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ABSTRACT
Different abnormalities are commonly encountered in computer network systems. These types of abnormalities can 

lead to critical data losses or unauthorized access in the systems. Buffer overflow anomaly is a prominent issue among 
these abnormalities, posing a serious threat to network security. The primary objective of this study is to identify the 
potential risks of buffer overflow that can be caused by functions frequently used in the PHP programming language 
and to provide solutions to minimize these risks. Static code analyzers are used to detect security vulnerabilities, 
among which SonarQube stands out with its extensive library, flexible customization options, and reliability in the 
industry. In this context, a customized rule set aimed at automatically detecting buffer overflows has been developed 
on the SonarQube platform. The memoization optimization technique used while creating the customized rule set 
enhances the speed and efficiency of the code analysis process. As a result, the code analysis process is not repeatedly 
run for code snippets that have been analyzed before, significantly reducing processing time and resource utilization. 
In this study, a memoization-based rule set was utilized to detect critical security vulnerabilities that could lead to 
buffer overflow in source codes written in the PHP programming language. Thus, the analysis process is not repeatedly 
run for code snippets that have been analyzed before, leading to a significant reduction in processing time and resource 
utilization. In a case study conducted to assess the effectiveness of this method, a significant decrease in the source 
code analysis time was observed.
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1. Introduction
Internet networks are an indispensable compo-

nent that facilitates information exchange between 
individuals and organizations; however, this infra-
structure needs to be protected against threats such 
as network anomalies. One of these dangers is buffer 
overflows. Buffer overflow can lead to an attack that 
allows malicious codes to be executed on the target 
system. Therefore, the detection and prevention of 
buffer overflow attacks are of great importance in 
ensuring the security of computer systems. The at-
tacks and impacts caused by buffer overflow errors 
hold a significant place in the history of technology. 
The Morris worm, one of the first major attacks in 
the history of the internet, originated from a buffer 
overflow error [1]. The worm named Code Red [2] on 
the other hand, affected millions of computers due to 
a buffer overflow error in Microsoft IIS servers, dis-
playing a widespread distribution over the internet. 
The Heartbleed vulnerability, which emerged in the 
OpenSSL cryptography library, put at risk the SSL 
encryption protocol used across a large part of the 
internet [3]. Another incident stemming from a buff-
er overflow error is the attack on Equifax, a credit 
report service provider [4]. In addition, the security 
vulnerabilities named Spectre and Meltdown in Intel 
processors [5], the BlueKeep vulnerability in the Win-
dows operating system [6], the attack on the popular 
messaging application WhatsApp [7] and the attack 
on the Microsoft Exchange email server [8] all share a 
common ground originating from structures suscep-
tible to buffer overflow.

It is possible to protect against buffer overflow 
attacks by taking a series of precautionary measures. 
These include controlling the array size [9], using 
secure input/output functions, memory limiting [10], 
Address Space Layout Randomization (ASLR), 
stack canaries, software updates, conducting security 
testing, fuzzing, and sandboxing [11]. Thanks to these 
protection methods, many systems are known to 
have become more resilient [12,13]. Additionally, hard-
ware-based measures are stronger compared to soft-
ware-based measures, as they are based on the work-
ing logic of the hardware and are harder to override 

or bypass by software. However, these measures are 
only supported by modern CPUs and cannot be used 
in older systems. Hardware-based memory protec-
tion technologies are widely supported, particularly 
in modern processor architectures, such as Intel (VT-
x, VT-d, etc.) and AMD (V, Vi, etc.) [14]. 

Hardware-based measures yield the most effective 
results when implemented alongside software-based 
solutions. Various software tools, such as dynamic 
and static code analysis tools, memory tracing utili-
ties, and fuzzers, can be utilized to detect such types 
of cyber threats. Particularly, static code analysis is 
instrumental in identifying potential security weak-
nesses by conducting an analysis of the code without 
the necessity to execute it. In this realm, static code 
analysis tools like SonarQube offer distinctive ad-
vantages in the early detection of potential security 
vulnerabilities within source codes. The objective of 
this study is to ascertain the potential risks of buffer 
overflow incidents precipitated by functions com-
monly employed in the PHP programming language 
and to propose methodologies to mitigate these 
risks. The prominence of PHP as one of the global-
ly most-utilized scripting languages today, coupled 
with the reality that a significant proportion of secu-
rity vulnerabilities identified in web-based computer 
software in recent times are associated with PHP, 
underpins the rationale for selecting this language 
for our investigation. Static code analyzers are de-
ployed to pinpoint security vulnerabilities, among 
which SonarQube is notable for its comprehensive 
library, adaptable customization options, and its in-
dustry-trusted reliability. Within this framework, a 
specialized, memoization-based rule set designed for 
the automatic detection of buffer overflows has been 
developed on the SonarQube platform.

