaced by a not
null one;

(ii) Current person’s name is modified when his/
her father is known.

Constraint C4

(i) Current person’s birth or/and passed away
dates are replaced (for birth by a not null one);

(ii) For persons still alive, simply by the passing
time (i.e., not when data is modified).

Constraint C5

(i) Selecting as the mother of the current person
somebody of sex ‘M’ or ‘N’;

(ii) Changing the current person’s sex to ‘M’ or ‘N’
when that person is a mother.

Constraint C6

(i) Selecting as the wife of current marriage
somebody of sex ‘M’ or ‘N’;

39

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

(ii) Changing the sex of a wife to ‘M’ or ‘N’.

Constraint C7

(i) Selecting as the father of the current person
somebody of sex ‘F’ or ‘N’;

(ii) Changing the current person’s sex to ‘F’ or ‘N’
when that person is a father.

Constraint C8

(i) Selecting as the husband of current marriage
somebody of sex ‘F’ or ‘N’;

(ii) Changing the sex of a husband to ‘F’ or ‘N’.

Constraint C9

Might be violated only when, for the current per-
son, is selected as his/her mother that person or a
maternal ancestor or descendant of him/her.

Constraint C10

Might be violated only when, for the current
person, is selected as his/her father that person or a
paternal ancestor or descendant of him/her.

Constraint C11

(i) Selecting as the father of the current person
somebody who is an ancestor or descendant of his/
her mother;

(ii) Selecting as the mother of the current person
somebody who is an ancestor or descendant of his/
her father.

Constraint C12

(i) Selecting as the mother of the current person
somebody who does not satisfy this condition;

(ii) Modifying birth and/or death dates of a moth-
er;

(iii) Modifying birth and/or death dates of a child
of a known mother.

Constraint C13

(i) Selecting as the father of the current person
somebody who does not satisfy this condition;

(ii) Modifying birth and/or death dates of a father;
(iii) Modifying birth and/or death dates of a child

of a known father.

Constraint C14

(i) Selecting as a spouse of current marriage
somebody who does not satisfy this condition;

(ii) Modifying marriage date;
(iii) Modifying birth and/or death dates of a spouse.

Constraints C15 and C16

Let us consider constraint C15’: Nobody may di-
vorce before getting married or after death. Together
with C14 , C15’ obviously imply both C15 and C16; con-
sequently, we replace them with C15’, which might be
violated only in the following 3 use cases:

(i) Selecting as a spouse of current marriage
somebody who does not satisfy this condition;

(ii) Modifying marriage and/or divorce dates for
the current marriage;

(iii) Modifying the death date of a spouse.

Constraint C17

(i) Replacing the marriage date for the current
marriage with a not-null one;

(ii) Modifying a spouse of the current marriage.

Constraint C18

(i) Replacing the divorce date for the current mar-
riage with a not-null one;

(ii) Modifying a spouse of the current marriage.

Constraint C19

(i) Selecting as a spouse of current marriage
somebody who does not satisfy this condition;

(ii) Modifying marriage and/or divorce dates for
the current marriage.

Constraint C20

(i) Selecting as a spouse of current marriage
somebody who does not satisfy this condition;

(ii) Modifying marriage and/or divorce dates for
the current marriage;

(iii) Modifying birth and/or death dates of a
spouse.

Constraint C21

Might be violated only when, for the current
marriage, is selected as husband somebody who is

40

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

an ancestor or descendant (either maternally or/and
paternally) of the corresponding wife.

Constraint C22

Might be violated only when, for the current
marriage, is selected as wife somebody who is an
ancestor or descendant (either maternally or/and pa-
ternally) of the corresponding husband.

Constraint C23

(i) Selecting as a killer of the current person
somebody else who does not satisfy this condition;

(ii) Modifying birth and/or death dates of a killer
or/and the death date of the current person.

