
13

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

Journal of Computer Science Research
https://journals.bilpubgroup.com/index.php/jcsr

*CORRESPONDING AUTHOR:
Halit Öztekİn, Computer Engineering, Sakarya University of Applied Sciences, Sakarya, 54050, Turkey; Email: halitoztekin@subu.edu.tr

ARTICLE INFO
Received: 28 October 2023 | Revised: 15 November 2023 | Accepted: 22 November 2023 | Published Online: 30 November 2023
DOI: https://doi.org/10.30564/jcsr.v5i4.6044

CITATION
Özger, O., Öztekİn, H., 2023. Detection of Buffer Overflow Attacks with Memoization-based Rule Set. Journal of Computer Science Research.
5(4): 13-26. DOI: https://doi.org/10.30564/jcsr.v5i4.6044

COPYRIGHT
Copyright © 2023 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

ARTICLE

Detection of Buffer Overflow Attacks with Memoization-based Rule Set
Oğuz Özger1, Halit Öztekİn2*

1 Electrical-Electronics Engineering, Sakarya University of Applied Sciences, Sakarya, 54050, Turkey
2 Computer Engineering, Sakarya University of Applied Sciences, Sakarya, 54050, Turkey

ABSTRACT
Different abnormalities are commonly encountered in computer network systems. These types of abnormalities can

lead to critical data losses or unauthorized access in the systems. Buffer overflow anomaly is a prominent issue among
these abnormalities, posing a serious threat to network security. The primary objective of this study is to identify the
potential risks of buffer overflow that can be caused by functions frequently used in the PHP programming language
and to provide solutions to minimize these risks. Static code analyzers are used to detect security vulnerabilities,
among which SonarQube stands out with its extensive library, flexible customization options, and reliability in the
industry. In this context, a customized rule set aimed at automatically detecting buffer overflows has been developed
on the SonarQube platform. The memoization optimization technique used while creating the customized rule set
enhances the speed and efficiency of the code analysis process. As a result, the code analysis process is not repeatedly
run for code snippets that have been analyzed before, significantly reducing processing time and resource utilization.
In this study, a memoization-based rule set was utilized to detect critical security vulnerabilities that could lead to
buffer overflow in source codes written in the PHP programming language. Thus, the analysis process is not repeatedly
run for code snippets that have been analyzed before, leading to a significant reduction in processing time and resource
utilization. In a case study conducted to assess the effectiveness of this method, a significant decrease in the source
code analysis time was observed.
Keywords: Buffer overflow; Cybersecurity; Anomaly; SonarQube; Memoization

mailto:halitoztekin@subu.edu.tr
https://doi.org/10.30564/jcsr.v5i4.6044
https://doi.org/10.30564/jcsr.v5i4.6044
https://orcid.org/0000-0001-8598-4763

14

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

1. Introduction
Internet networks are an indispensable compo-

nent that facilitates information exchange between
individuals and organizations; however, this infra-
structure needs to be protected against threats such
as network anomalies. One of these dangers is buffer
overflows. Buffer overflow can lead to an attack that
allows malicious codes to be executed on the target
system. Therefore, the detection and prevention of
buffer overflow attacks are of great importance in
ensuring the security of computer systems. The at-
tacks and impacts caused by buffer overflow errors
hold a significant place in the history of technology.
The Morris worm, one of the first major attacks in
the history of the internet, originated from a buffer
overflow error [1]. The worm named Code Red [2] on
the other hand, affected millions of computers due to
a buffer overflow error in Microsoft IIS servers, dis-
playing a widespread distribution over the internet.
The Heartbleed vulnerability, which emerged in the
OpenSSL cryptography library, put at risk the SSL
encryption protocol used across a large part of the
internet [3]. Another incident stemming from a buff-
er overflow error is the attack on Equifax, a credit
report service provider [4]. In addition, the security
vulnerabilities named Spectre and Meltdown in Intel
processors [5], the BlueKeep vulnerability in the Win-
dows operating system [6], the attack on the popular
messaging application WhatsApp [7] and the attack
on the Microsoft Exchange email server [8] all share a
common ground originating from structures suscep-
tible to buffer overflow.

It is possible to protect against buffer overflow
attacks by taking a series of precautionary measures.
These include controlling the array size [9], using
secure input/output functions, memory limiting [10],
Address Space Layout Randomization (ASLR),
stack canaries, software updates, conducting security
testing, fuzzing, and sandboxing [11]. Thanks to these
protection methods, many systems are known to
have become more resilient [12,13]. Additionally, hard-
ware-based measures are stronger compared to soft-
ware-based measures, as they are based on the work-
ing logic of the hardware and are harder to override

or bypass by software. However, these measures are
only supported by modern CPUs and cannot be used
in older systems. Hardware-based memory protec-
tion technologies are widely supported, particularly
in modern processor architectures, such as Intel (VT-
x, VT-d, etc.) and AMD (V, Vi, etc.) [14].

