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ABSTRACT
In this work, Digital Twins based on Neural Networks for the steady state production of styrene were generated. 

Thus, both the Aspen Technology AI Model Builder (alternative 1) and a homemade MS Excel VBA code connected 
to Aspen HYSYS and Aspen Plus (alternative 2) were used with this same aim. The raw data used for generating the 
Digital Twins were obtained from process simulations using Aspen HYSYS and/or Aspen Plus, which were connected 
through a recycle-like stream via automation for solving the entire simulation flowsheet. Aspen HYSYS was used for 
solving the pre-heating, reaction, and stabilization sections of the process whereas Aspen Plus ensured the computing 
of the separation and purification columns. Both alternatives led to an excellent prediction showing the capability of 
creating Digital Twins from and for process simulation.
Keywords: Digital Twin; Aspen Hybrid Model Builder; Aspen HYSYS; Aspen Plus; Automation; MS Excel-VBA

1. Introduction
Artificial Intelligence (AI) and Machine Learn-

ing (ML) technologies, together with vast amounts 
of data obtained from modern digital technologies, 

have emerged as a cornerstone of the Industry 4.0 
revolution. Currently, almost every industry sector, 
including chemicals, is pursuing AI-enabled process-
es [1–3]. Early examples of Industry Digitalization in 
the chemical industry are predictive maintenance 
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and process automation. Supervised learning, un-
supervised learning, and reinforcement learning are 
paradigms related to ML [4]. Specifically, supervised 
Learning (SL) is a type of ML in which a model is 
constructed based on data that include the inputs (inde-
pendent variables) and known outputs (dependent vari-
ables) for a potentially large number of examples [1]. 

Digital Twins can provide digital copies of the 
production lines while offering real-time process 
monitoring, control, and optimization [5,6]. They estab-
lish feedback between real physical systems and the 
digital model [7] and allow to simulation of the phys-
ical systems more realistically [8]. To perform an ac-
curate representation of a real system using a Digital 
Twin, as much information as possible is required [9].  
However, acquiring data is a challenging task [8]: a 
multitude of sensor technologies based on the Inter-
net of Things (IoT) exist, and which one to rely on 
is a common source of concern; data acquired from 
sensors is not always reliable and is prone to noise 
and randomness; acquiring and validating data in a 
timely manner is a difficult task, etc. Consequently, 
some AI-based solutions must be addressed to avoid 
these issues. Among them, one could consider the 
following ones: data validation by utilizing ML clas-
sifiers to organize sensors as faulty; generation of 
synthetic data to simulate the behavior of physical 
systems which can later be utilized by ML models 
for testing purposes, etc.

In other words, AI has opened a new dimension to 
model and simulate chemical processes [3]. It has been 
widely used as a tool for predictive analysis and has 
been successfully used to model processes includ-
ing crystallization [10–13], adsorption, distillation [13],  
gasification [14], dry reforming [15] and filtration [16]. 
In chemical engineering industries and many ac-
ademic laboratories, AI is already in use, mostly 
to monitor, predict and control the outcomes of 
unit operations [17]. To date, AI is most widely used 
in engineering to find the relationship between a de-
pendent variable and several independent variables 
through regression algorithms [17]. Alternatively, AI 
can be built using classification or clustering algo-
rithms depending on the inputs available about the 

problem that allow the prediction of the desired out-
put. 

Recently, Aspen Technology Inc. has incorporated 
into its products the AI Model Builder, which can gen-
erate Hybrid Models of processes and operations [18–22]. 
The models obtained this way can be deployed to the 
flowsheets at the process simulators Aspen Plus and 
Aspen HYSYS, allowing the performance of mass and 
energy balances, sensitivity analyses, process optimiza-
tions and other calculations of relevant significance in 
design and analysis at the process engineering step 
of any project. Aspen Hybrid Models conveniently 
combine first principles and machine learning algo-
rithms resulting in three types of them: those driven 
by AI or by pure first principles and, finally, the re-
duced order ones. 