Constraint C24

(i) Selecting as the founder of the current dynasty
somebody who does not satisfy this condition;

(ii) Modifying the birth date of a founder of a dy-
nasty;

(iii) Modifying birth and/or death dates of a mem-
ber of a dynasty;

(iv) Replacing the current person’s dynasty with a
not-null one.

Constraint C25

(i) Selecting as a founder of the current dynasty a
known person;

(ii) Modifying the dynasty of its founder;
(iii) Replacing the current dynasty’s parent house

when the current dynasty’s founder is not null.

Constraint C26

C26 is redundant, as implied by C25: Any founder
belonging to its dynasty may not belong to another
one as well.

Constraint C28

(i) Selecting as founder of the current dynasty a
known person;

(ii) Modifying the birth date of the dynasty
founder;

(iii) Replacing the current dynasty’s parent house
with a not-null one.

Constraint C29

Might be violated only when, for the current dy-

nasty, is selected as the parent house either the cur-
rent dynasty or one of its ancestors or descendants.

Constraint C31

(i) Selecting as ruler of current reign somebody
who does not satisfy this condition;

(ii) Modifying birth and/or death dates for a ruler;
(iii) Modifying start and/or end dates of the cur-

rent reign.

Constraint C32

(i) Selecting as co-ruler of a reign somebody who
does not satisfy this condition;

(ii) Modifying birth and/or death dates for a
co-ruler;

(iii) Modifying marriage and/or divorce dates for
a co-ruler;

(iv) Modifying start and/or end dates of the cur-
rent reign;

(v) Modifying the country of the current reign;
(vi) Modifying the title of a co-ruler.

Constraint C33

Might be violated only when, for the current
reign, start and/or end dates are modified.

Constraint C34

(i) Modifying the start date of the current reign;
(ii) Modifying the country of the current reign;
(iii) Modifying the ruler of the current reign.

Constraint C35

(i) Modifying the end date of the current reign;
(ii) Modifying the country of the current reign;
(iii) Modifying the ruler of the current reign.

Constraint C37

Might be violated only when, for a country, is se-
lected as its current one itself or one of its former ones.

Constraint C38

Might be violated only when, for a country, is se-
lected as its current country or a former one.

Constraint C40

Might be violated only when, for a city, is select-
ed as its current one itself or one of its former ones.

41

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

Constraint C41

Might be violated only when, for a city, is select-
ed as its current city or one of its former ones.

Constraint C42

(i) Selecting for the current country in COUN-
TRIES_CAPITALS a city that does not satisfy this
condition;

(ii) Modifying for a country occurring in COUN-
TRIES_CAPITALS its current one;

(iii) Modifying for a capital occurring in COUN-
TRIES_CAPITALS its current city;

Constraint C45

(i) Replacing the description of the current city
picture with a not-null one;

(ii) Replacing the city of the current city picture
with another one.

Constraint C47

(i) Replacing the description of the current monu-
ment picture with a not-null one;

(ii) Replacing the monument of the current mon-
ument picture with another one.

Constraint C49

Might be violated only when replacing the web-
site URL of a monument with a not null one.

Constraint C51

Might be violated only when modifying the birth-
day and/or month and/or year of a person.

Constraint C52

Might be violated only when modifying the death
day and/or month and/or year of a person.

Constraint C53

Might be violated only when modifying the start
day and/or month and/or year of a reign.

Constraint C54

Might be violated only when modifying the end
day and/or month and/or year of a reign.

Constraint C55

(i) Selecting a not null dynasty, father, or mother

for a person of sex ‘N’;
(ii) Replacing the sex value of a person with ‘N’.

Constraint C56

(i) Attempting to enter corresponding duplicate
data for a new person;

(ii) Replacing the mother and/or father and/or
birth year of the current person with nulls;

(iii) Replacing name or/and sex or/and notes or/
and dynasty of the current person.

Constraint C57

(i) Adding/replacing a brother to the current per-
son;

(ii) Adding/replacing the father of the current per-
son.