Hardware-based measures yield the most effective
results when implemented alongside software-based
solutions. Various software tools, such as dynamic
and static code analysis tools, memory tracing utili-
ties, and fuzzers, can be utilized to detect such types
of cyber threats. Particularly, static code analysis is
instrumental in identifying potential security weak-
nesses by conducting an analysis of the code without
the necessity to execute it. In this realm, static code
analysis tools like SonarQube offer distinctive ad-
vantages in the early detection of potential security
vulnerabilities within source codes. The objective of
this study is to ascertain the potential risks of buffer
overflow incidents precipitated by functions com-
monly employed in the PHP programming language
and to propose methodologies to mitigate these
risks. The prominence of PHP as one of the global-
ly most-utilized scripting languages today, coupled
with the reality that a significant proportion of secu-
rity vulnerabilities identified in web-based computer
software in recent times are associated with PHP,
underpins the rationale for selecting this language
for our investigation. Static code analyzers are de-
ployed to pinpoint security vulnerabilities, among
which SonarQube is notable for its comprehensive
library, adaptable customization options, and its in-
dustry-trusted reliability. Within this framework, a
specialized, memoization-based rule set designed for
the automatic detection of buffer overflows has been
developed on the SonarQube platform.

This customized rule set, through extensive anal-
ysis executed on PHP source codes, can preemptive-
ly identify memory management faults, particularly
dangerous function calls, and erroneous array op-
erations. This facilitates the proactive correction of
security vulnerabilities in the earlier stages of the
development cycle. Integrated into SonarQube’s rich
plugin ecosystem, this rule set offers in-depth guid-

15

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

ance to developers, security analysis experts, and
information security teams on fortifying PHP codes.
Furthermore, the rule set can be calibrated to recog-
nize specific security weaknesses prevalent in widely
used PHP frameworks and libraries, significantly
bolstering the security posture of PHP applications
in the industry and elevating the standards of web
application security.

2. Literature review
Aleph One [15] has presented a detailed report on

the causes and effects of buffer overflow attacks,
which hold a significant place among network anom-
alies, while Wagner and colleagues have addressed
this threat with various protection methods and
detection approaches [16]. Protection methods like
StackGuard [17] and RAD [18] stand out as prominent
approaches in the literature. Kuperman and col-
leagues have proposed detecting buffer overflow by
combining static and dynamic analyses [19]. Le and
Soffa have detected these attacks with demand-based
and path-sensitive analysis [20]. Brooks has evaluated
the effects of automatic vulnerability detection and
exploitation techniques on buffer overflow [21]. A re-
port [22] highlighting the critical importance of static
analysis techniques for software security has been
presented, and accordingly, tools like ARCHER [23]
and Safe-C [24] introduced in the literature automati-
cally detect memory access errors.

To detect and prevent memory errors at runtime,
Valgrind performs dynamic program inspection to
monitor potential memory errors [25], and Rinard and
colleagues have conducted studies in this field using
dynamic methods [26]. Additionally, FormatGuard [27]
has been developed by Fen and colleagues [28], and
Ruwase and Lam [29] have devised protection meth-
ods against memory overflow errors.

Buffer overflow attacks stem from memory man-
agement errors in software, providing attackers the
opportunity to exploit these flaws for the execution
of malicious code. Jha has conducted research on
methods to close security vulnerabilities in software
and enhance its security [30]. Emami, Ghiya, and
Hendren have focused on the potential security chal-

lenges posed by the use of function pointers in C [31].
Liang and Sekar have generated automatic signa-
tures against buffer overflow attacks using symbolic
modeling [32]. In the same context, Newsome and
Song have detected malware attacks using dynamic
taint analysis [33]. Memory errors can pose a risk to
the reliability of software. Qin and colleagues have
introduced a method of monitoring ECC memory
to detect these errors [34]. At the same time, Seward
and Nethercote have outlined methods for detecting
undefined value errors using the Valgrind tool [35].
Executable memory protection for Linux is a critical
defence against attacks, and a comprehensive over-
view of this subject is provided on Wikipedia [36].

Nethercote and Seward have introduced methods
for detecting software bugs by tracking dynamic
features through the Valgrind framework [37]. Costa
and colleagues have worked on enhancing software
security by conducting dynamic input verification
with Bouncer [38]. Song and his team have presented
the BitBlaze method for the analysis of malicious
software [39]. Liu and his colleagues have identified
vulnerabilities in x86 programs using obfuscation
methods and genetic algorithms [40]. Kroes and his
team have provided automatic detection methods for
memory management errors using Delta pointers [41].
Frantzen and Shuey have introduced hardware-as-
sisted stack protection with StackGhost [42]. Novark
and Berger have presented dynamic memory man-
agement approaches with the DieHarder tool [43].
Sayeed and colleagues have proposed protection
against buffer overflow attacks through control flow
integrity [44]. Andriesse and his team have offered
methods for software integrity protection and block-
ing malicious code with Parallax [45].