The pure first-principles models use theoretical 
equations and a limited set of empirical data to ob-
tain their adjustable parameters. They generally ex-
trapolate well over a wide range of conditions. How-
ever, they may not be available for all phenomena or 
operations of interest in the chemical industry and 
can be time-consuming to create and run. 

AI Hybrid Models have pure machine learning 
character. The data used for training them can pro-
ceed from plants or experiments. They need lots of 
“good” data for training as already mentioned. If 
this condition is ensured, the model is accurate over 
the range of operating conditions used for its train-
ing. From this, it is evident that this kind of model 
may not extrapolate well or may violate physical 
constraints which in several cases are difficult to 
interpret. Positively it can stand out on these models 
with two noticeable features: i) they may simulate 
operations for which first-principles formulations 
are not available or result very difficult to describe 
in this way, and ii) they run very fast ensuring good 
convergencies within the overall process flowsheet. 

Reduced order workflow is used to create an 
empirical model based on data from numerous sim-
ulation runs, where certain constraints are satisfied 
(e.g., mass balance). The creation of reduced order 
models follows two steps (Figure 1). Firstly, a case 
study on the process or operation is run, and second-
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ly machine learning procedures are used to generate 
a Neural Network (NN) by using the data obtained in 
the former step. Finally, the model is deployed in the 
simulation flowsheet as any other process or logical 
operation. To fulfill this operational process, Aspen 
Technology has introduced two computational tools: 
i) the Aspen Multi-Case which takes advantage of 
the multicore architecture of modern CPUs to run a 
lot of cases (in the order of thousands) in much less 
time than the original Case Study tool implemented 
in Aspen HYSYS or the Sensitivity analysis availa-
ble in Aspen Plus, ii) the Aspen AI Model Builder, 
a web-based service which allows the user creating 
NNs based on the data supply from plant operation, 
experiments or multi-case runs of rigorous process 
simulations.

Figure 1. Reduced order workflow used to create Hybrid Models 
according to the new AI resources implemented in the Aspen 
Technology Process Engineering suite of programs. 

Aspen Technology’s products offer another inter-
esting and confident way to create processes’ Digital 
Twins. This latter one is supported by the automation 
strategies, where the process simulators (Aspen Plus 
and/or Aspen HYSYS) can be linked to third-par-
ty codes built in MS Excel-VBA, Phyton, etc. In 
this alternative, the NN is created and managed by 
third-party software, obtaining the process informa-
tion from the simulators via automation. An advan-
tage of this strategy is that the NN can be run by the 
third-party software selected without requiring the 
use of the process simulator. On the other hand, as 
the NN is created by a user code, its configuration, 
structure, and other features can be freely manipulat-
ed. 

Artificial Neural Networks (Artificial NN) are 
commonly used in Supervised Learning. An artificial 

neuron, also called perceptron, is the single process-
ing unit that composes the Artificial NN and acts 
as a transfer function of inputs to generate outputs. 
A feedforward network might contain at least one 
layer. After the network is built, it must be trained. 
The training process simply refers to the process of 
repeatedly feeding the inputs and outputs, followed 
by adjusting the weights and biases using a suitable 
algorithm. The larger the data used for training, the 
greater the accuracy of the network. Once the net-
work is trained, it should be tested to predict the out-
puts for new inputs. 

As above mentioned, to demonstrate the capa-
bility of Digital Twins as a surrogate of the physical 
system, real and reliable data should be acquired, 
which is not an easy task. Alternatively, the genera-
tion of valuable data that simulates the behavior of 
that system can be used for configuring the Digital 
Twin of the real process. However, the large number 
of scenarios to be generated requires manually modi-
fying the same number of times a specific simulation 
for accounting for results, using some tools like As-
pen Multi-Case as commented later to automate the 
simulation process with third-party software. 