Constraint C58

(i) Adding/replacing a sister to the current person;
(ii) Adding/replacing the mother of the current person.

Constraint C59

Might be violated only when adding to the cur-
rent city a picture description without a picture.

Constraint C60

Might be violated only when adding to the current
monument a picture description without a picture.

Constraint C61

Might be violated only when a second line is
saved in the PARAMETERS table.

Constraint C62

(i) Replacing a parameter value with a null one;
(ii) Deleting the only line of the PARAMETERS

table.

Constraint C63

Might be violated only when modifying the val-
ues of at least one of these 3 parameters.

Constraint C64

Might be violated only when modifying the val-
ues of at least one of these 3 parameters.

Constraint C65

Might be violated only when modifying the value

42

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

of at least one of these 2 parameters.

3.4 Establishing the corresponding event-driven
procedures needed to be coded

This sub-step heavily depends on the platform
used for coding the application. For example, Mat-
Base, which has two versions: -one for students and
small dbs and a professional one- that uses VBA and
C#, respectively. Mancas [9] opted for VBA, which is
both simpler, very robust, and provides an extensive
set of data-oriented events and associated event-driv-
en procedures.

It is out of the scope of this paper to enter into
details on software application development on any
platform, as this would need at least another 20 pag-
es per platform and would not be of any academic,
but only of technological interest.

The only general aspect about this sub-step is the
fact that there are two possible algorithmic approach-
es to enforce db constraints in software applications,
just like in healthcare, namely:

(i) preventively (i.e., providing users to choose
from only plausible data in combo-boxes),

(ii) curatively (i.e., letting users enter desired data
and reject unplausible ones).

The preventive ones are the best and, for exam-
ple, in VBA they may be coded in the Form_Current
event-driven procedures, which are automatically
called each time the cursor is set on another data line
of the current form. For example, in the DYNASTIES
form, this procedure should dynamically modify the
SQL SELECT statements that compute the com-
bo-boxes Founder and ParentHouse and then re-que-
ry them, such as to eliminate from ParentHouse the
current dynasty and from Founder all persons that
are not belonging to either the current dynasty or its
parent house, as well as those dead before the birth
of the current founder (thus preventively enforcing
constraints C24, C25 , and C29, respectively).

Sometimes, however, this is not possible (not
even for all combo-boxes and all types of constraints
involving their corresponding columns, hence func-
tions). For example, to enforce constraint C49 you
can only let the user type any desired text string in

the Website text-box control of the MONUMENTS
form’s current data line and then reject it within the
Website_BeforeUpdate VBA event-driven procedure
(corresponding to the Validating event type of .NET)
if that URL is already stored in the db for another
monument.

3.5 Comparative analysis

In Mancas [9], state-of-the-art analysis of genealo-
gy software applications available on the market was
conducted as well, starting from the No1Reviews.
com website post on the top 10 of such applications
in 2022 [31]. Only 8 of them have been analyzed (as
one is only for Apple hardware and software and
the other is a website builder not freely available for
evaluation) and only 3 of them provide a rudiment of
data quality consideration: For a few unplausible val-
ues (e.g. passed away date less than birth one) they
warn you and ask a confirmation message to which,
unfortunately, you can answer Yes, thus saving that
unplausible data in their dbs. In all 8 of them we eas-
ily manage to save aberrantly unplausible data, like
persons living centuries, getting married or/and bap-
tized before birth or after death, mothers of sex ‘M’,
fathers of sex ‘F’, persons being buried before death,
etc.

Unfortunately, this is not an exception: Such
software applications abound in all fields, not only
in the genealogy one. Some might say that the cor-
responding software companies lack software and/
or db architects or that all fine ones are working only
for giants like Microsoft, Google, Apple, Tesla, etc.

We strongly believe, however, that the main rea-
son for this catastrophic reality is that, on one hand,
software engineering treats db applications just as
the not-db ones and, on the other, it completely lacks
consideration of the main asset of any db applica-
tion, namely its managed data quality. And, as we’ve
explained, data quality may be guaranteed only by
plausible data values and data plausibility may be
guaranteed only by discovering all business rules
governing the considered sub-universes and enforc-
ing all their corresponding constraints.