In recent years, machine learning has emerged
as a method used for attack detection from network
traffic. Mukkamala and colleagues have conducted
studies in this field [46], while Thottan and Ji have
performed anomaly detection by examining the char-
acteristics of network traffic data [47].

For the detection of attacks, tools such as dynamic
and static code analysis tools, memory tracing tools,
and fuzzers can be utilized. In particular, static code

16

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

analysis helps identify potential security vulnerabil-
ities through the method of analyzing the code with-
out executing it. To detect security vulnerabilities in
software, Cova and colleagues have presented meth-
ods combining flow graphs and static analysis [48].
Lanzi and colleagues have also proposed a vulner-
ability detection tool for the x86 architecture [49]. At
the same time, Miller and colleagues have tested the
resilience of applications for MacOS X [50]. In this
context, static code analysis tools like SonarQube
possess unique advantages in detecting potential
security vulnerabilities in software at an early stage.
Its multi-language support for various programming
languages allows for language-independent analysis
of projects. Its customizability feature allows for the
addition of specific rules. It can incorporate custom-
ized rule creation in SonarQube as well as the inte-
gration of an optimization algorithm with machine
learning.

3. Speed up static code analysis
WERTYMemoization is an optimization tech-

nique used to store the results of computationally
expensive operations, preventing the need for repeat-
ed execution of the same operations. This method
is particularly employed in dynamic programming
problems to minimize redundant calculations. In
the fields of data mining and big data analysis,

memoization contributes to resolving the time issues
encountered when algorithms process large data sets.
A HashMap function can be created for the source
code, storing information about previously seen
function names and whether these functions produce
a “buffer overflow”. Consequently, when a function
listed is encountered, the code does not have to re-
check if the function produces a “buffer overflow”;
instead, it quickly retrieves the result from the Hash-
Map function.

Static code analysis tools aim to identify er-
rors, assess code quality, and pinpoint security
vulnerabilities in codes written in various program-
ming languages. However, in large-scale projects,
completing each analysis can take a considerable
amount of time. The integration of the memoization
technique into static code analysis is targeted to
quickly analyze repeating functions or method calls,
thereby reducing the total analysis time. A functional
comparison of prominent and widely accepted static
code analysis tools in the literature is provided in
Table 1.

The static code analysis tool SonarQube stands
out among other analysis tools due to its support for
numerous programming languages, visual reporting
and user-friendly interface, offering broader customi-
zation options, and having a large user and developer
community.

Table 1. Functional comparison of code analysis tools.

Feature/Criterion SonarQube [51] ESLint Checkmzrx Coverity

Supported languages 20+ (Java, C#, PHP, JS vb.) Firstly, JS ve TypeScript 20+ 20+

Web based interface Yes No (CLI tabanlı) Yes No

CI/CD integration Extensive (Jenkins, Travis,
Azure Pipelines vb.) Limited Extensive Extensive

Customizable rules Yes Yes Yes Yes

Community support Strong Strong Medium Medium

Code quality metrics Yes No No No

Licensing and cost Free and commercial versions Free Commercial Commercial

Multi-language project support Yes No Yes Yes

Plugin and extension support Yes (Numerous plugins
available on the Marketplace) Yes (npm packages) Limited Limited

17

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

4. Case study
Methods used for automatic detection of security

vulnerabilities causing buffer overflow in static code
analysis are presented in this section. The interface
named Sonar-Scanner, which can work integrated
with SonarQube, enables the visualization of analy-
sis results and the execution of management opera-
tions. On the SonarQube platform, a special security
rule has been established with the aim of detecting
PHP functions that can create a security vulnerability
(buffer overflow).

4.1 Memoization-based custom rule
integration

The steps for incorporating the memoization
principle into the rule are given below. Integration of
the rule with the SonarQube analysis tool not only
reduces analysis time, but also enables quicker de-
tection of critical security risks.

Step-1: Creating a custom security rule: Leverag-
ing the customizable structure of SonarQube anal-
ysis tool for PHP, a security rule incorporating the
memoization technique is established.

Step-2: Cache management: Implementing a
caching mechanism within the custom rule to store
the results of functions that pose a security vulnera-

bility risk.
Step-3: Risk analysis: Evaluating potential

security risks when functions or methods are called
for the first time, and storing the result in the cache.

Step-4: Utilizing the cache: When a function of
the same name is called again, use the information in
the cache to instantly perform a security assessment.

In the first step, key files and functions for the
specific rules determined for static code analysis
are utilized. The file named BufferOverflowCheck.
java examines function calls, checking for the us-
age of specific functions such as strcpy, strcat, and
fwrite. When the use of these functions is detected,
a security alert is generated. The MyPhpRules.java
file stores the list of existing custom rules, and these
rules are added to the SonarQube rule repository.
The PHPCustomRulesPlugin.java file defines the
Sonar Plugin and adds the MyPhpRules class. The
pom.xml is used as a Maven configuration file for
building the project and managing its dependencies.
The necessary modules for creating a custom rule in
the SonarQube analysis tool are provided in Figure 1.