In this work, the two alternatives mentioned will 
be applied to create Digital Twins of a well-known 
chemical process: the production of styrene. To work 
with a well-known process allowed the authors to 
focus on the development of both alternatives rath-
er than on the process itself. Thus, both the Aspen 
Technology AI Model Builder and an MS Excel 
VBA code will be used with this aim. The conceptu-
al and basic developments of the process reported by 
Luyben [23] and Haydary [24] were taken as referenc-
es for the current process formulation. The Digital 
Twins here were developed to reflect the stationary 
operation of the styrene plant. Correspondingly, the 
input and output selected variables are mainly related 
to the operability and the controllability of the indus-
trial process. The raw data used for generating the 
digital twins were obtained from process simulations 
using Aspen HYSYS and/or Aspen Plus. In the sec-
ond alternative explored in this work and because of 
the specificities of the process simulators employed, 
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the interconnection of both, Aspen HYSYS and 
Aspen Plus, was required for solving the entire sim-
ulation flowsheet i.e., Aspen HYSYS was used for 
solving the pre-heating, reaction, and stabilization 
sections of the process meanwhile whereas Aspen 
Plus ensured the computing of the separation and pu-
rification columns. The coupling of both simulators 
was solved by the automation methodology through 
an MS Excel-VBA code. This way, a recycle-like 
stream emerged when connecting both programs 
which demanded a code for performing a direct iter-
ation algorithm that fixed the internal recycle stream 
of the process.

2. Process description
Styrene is an aromatic hydrocarbon derived 

from benzene which is obtained in the oil refining  
process [25]. There are different ways of producing 
styrene, the most widely used being the catalytic 
dehydrogenation of ethylbenzene, which often takes 
place in the gas phase and requires an excess of wa-
ter vapor apart from the presence of solid catalysts, 
generally based on Fe2O3. This main reaction is ac-
companied by several secondary reactions such as the 
pyrolysis of ethylbenzene to benzene and ethylene, 
and the dealkylation of ethylbenzene to toluene and 
methane. Two main technologies are commercialized 
to produce styrene: that developed by the German 
engineering BASF where the reactor operates near 
isothermal conditions and the one proposed by the 
American Dow Chemical in which the reactor oper-
ates under a quasi-adiabatic regime [24]. In the current 

work, the adiabatic operation considered two reactor 
beds including an inter-bed heating (Figure 2). 

Ethylbenzene conversions typically range from 
65% to 75%, with selectivity towards styrene be-
ing between 93% and 97%. However, styrene and 
ethylbenzene have very similar boiling points, which 
will require the use of distillation columns with many 
stages operating at high reflux ratios. This fact deter-
mines that the separation and purification section of 
the process is strongly energy-demanding being una-
voidable in its exhaustive description, for which the 
knowledge of the pressure profiles along the column 
is critical. The reactor outlet mixture (Stream S8) 
is cooled before further separation and purification. 
The heat released was used to generate high- and 
low-pressure steam. The most volatile components 
are then separated into two flash drums. The liquid 
streams coming from these drums are conducted to 
a decanter, where two streams: aqueous and organic 
ones, are obtained. The latter one (Stream FT100) 
was conducted to the separation and purification col-
umn train which is composed of two distillation col-
umns (T-100 and T-101). In the first column (T-100), 
pure styrene was obtained at the bottom. This first 
column operated under vacuum conditions to avoid 
undesired reactions such as styrene polymerization. 
The top stream from this column is constituted by 
a mixture of ethylbenzene and byproducts such as 
toluene and benzene. This mixture was conducted to 
a second distillation column where the unconverted 
ethylbenzene was extracted from the bottoms with 
high purity and then recirculated to the conditioning 
unit. 