This is why we consider that our proposed db

43

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

constraint-driven design and development method-
ology described in this paper is a crucial approach to
take towards the delivery of high-quality software db
applications, not only exhibiting glossy GUIs, but,
especially, guaranteeing the highest quality possible
of the managed data.

Using the DB Constraint-Driven Design and De-
velopment approach, the genogram software applica-
tion described in Mancas [9] and in the previous sec-
tion of this paper successfully and elegantly enforced
all 208 constraints governing this sub-universe that
can be enforced with the currently available technol-
ogies. The contrast between this application and the
ones considered in reviews [31] as the best ones in this
field could not be more spectacular.

4. Conclusions and further work
We introduced a novel database constraint-driven

methodology for designing and developing software
database applications. We exemplified it with a com-
plex medium-sized software database application
for managing genograms. We argued that, using this
methodology, this application guarantees the highest
possible quality of the data it is managing, whereas
most of the similar applications available and con-
sidered to be the best ones in this field have almost
no concern at all about data quality.

Moreover, although Mancas [9] used this paradigm
manually, our previous research and the MatBase
prototype embedding it provide powerful tools to
program while modeling, which is the future of
software, as fewer and fewer developers and testers,
while more and more architects and designers will
soon be needed with the generalization of automatic
code generation.

Further work is needed to automate software ap-
plications’ code generation for the (E)MDM general
object constraints [22,26] in MatBase.

Author Contributions
Dr. Christian Mancas is the author of the soft-

ware application DB Constraint-Driven Design and
Development approach, which he was teaching for

decades to his MSc. students with both the Math. &
Computer Science Dept. of the Ovidius University at
Constanta, Romania, and the English Stream Com-
puter & Telecomm. Engineering Taught in Foreign
Languages Dept. of the Politehnica University at
Bucharest, Romania. Dr. Mancas wrote the first 2
sections of this paper, plus its last sentence (the one
on further work above). Miss Diana Christina Man-
cas wrote the rest of it. Associate Professor Cristina
Serban is the scientific coordinator of her work, as
well as for her entire MSc. Dissertation Thesis [9].

Conflict of Interest
There is no conflict of interest.

Funding
This research received no external funding.

Acknowledgement
We are grateful to Mihaela Virginia Mancas for

her thorough revision of the final manuscript, which,
hopefully, thus got rid of any typo or syntax errors
and is fully intelligible, as well as to the whole JCSR
editorial team for their kind and competent assis-
tance.

References
[1] Daylight, E.G., Niklaus, W., Hoare, T., et al.,

2012. The dawn of software engineering: From
Turing to Dijkstra. Lonely Scholar bvba: Bel-
gium.

[2] Dijkstra, E.W., 1982. Selected writings on com-
puting: A personal perspective. Springer Verlag:
NY, Heidelberg, Berlin.

[3] Hoog, R. de, Jong, T. de, Vries, F. de, 1995.
Constraint-driven software design: An escape
from the waterfall model. 7(3), 48-63.

 DOI: https://doi.org/10.1111/j.1937-8327.1994.tb00637.x
[4] Hunt, A., Thomas, D., 1999. The pragmatic

programmer: From journeyman to master. Addi-
son-Wesley Professional: IL, USA.

[5] Evans, E., 2003. Domain-driven design: Tack-

44

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

ling complexity in the heart of software. Addi-
son-Wesley Professional: IL, USA.

[6] Taylor, R.N., Medvidovic, N., Dashofy, E.M.,
2010. Software architecture: Foundations, theo-
ry, and practice. Wiley: NJ, USA.

[7] Vernon, V., 2016. Domain-driven design dis-
tilled. Addison-Wesley: IL, USA.