As shown in Figure 2, the SonarQube tool uses
the “@Rule” annotation to customize rule defini-
tions. There are different priority levels in these
checks, which are listed as INFO, MINOR, MAJOR,
CRITICAL, and BLOCKER. For the rule created

Figure 1. Loading of modules.

Figure 2. Determination of rule level.

18

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

in this study, the CRITICAL priority level has been
selected because buffer overflow can lead to securi-
ty breaches, and such a violation can pose a critical
threat to the entire system.

As shown in Figure 3, the constructor (Buffer
OverflowCheck()) creates a HashMap named
functionResultsCache. This structure is later used
to quickly detect risky functions. By calling the
loadCache() function, a previously created cache is
loaded.

As illustrated in Figure 4, the loadCache() func-
tion reads the previously saved cache data from
the disk and places it in the HashMap. Each line
read from the disk contains a function name and a
boolean value. The function name serves as the key,
and the boolean value is processed into the map.

In every situation where the cache is updated, the
saveCache() function is invoked as depicted in Fig-

ure 5. This function saves the functionResultsCache
HashMap to a file.

As illustrated in Figure 6, the visitFunctionCall()
function is triggered for each function call in the
source code. After retrieving the function name, it is
checked whether it has been previously added to the
cache or not.

If the function name exists in the cache, the stored
boolean value is used. If the value is true, a “Buffer
overflow issue detected” warning is generated. If the
function name has not been seen before, it is checked
whether it is risky. If it is in the list of risky functions
(such as strcpy, strcat, gets, etc.), it is added to the
cache as true and subsequently a warning is gener-
ated. When the cache is updated, the saveCache()
function is called, and the process continues for oth-
er potential SonarQube tool inspections with super.
visitFunctionCall(tree) (Figure 7).

Figure 3. Creation the BufferOverflowCheck class.

Figure 4. LoadCahce function.

Figure 5. SaveCahce function.

19

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

4.2 Memoization-based rule for attack detec-
tion

This structure also employs a caching mechanism
to enhance performance. Specifically, the save-
Cache and loadCache methods are used for loading
the cache file from the disk and saving it back to
the disk. This custom rule can effectively detect
buffer overflow issues in PHP projects, assisting
in the prevention of such security vulnerabilities.
The workflow of the rule added to the Sonar Qube
analysis tool is provided in the steps below.

Step-1: The BufferOverflowCheck class stores
function names and whether these functions may

cause a buffer overflow in a HashMap.
Step-2: When any function call is seen in the PHP

code, the visitFunctionCall function is triggered by
the rule.

Step-3: If the function name is in the cache
(HashMap), the rule can immediately generate a
warning. Otherwise, the function name and whether
it creates a buffer overflow is added to the cache.

In the example application below, a custom rule
has been added to the SonarQube analysis tool to
detect buffer overflow attacks. When dangerous PHP
functions (such as strncpy, strcat, addslashes, fwrite,
array_splice, etc.) are called, the application issues a
security vulnerability warning (Figure 8).

Figure 6. visitFunctionCall function.

Figure 7. Identifying functions that cause buffer overflow.

20

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

Additionally, the effectiveness of the memoi-
zation method has been measured by applying the
custom rule created to a PHP code found in the bat.
php repository located in the “b4tm4n” repository
on GitHub [45]. The source code selected for analysis
consists of a total of 3962 lines. After the SonarQu-
be analysis tool successfully analyzes the code, it

displays the identified risky functions and security
vulnerabilities on the interface. Figure 9 shows the
results of the analysis summary of the bat.php file
available on Github.

Figure 10 shows the lines of code in the bat.php
file that are potentially vulnerable to buffer overflow
attacks.

Figure 8. Code block in bat.php file where the “fwrite” function is used.

Figure 9. Analysis summary results of the bat.php file located on Github.

21

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

During the analysis with the custom rule created,
the information of the dangerous and safe functions
detected thanks to the loadCache function is saved to
a file named cache.txt. An example of a cache.txt file
is shown below:

As shown in Figure 11, there are functions mar-
ked as true or false. Here, true represents the functi-
ons that may pose a security vulnerability risk, while
false represents the functions that will not create a
security vulnerability. The existence of the cache.txt
file significantly increases the performance during
the next run of the custom rule. The loadCache fun-
ction reads this file at the beginning of the analysis
and loads the function information into memory
(RAM). Thus, when re-analyzing the same code,
instead of analyzing the security risks of the same

functions again, the custom rule directly retrieves the
information from the memory. This is an optimizati-
on technique known as memoization. This approach
shortens the analysis time and can quickly identify
previously detected security vulnerabilities in each
new analysis. Figures 12-14 show the analysis times
of the lines in the bat.php file analyzed above against
buffer overflow attacks. While the total analysis time
is 29.118 s when the cache is empty, it is 22.048 s
when the cache is full. It can be seen that the use of a
cache significantly reduces the analysis time.