This customized rule set, through extensive anal-
ysis executed on PHP source codes, can preemptive-
ly identify memory management faults, particularly 
dangerous function calls, and erroneous array op-
erations. This facilitates the proactive correction of 
security vulnerabilities in the earlier stages of the 
development cycle. Integrated into SonarQube’s rich 
plugin ecosystem, this rule set offers in-depth guid-
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ance to developers, security analysis experts, and 
information security teams on fortifying PHP codes. 
Furthermore, the rule set can be calibrated to recog-
nize specific security weaknesses prevalent in widely 
used PHP frameworks and libraries, significantly 
bolstering the security posture of PHP applications 
in the industry and elevating the standards of web 
application security.

2. Literature review
Aleph One [15] has presented a detailed report on 

the causes and effects of buffer overflow attacks, 
which hold a significant place among network anom-
alies, while Wagner and colleagues have addressed 
this threat with various protection methods and 
detection approaches [16]. Protection methods like 
StackGuard [17] and RAD [18] stand out as prominent 
approaches in the literature. Kuperman and col-
leagues have proposed detecting buffer overflow by 
combining static and dynamic analyses [19]. Le and 
Soffa have detected these attacks with demand-based 
and path-sensitive analysis [20]. Brooks has evaluated 
the effects of automatic vulnerability detection and 
exploitation techniques on buffer overflow [21]. A re-
port [22] highlighting the critical importance of static 
analysis techniques for software security has been 
presented, and accordingly, tools like ARCHER [23] 
and Safe-C [24] introduced in the literature automati-
cally detect memory access errors.

To detect and prevent memory errors at runtime, 
Valgrind performs dynamic program inspection to 
monitor potential memory errors [25], and Rinard and 
colleagues have conducted studies in this field using 
dynamic methods [26]. Additionally, FormatGuard [27] 
has been developed by Fen and colleagues [28], and 
Ruwase and Lam [29] have devised protection meth-
ods against memory overflow errors.

Buffer overflow attacks stem from memory man-
agement errors in software, providing attackers the 
opportunity to exploit these flaws for the execution 
of malicious code. Jha has conducted research on 
methods to close security vulnerabilities in software 
and enhance its security [30]. Emami, Ghiya, and 
Hendren have focused on the potential security chal-

lenges posed by the use of function pointers in C [31].  
Liang and Sekar have generated automatic signa-
tures against buffer overflow attacks using symbolic 
modeling [32]. In the same context, Newsome and 
Song have detected malware attacks using dynamic 
taint analysis [33]. Memory errors can pose a risk to 
the reliability of software. Qin and colleagues have 
introduced a method of monitoring ECC memory 
to detect these errors [34]. At the same time, Seward 
and Nethercote have outlined methods for detecting 
undefined value errors using the Valgrind tool [35]. 
Executable memory protection for Linux is a critical 
defence against attacks, and a comprehensive over-
view of this subject is provided on Wikipedia [36].

Nethercote and Seward have introduced methods 
for detecting software bugs by tracking dynamic 
features through the Valgrind framework [37]. Costa 
and colleagues have worked on enhancing software 
security by conducting dynamic input verification 
with Bouncer [38]. Song and his team have presented 
the BitBlaze method for the analysis of malicious 
software [39]. Liu and his colleagues have identified 
vulnerabilities in x86 programs using obfuscation 
methods and genetic algorithms [40]. Kroes and his 
team have provided automatic detection methods for 
memory management errors using Delta pointers [41]. 
Frantzen and Shuey have introduced hardware-as-
sisted stack protection with StackGhost [42]. Novark 
and Berger have presented dynamic memory man-
agement approaches with the DieHarder tool [43].  
Sayeed and colleagues have proposed protection 
against buffer overflow attacks through control flow 
integrity [44]. Andriesse and his team have offered 
methods for software integrity protection and block-
ing malicious code with Parallax [45].