[8] Ousterhout, J., 2021. A Philosophy of Software
Design, 2nd edition. Yaknyam Press: CA, USA.

[9] Mancas, D. C., 2023. Design and development
of a DB software application for managing ge-
nealogical trees [Master’s thesis]. Constanta,
Romania: Ovidius University. p. 670.

[10] Lano, K., 2008. Constraint-driven development.
Information and Software Technology. 50(5),
406-423.

 DOI: https://doi.org/10.1016/j.infsof.2007.04.003
[11] Demuth, A., Lopez-Herrejon, R.E., Egyed, A.

(2012). Constraint-Driven Modeling through
Transformation. In: Hu, Z., de Lara, J. (editors),
Theory and Practice of Model Transformations.
ICMT 2012. Lecture Notes in Computer Sci-
ence. 7307, 248-263.

 DOI: https://doi.org/10.1007/978-3-642-30476-7_17
[12] Rebmann, A., Weidlich, M., Aa, H. van der

(editors), 2022. GECCO: Constraint-driven
abstraction of low-level event logs. 38th IEEE
International Conference on Data Engineering;
2022 May 9-12; Kuala Lumpur, Malaysia. USA:
IEEE. pp. 150-163.

 DOI: https://doi.org/10.1109/ICDE53745.2022.00016
[13] Siddiqui, J.H., 2012. Improving Systematic

Constraint-driven Analysis using Incremental
and Parallel Techniques [PhD thesis]. USA:
University of Texas at Austin. [cited 2023 Feb
14]. Available from: https://repositories.lib.utex-
as.edu/bitstream/handle/2152/19568/siddiqui_
dissertation_201221.pdf?sequence=1&isAl-
lowed=y

[14] Shrotri, A.A., Narodytska, N., Ignatiev, A., et
al., 2022. Constraint-driven explanations for
black box ML models. Proceedings of the AAAI
Conference on Artificial Intelligence. 36(8),
8304-8314.

 DOI: https://doi.org/10.1609/aaai.v36i8.20805
[15] Ciortuz, L., 1997. Constraint-Driven Concur-

rent Parsing Applied to Romanian Transitive
VP [Internet]. Proceedings of the International
Workshop on Parsing Technologies [cited 2023
Feb 14]. Available from: https://aclanthology.
org/1997.iwpt-1.26.pdf

[16] Kumaran, E., 2022. Constraint-driven Agree.
Proceeding of Linguist Society America. 7(1),
5282.

 DOI: https://doi.org/10.3765/plsa.v7i1.5282
[17] OrCAD, 2023. Integrated Front-To-Back Con-

straints for Right First Time Designs [Internet].
[cited 2023 Feb 14]. Available from: https://
www.orcad.com/tech-solutions/constraint-driv-
en-design

[18] Mancas, C., 2019. MatBase—A tool for trans-
parent programming while modeling data at
conceptual levels. Computer Science & Infor-
mation Technology (CSITEC 2019). AIRCC
Pub. Corp.: Chennai, India. pp. 15-27.

 DOI: https://doi.org/10.5121/csit.2019.91102
[19] Abiteboul, S., Hull, R., Vianu, V., 1995. Foun-

dations of databases. Addison-Wesley: IL, USA.
[20] Mancas, C., 2015. Conceptual data modeling

and database design: A completely algorithmic
approach. Volume I: The shortest advisable path.
Apple Academic Press/CRC Press (Taylor &
Francis Group): FL, USA.

[21] Kleppmann, M., 2016. Designing data-intensive
applications: The big ideas behind reliable, scal-
able, and maintainable systems. O’Reilly: UK.

[22] Mancas, C., 2018. MatBase constraint sets co-
herence and minimality enforcement algorithms.
Advances in databases and information systems.
Springer: Switzerland. pp. 263-277.

 DOI: https://doi.org/10.1007/978-3-319-98398-1_18
[23] Thalheim, B., 2000. Entity-relationship mod-

eling: Foundations of database technology.
Springer Berlin: Heidelberg.