Figure 11. Sample content is taken from the cache.txt file.

Figure 10. Code lines in the bat.php file that are potentially vulnerable to buffer overflow attacks.

Figure 12. Memoization.

Figure 13. Analysis duration with cache usage.

22

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

5. Results and discussion
In this study, we examine how a customized rule

can be added to the SonarQube analysis tool to iden-
tify potential buffer overflow security vulnerabilities
in codes written in PHP. The main goal is to develop
a system that not only performs static code analy-
sis but also enhances analysis performance with a
caching mechanism. Specific functions that could
pose a risk in PHP codes have been identified, and a
custom SonarQube rule has been designed for these
functions. The analysis process has been optimized
using the memoization technique, reducing repeated
analyses on the same code. This approach saves time
and resources, particularly for large codebases.

The current work also records significant advan-
cements in the effective detection of commonly used
functions that carry the risk of buffer overflow. The
increase in analysis performance has been made pos-
sible by the caching mechanism. The flexibility and
extensibility of this custom rule mean it can be app-
lied to different functions and methods. However, the
study has limitations, such as being specific to the
PHP language and covering only certain functions.
While the initial version is capable of static code
analysis only, the integration of dynamic analysis
and adaptation to different programming languages
represent significant potential for future work.

This research makes a notable contribution to
the field of web security, especially regarding the
security of PHP applications. In the future, the au-
tomatic detection and resolution of such security
vulnerabilities are expected to facilitate the creation
of more effective and secure applications in software
development and cybersecurity. Particularly, the in-
tegration of the custom rule with dynamic analysis,
the incorporation of machine learning techniques,
and improvements to the user interface will push
the innovations in this field further. In addition,

advanced automation approaches for strengthening
defence mechanisms against security vulnerabilities
and making software development processes more
robust could be developed, contributing to risk
assessment and management strategies. Designing an
extended security framework applicable in various
software languages to deal with a wide spectrum of
security threats, beyond specific challenges such as
buffer overflow, will be an important goal for future
researchers and applications. Such a framework will
play a crucial role in protecting critical systems and
securing sensitive data.

Author Contributions
Halit Oztekin and Oguz Ozger—conceptualization,

methodology, formal analysis, investigation,
supervision, validation, visualization, writing—original
draft, and writing—review and editing.

Conflict of Interest
The author declares that there are no conflicts of

interest.

Funding
This research received no external funding.

Acknowledgement
There is no acknowledgement for this article.

References
[1] Spafford, E.H., 1989. The Internet worm prog-

ram: An analysis. ACM SIGCOMM Computer
Communication Review. 19(1), 17-57.

 DOI: https://doi.org/10.1145/66093.66095
[2] Moore, D., Paxson, V., Savage, S., et al., 2003.

Figure 14. Analysis duration without cache usage.

23

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

Inside the slammer worm. IEEE Security &
Privacy. 1(4), 33-39.

 DOI: https://doi.org/10.1109/MSECP.2003.1219056
[3] Springall, D., Durumeric, Z., Halderman, J.A.

(editors), 2016. Measuring the security harm
of TLS crypto shortcuts. IMC’16: Proceedings
of the 2016 Internet Measurement Conferen-
ce; 2016 Nov 14-16; Santa Monica California
USA. New York: Association for Computing
Machinery. p. 33-47.

 DOI: https://doi.org/10.1145/2987443.2987480
[4] Oversight and Government Reform [Internet].

Available from: https://oversight.house.gov/
wp-content/uploads/2018/12/Equifax-Report.
pdf

[5] Kocher, P., Horn, J., Fogh, A., et al. (editors),
2019. Spectre attacks: Exploiting speculative
execution. 2019 IEEE Symposium on Secu-
rity and Privacy (SP); 2019 May 19-23; San
Francisco, CA, USA. New York: IEEE.

 DOI: https://doi.org/10.1109/SP.2019.00002
[6] Remote Desktop Services Remote Code Exe-

cution Vulnerability [Internet]. Available from:
https://msrc.microsoft.com/update-guide/en-
US/vulnerability/CVE-2019-0708

[7] Bhutan Built a Bitcoin Mine on the Site of Its
Failed ‘Education City’; 2019.

[8] On-Premises Exchange Server Vulnerabilities
Resource Center—updated March 25, 2021
[Internet]. Available from: https://msrc.micro-
soft.com/blog/2021/03/multiple-security-up-
dates-released-for-exchange-server/

[9] Dowd, M., McDonald, J., Schuh, J., 2006. The
art of software security assessment: Identifying
and preventing software vulnerabilities. Pear-
son Education: London.