In recent years, machine learning has emerged 
as a method used for attack detection from network 
traffic. Mukkamala and colleagues have conducted 
studies in this field [46], while Thottan and Ji have 
performed anomaly detection by examining the char-
acteristics of network traffic data [47].

For the detection of attacks, tools such as dynamic 
and static code analysis tools, memory tracing tools, 
and fuzzers can be utilized. In particular, static code 
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analysis helps identify potential security vulnerabil-
ities through the method of analyzing the code with-
out executing it. To detect security vulnerabilities in 
software, Cova and colleagues have presented meth-
ods combining flow graphs and static analysis [48].  
Lanzi and colleagues have also proposed a vulner-
ability detection tool for the x86 architecture [49]. At 
the same time, Miller and colleagues have tested the 
resilience of applications for MacOS X [50]. In this 
context, static code analysis tools like SonarQube 
possess unique advantages in detecting potential 
security vulnerabilities in software at an early stage. 
Its multi-language support for various programming 
languages allows for language-independent analysis 
of projects. Its customizability feature allows for the 
addition of specific rules. It can incorporate custom-
ized rule creation in SonarQube as well as the inte-
gration of an optimization algorithm with machine 
learning.

3. Speed up static code analysis 
WERTYMemoization is an optimization tech-

nique used to store the results of computationally 
expensive operations, preventing the need for repeat-
ed execution of the same operations. This method 
is particularly employed in dynamic programming 
problems to minimize redundant calculations. In 
the fields of data mining and big data analysis, 

memoization contributes to resolving the time issues 
encountered when algorithms process large data sets. 
A HashMap function can be created for the source 
code, storing information about previously seen 
function names and whether these functions produce 
a “buffer overflow”. Consequently, when a function 
listed is encountered, the code does not have to re-
check if the function produces a “buffer overflow”; 
instead, it quickly retrieves the result from the Hash-
Map function.

Static code analysis tools aim to identify er-
rors, assess code quality, and pinpoint security 
vulnerabilities in codes written in various program-
ming languages. However, in large-scale projects, 
completing each analysis can take a considerable 
amount of time. The integration of the memoization 
technique into static code analysis is targeted to 
quickly analyze repeating functions or method calls, 
thereby reducing the total analysis time. A functional 
comparison of prominent and widely accepted static 
code analysis tools in the literature is provided in 
Table 1.

The static code analysis tool SonarQube stands 
out among other analysis tools due to its support for 
numerous programming languages, visual reporting 
and user-friendly interface, offering broader customi-
zation options, and having a large user and developer 
community.

Table 1. Functional comparison of code analysis tools.

Feature/Criterion SonarQube [51] ESLint Checkmzrx Coverity

Supported languages 20+ (Java, C#, PHP, JS vb.) Firstly, JS ve TypeScript 20+ 20+

Web based interface Yes No (CLI tabanlı) Yes No

CI/CD integration Extensive (Jenkins, Travis, 
Azure Pipelines vb.) Limited Extensive Extensive

Customizable rules Yes Yes Yes Yes

Community support Strong Strong Medium Medium

Code quality metrics Yes No No No

Licensing and cost Free and commercial versions Free Commercial Commercial

Multi-language project support Yes No Yes Yes

Plugin and extension support Yes (Numerous plugins 
available on the Marketplace) Yes (npm packages) Limited Limited



17

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

4. Case study
Methods used for automatic detection of security 

vulnerabilities causing buffer overflow in static code 
analysis are presented in this section. The interface 
named Sonar-Scanner, which can work integrated 
with SonarQube, enables the visualization of analy-
sis results and the execution of management opera-
tions. On the SonarQube platform, a special security 
rule has been established with the aim of detecting 
PHP functions that can create a security vulnerability 
(buffer overflow).

4.1 Memoization-based custom rule 
integration

The steps for incorporating the memoization 
principle into the rule are given below. Integration of 
the rule with the SonarQube analysis tool not only 
reduces analysis time, but also enables quicker de-
tection of critical security risks.