[24] Mancas, C., Dragomir, S., 2004. Matbase Data-
log Subsystem Metacatalog Conceptual Design
[Internet]. Proceedings of the IASTED Confer-
ence on Software Engineering and Applications,

https://repositories.lib.utexas.edu/bitstream/handle/2152/19568/siddiqui_dissertation_201221.pdf?sequence=1&isAllowed=y
https://repositories.lib.utexas.edu/bitstream/handle/2152/19568/siddiqui_dissertation_201221.pdf?sequence=1&isAllowed=y
https://repositories.lib.utexas.edu/bitstream/handle/2152/19568/siddiqui_dissertation_201221.pdf?sequence=1&isAllowed=y
https://repositories.lib.utexas.edu/bitstream/handle/2152/19568/siddiqui_dissertation_201221.pdf?sequence=1&isAllowed=y
https://aclanthology.org/1997.iwpt-1.26.pdf
https://aclanthology.org/1997.iwpt-1.26.pdf
https://www.orcad.com/tech-solutions/constraint-driven-design
https://www.orcad.com/tech-solutions/constraint-driven-design
https://www.orcad.com/tech-solutions/constraint-driven-design

45

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

November 9-11, 2004, MIT, Cambridge, MA,
USA. Acta Press: Canada. pp. 34-41 [cited 2023
Feb 14]. Available from: https://www.actapress.
com/PaperInfo.aspx?PaperID=19050&rea-
son=500

[25] Mancas, C., Mancas, S., 2005. Matbase Enti-
ty-Relationship Diagrams Subsystem Metacat-
alog Conceptual Design [Internet]. IASTED
International Conference on Databases and
Applications, Part of the 23rd Multi-Conference
on Applied Informatics, Innsbruck, Austria. pp.
83-89. Acta Press: Canada. [cited 2023 Feb 14].
Available from: https://www.actapress.com/Pa-
perInfo.aspx?PaperID=19050&reason=500

[26] Mancas, C., 2023. Conceptual data modeling
and database design: A completely algorithmic
approach. Volume II: Refinements for an Expert
Path. Apple Academic Press/CRC Press (Taylor
& Francis Group): FL, USA.

[27] Mancas, C., 2016. Algorithms for key discovery
assistance. BIR 2016, lecture notes in business in-

formation processing. Springer: Switzerland. pp. 261,
322-338.

 DOI: https://doi.org/10.1007/978-3-319-45321-7_23
[28] Mancas, C., 2019. MatBase E-RD cycles asso-

ciated non-relational constraints discovery assis-
tance algorithm. Intelligent computing. Spring-
er: Switzerland. pp. 390-409.

 DOI: https://doi.org/10.1007/978-3-030-22871-2_27
[29] Mancas, C., 2019. MatBase autofunction non-re-

lational constraints enforcement algorithms.
IJCSIT. 11(5), 63-76.

 DOI: https://doi.org/10.5121/ijcsit.2019.11505
[30] Mancas, C., 2020. On detecting and enforcing

the non-relational constraints associated to dy-
adic relations in MatBase. Journal of Electronic
& Information Systems. 2(2), 1-8.

 DOI: https://doi.org/ 10.30564/jeisr.v2i2.2090
[31] No1Reviews.com [Internet]. Reviews of the Top

10 Genealogy Software of 2023 [cited 2023 Feb
14]. Available from: https://genealogy-software.
no1reviews.com

https://www.actapress.com/PaperInfo.aspx?PaperID=19050&reason=500
https://www.actapress.com/PaperInfo.aspx?PaperID=19050&reason=500
https://www.actapress.com/PaperInfo.aspx?PaperID=19050&reason=500
https://www.actapress.com/PaperInfo.aspx?PaperID=19050&reason=500
https://www.actapress.com/PaperInfo.aspx?PaperID=19050&reason=500
https://genealogy-software.no1reviews.com
https://genealogy-software.no1reviews.com