[10] SEI CERT Oracle Coding Standard for Java
[Internet]. Available from: https://wiki.sei.cmu.
edu/confluence/display/java/SEI+CERT+Ora-
cle+Coding+Standard+for+Java

[11] Conklin, W.A., White, G., Cothren, C., et
al., 2022. Principles of Computer Security:
CompTIA Security+TM and Beyond [Internet].
Available from: https://sisis.rz.htw-berlin.de/

inh2010/12389366.pdf
[12] Xu, J., Patel, S., Iyer, R., et al., 2002. Archi-

tecture Support for Defending Against Buffer
Overflow Attacks [Internet]. Available from:
https://www.ideals.illinois.edu/items/100089/
bitstreams/319746/data.pdf

[13] Anley, C., Heasman, J., Lindner, F., et al.,
2007. The shellcoder’s handbook: Discovering
and exploiting security holes. Wiley: Hoboken.

[14] Intel® 64 and IA-32 Architectures Software
Developer Manuals [Internet]. Available from:
https://www.intel.com/content/www/us/en/de-
veloper/articles/technical/intel-sdm.html

[15] One, A., 1996. Smashing the stack for fun and
profit. Phrack Magazine. 7(49), 14-16.

[16] Wagner, D., Foster, J.S., Brewer, E.A., et al.,
2000. A First Step Towards Automated Detecti-
on of Buffer Overrun Vulnerabilities [Internet].
Available from: https://www.cs.umd.edu/class/
spring2021/cmsc614/papers/automated-buffer.
pdf

[17] Baratloo, A., Singh, N., Tsai, T. (editors), 2000.
Transparent run-time defense against stack
smashing attacks. Proceedings of the 2000
USENIX Annual Technical Conference; 2000
Jun 18-23; San Diego, California, USA.

[18] Chiueh, T.C., Hsu, F.H. (editors), 2001. RAD:
A compile-time solution to buffer overflow
attacks. Proceedings of the 21st International
Conference on Distributed Computing Sys-
tems; 2001 Apr 16-19; Mesa, AZ, USA. New
York: IEEE. p. 409-417.

 DOI: https://doi.org/10.1109/ICDSC.2001.918971
[19] Kuperman, B., Brodley, C., Ozdoganoglu, H.,

et al., 2005. Detection and prevention of stack
buffer overflow attacks. Communications of
the ACM. 48(11), 50-56.

 DOI: https://doi.org/10.1145/1096000.1096004
[20] Le, W., Soffa, M.L. (editors), 2008. Marple: A

demand-driven path-sensitive buffer overflow
detector. Proceedings of the ACM SIGSOFT
Symposium on the Foundations of Software
Engineering; 2008 Nov 9-14; Atlanta Georgia.
New York: Association for Computing Machin-

https://doi.org/10.1145/2987443.2987480
https://oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf
https://oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf
https://oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-0708
https://msrc.microsoft.com/update-guide/en-US/vulnerability/CVE-2019-0708
https://msrc.microsoft.com/blog/2021/03/multiple-security-updates-released-for-exchange-server/
https://msrc.microsoft.com/blog/2021/03/multiple-security-updates-released-for-exchange-server/
https://msrc.microsoft.com/blog/2021/03/multiple-security-updates-released-for-exchange-server/
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://wiki.sei.cmu.edu/confluence/display/java/SEI+CERT+Oracle+Coding+Standard+for+Java
https://sisis.rz.htw-berlin.de/inh2010/12389366.pdf
https://sisis.rz.htw-berlin.de/inh2010/12389366.pdf
https://www.ideals.illinois.edu/items/100089/bitstreams/319746/data.pdf
https://www.ideals.illinois.edu/items/100089/bitstreams/319746/data.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.cs.umd.edu/class/spring2021/cmsc614/papers/automated-buffer.pdf
https://www.cs.umd.edu/class/spring2021/cmsc614/papers/automated-buffer.pdf
https://www.cs.umd.edu/class/spring2021/cmsc614/papers/automated-buffer.pdf
https://doi.org/10.1109/ICDSC.2001.918971

24

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

ery. p. 272-282.
 DOI: https://doi.org/10.1145/1453101.1453137
[21] Brooks, T.N., 2017. Survey of automated vul-

nerability detection and exploit generation te-
chniques in cyber reasoning systems. Advances
in intelligent systems and computing. Springer:
Cham. pp. 1083-1102.

 DOI: https://doi.org/10.1007/978-3-030-01177-
2_79

[22] Chess, W., 1998. Secure programming with
static analysis. Pearson Education: London.

[23] Cowan, C., Beattie, S., Johansen, J., et al.
(editors), 2003. Pointguard TM: Protecting
pointers from buffer overflow vulnerabilities.
Proceedings of the 12th USENIX Security
Symposium; 2003 Aug 4-8; Washington D.C.,
USA.