Figure 2. Flowsheet diagram of the styrene production process.
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The two strategies considered in this work to cre-
ate a Digital Twin of the styrene process are mark-
edly different from the point of view of the compu-
tational details. However, the specifications used to 
define the process model are the same. All the calcu-
lations were performed with the Aspen Plus and/or 
Aspen HYSYS v12.1 and the corresponding version 
of the Aspen Multi-Case.

2.1 Process model specifications

The feed to the process (Table 1) consisted of 
pure ethylbenzene (Stream FRESH EB), steam 
(Stream STEAM1) and the recycled ethylbenzene 
stream coming (REC EB) from the bottom of the 
second distillation column (T-101). These three 
streams are mixed resulting in an effluent (S1) that 
was thermally conditioned in the heat exchange train 
(exchangers E-100 and E-101) which uses either the 
process fluid (S8 and S9). The conditioned mixture 
(S5) is fed to the reactions section which, as previ-
ously mentioned, is composed of two tubular reac-
tors operating adiabatically with inter-bed heating 
(E-102). Both reactors are similar in dimensions and 
operating conditions. 

Table 1 shows the input stream data to the reac-
tion unit whereas Table 2 shows the reaction unit 
decanter output current data, with stream S23 being 
the input to the separation unit (Figure 3).

The conditions and composition of the reactor 
outlet mixture are given in Table 2. 

Columns T-100 and T-101 were specified by the 
purity of styrene and ethylbenzene, respectively, in 
the bottom streams (Table 3). The degree of freedom 
in both columns was completed with the reflux ratio 

and the power supplied to the boiler. 
The initial values for the simulation convergence 

were taken from Haydary [24].

2.2 Input scenarios and response variables

In this study, 6 input variables and 4 levels of var-
iation for each one were considered resulting in 4096 
scenarios. The selected input variables were the mass 
flow rates of fresh steam entering the reaction unit, 
the top pressures of columns T-100 and T-101, and 
the pressures of the cooling water streams (HP-H2O 
and LP-H2O) yielding steam after passing through 
the corresponding heat exchangers. A variation of the 
input variables of 2.5% above and below the values 
reported in the reference simulations (Table S1) [24] 
was assumed. The narrowest of the variation inter-
vals for the input variables is consistent with the fact 
that the Digital Twin, as mentioned in the Introduc-
tion, is created to describe the stationary operation of 
the process. 

The variables to be obtained by the Hybrid Mod-
el (output variables) were: styrene mass flow rate 
(STYRENE), T-100 column reflux ratio, ethylben-
zene recirculation flow rate (REC EB), total ethylb-
enzene conversion (%) at the outlet of the two re-
actors, total boiler power (HFE-100 and HFE-101), 
T-100 column reboiler power, mass flow rate of the 
low pressure cooling water (LP-H2O), mass flow rate 
of stream S17, H2 mole fraction in stream S17, mass 
flow rate of the S24 stream (top stream in column 
T-100), mass flow rate of stream B/T (distillate from 
the T-101 column, containing benzene and toluene), 
and mass flow rate of stream S22 (aqueous phase at 
the outlet of the decanter).

Table 1. Input streams data to the conditioning and reaction units.

Streams FRESH EB STEAM1 STEAM2 LP-H2O HP-H2O
Vapor fraction 0 1 1 1 1
Temperature [°C] 20.0 120.0 133.5 20.0 20.0
Pressure [kPa] 180 180 300 180 300
Mass flow [kg/h] 5308 1856 13721 704 4143
Mole Fractions
E-Benzene 1 0 0 0 0
Water 0 1 1 1 1
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2.3 Alternative 1. Using the Aspen Technology 
AI Model Builder

In this alternative, the Aspen Multi-Case launched 
from an Aspen Plus model of the process was used 
to generate massive results in the process (Para-
graph 2.2). The property model Peng Robinson was 
used to estimate the fluid properties. Further, the 
Aspen AI Model Builder was used to generate the 
NN. Finally, the Hybrid Model was deployed to the 
simulation flowsheet as a sensor (Figure 1). In the 
current version of the Aspen AI Model Builder, the 
Lasso regression algorithm [26] was used to create the 
NNs. The process was repeated several times trying 
to improve the quality of the NN generated. As part 
of this improvement, non-linear terms were included 
for certain variables when no good regressions were 
obtained with the linear ones. As recommended, 
80% of the original data was used to train the neural 

network whereas the remainder ones were used for 
its validation. Other percentages were tested aiming 
to improve the network capability without observing 
significant improvements of the results. 