Step-1: Creating a custom security rule: Leverag-
ing the customizable structure of SonarQube anal-
ysis tool for PHP, a security rule incorporating the 
memoization technique is established.

Step-2: Cache management: Implementing a 
caching mechanism within the custom rule to store 
the results of functions that pose a security vulnera-

bility risk.
Step-3: Risk analysis: Evaluating potential 

security risks when functions or methods are called 
for the first time, and storing the result in the cache.

Step-4: Utilizing the cache: When a function of 
the same name is called again, use the information in 
the cache to instantly perform a security assessment.

In the first step, key files and functions for the 
specific rules determined for static code analysis 
are utilized. The file named BufferOverflowCheck.
java examines function calls, checking for the us-
age of specific functions such as strcpy, strcat, and 
fwrite. When the use of these functions is detected, 
a security alert is generated. The MyPhpRules.java 
file stores the list of existing custom rules, and these 
rules are added to the SonarQube rule repository. 
The PHPCustomRulesPlugin.java file defines the 
Sonar Plugin and adds the MyPhpRules class. The 
pom.xml is used as a Maven configuration file for 
building the project and managing its dependencies. 
The necessary modules for creating a custom rule in 
the SonarQube analysis tool are provided in Figure 1.

As shown in Figure 2, the SonarQube tool uses 
the “@Rule” annotation to customize rule defini-
tions. There are different priority levels in these 
checks, which are listed as INFO, MINOR, MAJOR, 
CRITICAL, and BLOCKER. For the rule created 

Figure 1. Loading of modules. 

Figure 2. Determination of rule level.
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in this study, the CRITICAL priority level has been 
selected because buffer overflow can lead to securi-
ty breaches, and such a violation can pose a critical 
threat to the entire system.

As shown in Figure 3, the constructor (Buffer 
OverflowCheck()) creates a HashMap named 
functionResultsCache. This structure is later used 
to quickly detect risky functions. By calling the 
loadCache() function, a previously created cache is 
loaded.

As illustrated in Figure 4, the loadCache() func-
tion reads the previously saved cache data from 
the disk and places it in the HashMap. Each line 
read from the disk contains a function name and a 
boolean value. The function name serves as the key, 
and the boolean value is processed into the map.

In every situation where the cache is updated, the 
saveCache() function is invoked as depicted in Fig-

ure 5. This function saves the functionResultsCache 
HashMap to a file.

As illustrated in Figure 6, the visitFunctionCall() 
function is triggered for each function call in the 
source code. After retrieving the function name, it is 
checked whether it has been previously added to the 
cache or not.

If the function name exists in the cache, the stored 
boolean value is used. If the value is true, a “Buffer 
overflow issue detected” warning is generated. If the 
function name has not been seen before, it is checked 
whether it is risky. If it is in the list of risky functions 
(such as strcpy, strcat, gets, etc.), it is added to the 
cache as true and subsequently a warning is gener-
ated. When the cache is updated, the saveCache() 
function is called, and the process continues for oth-
er potential SonarQube tool inspections with super.
visitFunctionCall(tree) (Figure 7).

Figure 3. Creation the BufferOverflowCheck class.

Figure 4. LoadCahce function.

Figure 5. SaveCahce function.
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4.2 Memoization-based rule for attack detec-
tion

This structure also employs a caching mechanism 
to enhance performance. Specifically, the save-
Cache and loadCache methods are used for loading 
the cache file from the disk and saving it back to 
the disk. This custom rule can effectively detect 
buffer overflow issues in PHP projects, assisting 
in the prevention of such security vulnerabilities. 
The workflow of the rule added to the Sonar Qube 
analysis tool is provided in the steps below.

Step-1: The BufferOverflowCheck class stores 
function names and whether these functions may 

cause a buffer overflow in a HashMap.
Step-2: When any function call is seen in the PHP 

code, the visitFunctionCall function is triggered by 
the rule.

Step-3: If the function name is in the cache 
(HashMap), the rule can immediately generate a 
warning. Otherwise, the function name and whether 
it creates a buffer overflow is added to the cache.

In the example application below, a custom rule 
has been added to the SonarQube analysis tool to 
detect buffer overflow attacks. When dangerous PHP 
functions (such as strncpy, strcat, addslashes, fwrite, 
array_splice, etc.) are called, the application issues a 
security vulnerability warning (Figure 8).