[24] Yong, S.H., Horwitz, S. (editors), 2003. Protec-
ting C programs from attacks via invalid poin-
ter dereferences. Proceedings of the 9th Euro-
pean Software Engineering Conference Held
Jointly with 11th ACM SIGSOFT International
Symposium on Foundations of Software Engi-
neering; 2003 Sep 1-5; Helsinki Finland. New
York: Association for Computing Machinery. p.
307-316.

 DOI: https://doi.org/10.1145/940071.940113
[25] Nethercote, N., Seward, J., 2003. Valgrind: A

program supervision framework. Electronic
Notes in Theoretical Computer Science. 89(2),
44-66.

 DOI: https://doi.org/10.1016/S1571-0661(04)
81042-9

[26] Rinard, M., Cadar, C., Dumitran, D., et al.
(editors), 2004. A dynamic technique for eli-
minating buffer overflow vulnerabilities (and
other memory errors). 20th Annual Computer
Security Applications Conference; 2004 Dec
6-10; Tucson, AZ, USA. New York: IEEE. p.
82-90.

 DOI: https://doi.org/10.1109/CSAC.2004.2
[27] Cowan, C., Barringer, M., Beattie, S., et al.

(editors), 2001. FormatGuard: Automatic pro-
tection from printf format string vulnerabilities.

Proceedings of the 10th USENIX Security Sy-
mposium; 2001 Aug 13-17; Washington D.C.,
USA. p. 191-200.

[28] Fen, Y., Fuchao, Y., Xiaobing, S., et al., 2012.
A new data randomization method to defend
buffer overflow attacks. Physics Procedia. 24,
1757-1764.

 DOI: https://doi.org/10.1016/j.phpro.2012.02.259
[29] Ruwase, O., Lam, M.S., 2003. A Practical

Dynamic Buffer Overflow Detector [Internet].
Available from: http://www.cs.cmu.edu/afs/
cs.cmu.edu/Web/People/oor/papers/cred.pdf

[30] Jha, S. (editor), 2010. Retrofitting legacy code
for security. Computer Aided Verification, 22nd
International Conference, CAV 2010; 2010 Jul
15-19; Edinburgh, UK. Berlin: Springer.

 DOI: https://doi.org/10.1007/978-3-642-14295-6_2
[31] Emami, M., Ghiya, R., Hendren, L. (editors),

1994. Context-sensitive interprocedural po-
ints-to analysis in the presence of function
pointers. Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language
Design and Implementation; 1994 Jun 20-24;
Orlando Florida USA. New York: Association
for Computing Machinery.

 DOI: https://doi.org/10.1145/178243.178264
[32] Liang, Z., Sekar, R. (editors), 2005. Automatic

generation of buffer overflow attack signatures:
An approach based on program behavior mo-
dels. 21st Annual Computer Security Applica-
tions Conference (ACSAC’05); 2005 Dec 5-9;
Tucson, AZ, USA. New York: IEEE. p. 10-224.

 DOI: https://doi.org/10.1109/CSAC.2005.12
[33] Newsome, J., Song, D., 2005. Dynamic Taint

Analysis for Automatic Detection, Analysis,
and Signature Generation of Exploits on Com-
modity Software [Internet]. Available from:
https://citeseerx.ist.psu.edu/document?repid=re
p1&type=pdf&doi=5803709632cf010d3923e8
f85416bb95db0dd8ea

[34] Qin, F., Lu, S., Zhou, Y. (editors), 2005. Safe-
Mem: Exploiting ECC-memory for detecting
memory leaks and memory corruption during
production runs. 11th International Symposium

https://doi.org/10.1007/978-3-030-01177-2_79
https://doi.org/10.1007/978-3-030-01177-2_79
https://doi.org/10.1016/S1571-0661(04)81042-9
https://doi.org/10.1016/S1571-0661(04)81042-9
http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/oor/papers/cred.pdf
http://www.cs.cmu.edu/afs/cs.cmu.edu/Web/People/oor/papers/cred.pdf
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5803709632cf010d3923e8f85416bb95db0dd8ea
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5803709632cf010d3923e8f85416bb95db0dd8ea
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=5803709632cf010d3923e8f85416bb95db0dd8ea

25

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

on High-Performance Computer Architecture;
2005 Feb 12-16; San Francisco, CA, USA.
New York: IEEE. p. 291-302.

 DOI: https://doi.org/10.1109/HPCA.2005.29
[35] Seward, J., Nethercote, N. (editors), 2005.

Using Valgrind to detect undefined value errors
with bit-precision. Proceedings of the USE-
NIX’05 Annual Technical Conference; 2005
Apr 10-15; Anaheim, California, USA.

[36] Executable-space Protection [Internet]. Available
from: https://en.wikipedia.org/wiki/Execut-
able-space_protection

[37] Nethercote, N., Seward, J., 2007. Valgrind: A
framework for heavyweight dynamic binary
instrumentation. ACM Sigplan Notices. 42(6),
89-100.