The model created was deployed to the process 
simulator as “sensor” according to the nomenclature 
adopted in this application. Correspondingly, only 
the sensor is necessary to calculate the response 
variables. No connections between process units or 
sections are permitted for the sensors. 

2.4 Alternative 2. Using the MS Excel-VBA 
automation of Aspen HYSYS and Aspen Plus 
to generate the neural network

Aspen HYSYS was chosen for calculating the 
feed conditioning and reaction sections as well as 
the cooling of the gases overcoming the reactor and 
their separation. Meanwhile, the columns were com-

Table 2. Data of the effluent streams from the reaction unit.

Streams S17 S23 S22
Vapor fraction 1 0 0
Temperature [°C] 5.0 25.0 25.0
Pressure [kPa] 100 60 100
Mass flow [kg/h] 212 8018 15573
Mole Fraction
E-Benzene 0.00 0.38 0.00
Water 0.01 0.00 1.00
Benzene 0.00 0.02 0.00
Ethylene 0.04 0.00 0.00
Hydrogen 0.89 0.00 0.00
Methane 0.05 0.00 0.00
Styrene 0.00 0.56 0.00
Toluene 0.00 0.03 0.00

Table 3. Operating variables for the distillation columns.

Operating Variable T-100 T-101

Stages 80 36
Condenser Partial Total
Reboiler duty [MW] 3.252 0.376
Reflux ratio 6.92 9.63
Pressure on stage 1 [kPa] 10 120
Bottom pressure [kPa] 40 130
Feed stage 36 16

Column packing Mellapak Plus Mellapak Plus
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puted in Aspen Plus. This decision is determined by 
the fact that updating the information related to the 
column pressure profile in automated calculations, 
like sensitivity analyses, is a key factor in the current 
work. It significantly impacts the correct prediction 
of both the temperature at the bottom and the reboil-
er duties. In Aspen Plus this functionality is fully 
integrated into the internal analysis calculations. 
However, in Aspen HYSYS is possible to export the 
pressure profile in an individual calculation, but not 
automatically when case studies are performed. The 
Peng Robinson equation from the Aspen Properties 
was selected as the property model in both programs 
for predicting the fluid properties. 

Integrating Aspen HYSYS and Aspen Plus in a 
single simulation demands continuous and bilateral 
information transference between both programs. 
This issue was solved here by connecting both pro-
grams through a homemade MS Excel-VBA appli-
cation specially programmed for this purpose. It also 
solved the algebraic loop related to the ethylbenzene 
recycle (Figure 3). Thus, the subroutine used to con-
verge the corresponding tear stream was included in 
the MS Excel-VBA code. In practice, the connection 
between simulators was made through the stream 
REB in Aspen Plus and the stream REC EB in As-
pen HYSYS, and streams S23 in both simulators. 
When a new scenario must be computed, the MS 
Excel-VBA application sends an initial estimation 
of stream REC EB to Aspen HYSYS. After reaching 
the convergence, the information of stream S23 in 
Aspen HYSYS is transferred to stream S23 in Aspen 

Plus. Once the simulation is converged, the corre-
sponding results obtained for stream REB in Aspen 
Plus were compared to the input values of stream 
REC EB in Aspen HYSYS through a VBA code. If 
relative errors were higher than 10-4 (tolerance), the 
values of stream REB computed with Aspen Plus 
were transferred to REC EB in Aspen HYSYS. The 
process was repeated until the relative errors were 
lower than the tolerance. 