Figure 6. visitFunctionCall function.

Figure 7. Identifying functions that cause buffer overflow.
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Additionally, the effectiveness of the memoi-
zation method has been measured by applying the 
custom rule created to a PHP code found in the bat.
php repository located in the “b4tm4n” repository 
on GitHub [45]. The source code selected for analysis 
consists of a total of 3962 lines. After the SonarQu-
be analysis tool successfully analyzes the code, it 

displays the identified risky functions and security 
vulnerabilities on the interface. Figure 9 shows the 
results of the analysis summary of the bat.php file 
available on Github.

Figure 10 shows the lines of code in the bat.php 
file that are potentially vulnerable to buffer overflow 
attacks.

Figure 8. Code block in bat.php file where the “fwrite” function is used.

Figure 9. Analysis summary results of the bat.php file located on Github.
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During the analysis with the custom rule created, 
the information of the dangerous and safe functions 
detected thanks to the loadCache function is saved to 
a file named cache.txt. An example of a cache.txt file 
is shown below:

As shown in Figure 11, there are functions mar-
ked as true or false. Here, true represents the functi-
ons that may pose a security vulnerability risk, while 
false represents the functions that will not create a 
security vulnerability. The existence of the cache.txt 
file significantly increases the performance during 
the next run of the custom rule. The loadCache fun-
ction reads this file at the beginning of the analysis 
and loads the function information into memory 
(RAM). Thus, when re-analyzing the same code, 
instead of analyzing the security risks of the same 

functions again, the custom rule directly retrieves the 
information from the memory. This is an optimizati-
on technique known as memoization. This approach 
shortens the analysis time and can quickly identify 
previously detected security vulnerabilities in each 
new analysis. Figures 12-14 show the analysis times 
of the lines in the bat.php file analyzed above against 
buffer overflow attacks. While the total analysis time 
is 29.118 s when the cache is empty, it is 22.048 s 
when the cache is full. It can be seen that the use of a 
cache significantly reduces the analysis time.

Figure 11. Sample content is taken from the cache.txt file.

Figure 10. Code lines in the bat.php file that are potentially vulnerable to buffer overflow attacks.

Figure 12. Memoization.

Figure 13. Analysis duration with cache usage.
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5. Results and discussion
In this study, we examine how a customized rule 

can be added to the SonarQube analysis tool to iden-
tify potential buffer overflow security vulnerabilities 
in codes written in PHP. The main goal is to develop 
a system that not only performs static code analy-
sis but also enhances analysis performance with a 
caching mechanism. Specific functions that could 
pose a risk in PHP codes have been identified, and a 
custom SonarQube rule has been designed for these 
functions. The analysis process has been optimized 
using the memoization technique, reducing repeated 
analyses on the same code. This approach saves time 
and resources, particularly for large codebases.

The current work also records significant advan-
cements in the effective detection of commonly used 
functions that carry the risk of buffer overflow. The 
increase in analysis performance has been made pos-
sible by the caching mechanism. The flexibility and 
extensibility of this custom rule mean it can be app-
lied to different functions and methods. However, the 
study has limitations, such as being specific to the 
PHP language and covering only certain functions. 
While the initial version is capable of static code 
analysis only, the integration of dynamic analysis 
and adaptation to different programming languages 
represent significant potential for future work.

This research makes a notable contribution to 
the field of web security, especially regarding the 
security of PHP applications. In the future, the au-
tomatic detection and resolution of such security 
vulnerabilities are expected to facilitate the creation 
of more effective and secure applications in software 
development and cybersecurity. Particularly, the in-
tegration of the custom rule with dynamic analysis, 
the incorporation of machine learning techniques, 
and improvements to the user interface will push 
the innovations in this field further. In addition, 

advanced automation approaches for strengthening 
defence mechanisms against security vulnerabilities 
and making software development processes more 
robust could be developed, contributing to risk 
assessment and management strategies. Designing an 
extended security framework applicable in various 
software languages to deal with a wide spectrum of 
security threats, beyond specific challenges such as 
buffer overflow, will be an important goal for future 
researchers and applications. Such a framework will 
play a crucial role in protecting critical systems and 
securing sensitive data.
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