 DOI: https://doi.org/10.1145/1273442.1250746
[38] Costa, M. (editor), 2008. Bouncer: Securing

software by blocking bad input. Proceedings of
the 2nd Workshop on Recent Advances on Int-
rusiton-tolerant Systems; 2008 Apr 1; Glasgow
United Kingdom. New York: Association for
Computing Machinery.

 DOI: https://doi.org/10.1145/1413901.1413902
[39] Song, D., Brumley, D., Yin, H., et al. (editors),

2008. BitBlaze: A new approach to computer
security via binary analysis. Information Sys-
tems Security, 4th International Conference,
ICISS 2008; 2008 Dec 16-20; Hyderabad, In-
dia. Berlin: Springer. p. 1-25.

 DOI: https://doi.org/10.1007/978-3-540-89862-7_1
[40] Liu, G.H., Wu, G., Tao, Z., et al. (editors),

2008. Vulnerability analysis for x86 executab-
les using genetic algorithm and fuzzing. 2008
Third International Conference on Convergen-
ce and Hybrid Information Technology; 2008
Nov 11-13; Busan, Korea (South). New York:
IEEE. p. 491-497.

 DOI: https://doi.org/10.1109/ICCIT.2008.9
[41] Kroes, T., Koning, K., Kouwe, E., et al.

(editors), 2018. Delta pointers: Buffer overflow
checks without the checks. EuroSys’18: Proce-
edings of the Thirteenth EuroSys Conference;
2018 Apr 23-26; Porto Portugal. New York:

Association for Computing Machinery. p. 1-14.
 DOI: https://doi.org/10.1145/3190508.3190553
[42] Frantzen, M., Shuey, M. (editors), 2001. Stack-

Ghost: Hardware facilitated stack protection.
10th USENIX Security Symposium; 2001 Aug
13-17; Washington, D.C., USA.

[43] Novark, G., Berger, E. (editors), 2010. Die-
Harder: Securing the heap. Proceedings of
the 17th ACM Conference on Computer and
Communications Security; 2010 Oct 4-8; Chi-
cago, Illinois, USA. New York: Association for
Computing Machinery. p. 573-584.

 DOI: https://doi.org/10.1145/1866307.1866371
[44] Sayeed, S., Marco-Gisbert, H., Ripoll, I., et al.,

2019. Control-flow integrity: Attacks and pro-
tections. Applied Sciences. 9(20), 4229.

 DOI: https://doi.org/10.3390/app9204229
[45] Andriesse, D., Bos, H., Slowinska, A. (editors),

2015. Parallax: Implicit code integrity verifica-
tion using return-oriented programming. 2015
45th Annual IEEE/IFIP International Confe-
rence on Dependable Systems and Networks;
2015 Jun 22-25; Rio de Janeiro, Brazil. New
York: IEEE. p. 125-135.

 DOI: https://doi.org/10.1109/DSN.2015.12
[46] Mukkamala, S., Janoski, G., Sung, A. (editors),

2002. Intrusion detection using neural networks
and support vector machines. Proceedings
of the 2002 International Joint Conference
on Neural Networks. IJCNN’02 (Cat. No.
02CH37290); 2002 May 12-17; Honolulu, HI,
USA. New York: IEEE. p. 1702-1707.

 DOI: https://doi.org/10.1109/IJCNN.2002.1007774
[47] Thottan, M., Ji, C., 2003. Anomaly detection in

IP networks. IEEE Transactions on Signal Pro-
cessing. 51(8), 2191-2204.

 DOI: https://doi.org/10.1109/TSP.2003.814797
[48] Cova, M., Felmetsger, V., Banks, G., et al.

(editors), 2006. Static detection of vulnerabi-
lities in x86 executables. 2006 22nd Annual
Computer Security Applications Conference
(ACSAC’06); 2006 Dec 11-15; Miami Beach,
FL, USA. New York: IEEE. p. 269-278.

 DOI: https://doi.org/10.1109/ACSAC.2006.50

https://en.wikipedia.org/wiki/Executable-space_protection
https://en.wikipedia.org/wiki/Executable-space_protection
https://doi.org/10.1145/1273442.1250746

26

Journal of Computer Science Research | Volume 05 | Issue 04 | October 2023

[49] Lanzi, A., Martignoni, L., Monga, M., et al.
(editors), 2007. A smart fuzzer for x86 exe-
cutables. Third International Workshop on
Software Engineering for Secure Systems
(SESS’07: ICSE Workshops 2007); 2007 May
20-26; Minneapolis, MN, USA. New York:
IEEE.

 DOI: https://doi.org/10.1109/SESS.2007.1
[50] Miller, B.P., Cooksey, G., Moore, F., 2007. An

empirical study of the robustness of MacOS

applications using random testing. Operating

Systems Review. 41(1), 78-86.

 DOI: https://doi.org/10.1145/1228291.1228308

[51] SonarQube Homepage [Internet]. Available

from: https://www.sonarqube.org/