Once the case study calculations were complete, 
the output variables produced by the coupled simula-
tions were captured through another VBA subroutine 
and transferred to a third one which was responsible 
for creating the Neural Network. 

2.5 Neural network training

Levenberg-Marquardt algorithm [27] coupled with 
an ANOVA analysis was used for training the net-
work [28]. This algorithm has been also proposed for 
predictive inferential control of distillation. It was 
built in an MS Excel-VBA application which was 
sensitive to both the number of layers, the number of 
neurons in each hidden layer and the propagation or 
active function used in each layer. Pearson’s ratio co-
efficient, r, defined similarly to the correlation index 
used in linear regressions, was also computed.

To generate a consistent neural network, the data 
generated by the process simulations were randomly 
divided into two groups: 80% of the data obtained 
were used for training the neural network, and 20% 
were used for its validation. This percentage is the 
same as that used by the Aspen AI Model Builder.

Figure 3. Combined Aspen HYSYS and Aspen Plus simulation flowsheet used in the second alternative explored in the current work 
to generate the data needed for training the Neural Network.
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In this work, a multilayer perceptron was consid-
ered. It was composed of an input layer, an output 
layer and one or more hidden layers. The connec-
tions between neurons go from the neurons of one 
layer to the neurons of the next, with no possibility 
of feedback (non-recurrent Neural Network). Ac-
cordingly, information will only be transferred from 
the input layer to the output layer.

The processing unit is characterized by a weight-
ed sum of inputs (pi), an output (aj) and weights (wij). 
The scalar input of a specific single neuron (pi) in 
a layer of neuron is multiplied by the scalar weight 
(wij) to form wijpi, one of the terms that is sent to the 
summer [29]. The other input (1) is multiplied by a 
bias (bi) and then added to the total sum. The weight 
associated with the connection from unit i to unit j 
and the bias are continuously modified during the 
learning process. The output (bi), often referred to as 
the net input, goes into a transfer function (f) which 
produces the scalar neuron output (ai). This way:

Once the case study calculations were complete, the output variables produced by the coupled
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network [28]. This algorithm has been also proposed for predictive inferential control of

distillation. It was built in an MS Excel-VBA application which was sensitive to both the

number of layers, the number of neurons in each hidden layer and the propagation or active

function used in each layer. Pearson’s ratio coefficient, r, defined similarly to the correlation

index used in linear regressions, was also computed.

To generate a consistent neural network, the data generated by the process simulations were

randomly divided into two groups: 80% of the data obtained were used for training the neural

network, and 20% were used for its validation. This percentage is the same as that used by the

Aspen AI Model Builder.

In this work, a multilayer perceptron was considered. It was composed of an input layer, an

output layer and one or more hidden layers. The connections between neurons go from the

neurons of one layer to the neurons of the next, with no possibility of feedback (non-recurrent

Neural Network). Accordingly, information will only be transferred from the input layer to the

output layer.

The processing unit is characterized by a weighted sum of inputs (pi), an output (aj) and weights

(wij). The scalar input of a specific single neuron (pi) in a layer of neuron is multiplied by the

scalar weight (wij) to form wijpi, one of the terms that is sent to the summer [29]. The other input

(1) is multiplied by a bias (bi) and then added to the total sum. The weight associated with the

connection from unit i to unit j and the bias are continuously modified during the learning

process. The output (bi), often referred to as the net input, goes into a transfer function (f) which

produces the scalar neuron output (ai). This way:

 = =1
 � +  (1)

Three transfer functions were considered:

Linear:  =  (2)

Log-Sigmoid:  =
1

1+−
(3)

Polynomial: 
 = 

 
(4)

(4)

where i ranges from 1 to the total number of neurons 
in layer-1.

For the training procedure, the number of layers 
and the number of neurons in each of the layers must 
be established. The number of neurons in the input 
layer is fixed by the number of input variables that 
constitute the independent variables. The number 
of neurons in the output layer is similarly fixed by 
the number of output variables that constitute the 
dependent variables. Finally, the number of hidden 
layers and the neurons defined in each layer will 
determine the learning capacity of the neural net-
work. Table 4 shows the different neural networks 
that were evaluated, as well as the number of layers 
and the number of neurons belonging to each layer. 
Table 5 also displays the nomenclature used to iden-
tify the NNs. Thus, 7•P-3•P-2•L-14 means a neural 
network with three layers. The first received seven 
inputs (independent variables) connected with three 
neurons (polynomial function transfer) yielding three 
outputs. The second one took the three outputs of 
the first layer which are conducted to the other two 
neurons (polynomial function transfer) yielding two 
outputs. Finally, the third layer took these two out-
puts which were conducted to fourteen linear neu-
rons yielding the same number of outputs (dependent 
variables). 

Table 4. Neural networks tested. In all the cases the same 7 input and 14 output variables were considered.

Neural Network Name Layers Hidden Neural Networks Type of Neural Network Type of Output Neural Network

7•S-1•L-14 3 1 Sigmoidal Lineal

7•S-2•L-14 3 2 Sigmoidal Lineal

7•S-3•L-14 3 3 Sigmoidal Lineal

7•P-1•L-14 3 1 Polynomial Lineal

7•P-2•L-14 3 2 Polynomial Lineal

7•P-3•L-14 3 3 Polynomial Lineal

7•P-3•P-1•L-14 4 4 Polynomial Lineal

7•P-3•P-2•L-14 4 5 Polynomial Lineal



24

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

The training process consists of minimizing 
the following function, c2, by nonlinear regression 
through the Levenberg-Marquardt algorithm:
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where yik and � is the output variable k for the scenario i obtained by the automation process

and the prediction made by the neural network, respectively. The second term considers the sum

of the mass flowrates (Fk) entering the process (E) and those existing from it (S). This term

forces that the mass balance was satisfied. After completing the nonlinear regression process,

the optimal values of the neural network parameters were obtained.

(5)
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forces that the mass balance was satisfied. After completing the nonlinear regression process,
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 is the output variable k for the sce-
nario i obtained by the automation process and the 
prediction made by the neural network, respective-
ly. The second term considers the sum of the mass 
flowrates (Fk) entering the process (E) and those 
existing from it (S). This term forces that the mass 
balance was satisfied. After completing the nonlinear 
regression process, the optimal values of the neural 
network parameters were obtained. 

Figure 4 shows a schematic representation of the 
whole computational procedure employed in the sec-
ond alternative explored in the current work, from 
the generation of data through the automation pro-
cess to the neural network validation.

Figure 4. Block diagram of the process of generation of the 
Digital Twin for alternative 2: automation strategy.

3. Results and discussion

3.1 Aspen Hybrid Model

The Reduced Order Hybrid Model obtained by 
the procedure described previously (Figure 1) was 
deployed in a new Aspen HYSYS case (Figure 5).

Table 5 shows the statistics of the best model 
attained for the 12 output variables selected to de-
scribe the process performance. Both the reproduci-
bility (R2) and the predictability (Q2) are higher than 
0.990 for all the variables. As an example, Figure 6 

displays the correlation between the reflux ratio cal-
culated by the rigorous process model computed by 
Aspen Plus and those predicted by the Hybrid Model 
HM-100 for column T-100.

Figure 5 (A) Aspen HYSYS simulation flowsheet which 
incorporates the Hybrid Model (HM-100) created for 
reproducing the styrene process shown in Figure 2. Spreadsheet 
“Specifications” was used to generate the input values of the 
independent variables. They were exported as specifications to 
the Hybrid Model. (B) Specification sheet for the Hybrid Model. 
(C) Results page of the Hybrid Model.

Table 5. Reproducibility and predictability coefficients of the 
regressions supported by the Hybrid Model HM-100 obtained by 
the Aspen AI Model Builder.

Process Variable R2 Q2

B/T.mass flow 0.993 0.993
S28.mass flow 0.993 0.993
Fresh EB.mass flow 1 1
HP-H2O.mass flow 1 1

HP-Steam.mass flow 1 1

LP-H2O.mass flow 0.996 0.996
LP-Steam.mass flow 0.996 0.996
S17.mass flow 0.993 0.993
S20.mass flow 1 1
S22.mass flow 1 1
S5. temperature 0.995 0.994
LP-H2O.pressure 0.998 0.997
Total conversion EB 0.993 0.993
STEAM1.mass flow 1 1
STEAM2.mass flow 1 1

Styrene.mass flow 0.993 0.992

Table 5 and Figure 6 show that the Hybrid Mod-
el accurately reproduce the results obtained by the 
rigorous Aspen Plus model of the process. In fact, 
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for the conjunct of all the output variables selected, 
the mean relative error was lower than 1%.

Figure 6. T-100 reflux ratio predicted by the Hybrid Model vs. 
those rigorously computed by the full process model in Aspen 
Plus. All the 4096 cases calculated are included in the graphic.

Relevant results are the differences in time for 
executing the 4096 cases using the rigorous Aspen 
Plus model and the Hybrid Model. Using the same 
machine, for the first one 516 minutes were required, 
whereas the second one demanded only 3 minutes. 
The Aspen Multi-case required 42 minutes employ-
ing 4 parallel runs and 16 CPUs of an I5 computer 
processing unit. 

3.2 MS Excel-VBA supported Hybrid Model

Table 6 shows the parameters calculated for each 
of the Neural Networks tested, the χ2 value, the mean 
error (%) and Pearson’s r correlation index.

The total number of parameters optimized de-
pends on the number of neurons considered. The 
Neural Network that best fit the data generated using 
the automation methodology (lower χ2 value and r 
value closer to 1) was the one that considered 3 pol-
ynomial neurons in layer 1, 2 polynomial neurons 
in layer 2 and 14 linear neurons in the output layer 
(7•6-3•6-2•7-14). Figure 7 shows the architecture of 
the selected Neural Network, the numerical value of 
all the adjusted parameters and the transfer function 
considered for each neuron.

Once the most appropriate neural network was 
selected, it was validated with 20% of the total sce-
narios generated by automation. Table 7 shows the 
statistics of the best model attained for the output 
variables selected. Both the reproducibility (R2) and 
the predictability (Q2) are higher than 0.990 for all 
the variables. In Figure 8, the output variables es-
timated by the chosen Neural Network are plotted 
against the same variables obtained by the rigorous 
calculations with Aspen HYSYS and Aspen Plus 
linked by the automation methodology shown in 
Figure 3.

Table 6. Results of the nonlinear regression process for the different NN tested in this work. Alternative 2: automation strategy. 

Neural Network Name Parameters χ2 Average Error (%) r

7•0-1•7-14 36 1.46E+08 3.6 0

7•0-2•7-14 58 1.46E+08 3.6 0

7•0-3•7-14 80 1.46E+08 3.6 0

7•6-1•7-14 36 8.43E+07 1.5 0.651

7•6-2•7-14 58 5.11E+07 0.2 0.807

7•6-3•7-14 80 5.15E+07 9.3 0.805

7•6-3•6-1•7-14 56 7.58E+06 0.3 0.7298

7•6-3•6-2•7-14 74 6.89E+06 0 0.987



26

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

Figure 7. Neuronal Network selected (7•6-3•6-2•7-14). This NN consisted of three layers. The first received seven inputs connected 
with three neurons yielding three outputs. The second one took the three outputs of the first layer yielding two outputs. Finally, the 
third layer took these outputs yielding twelve outputs.
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Table 7. Reproducibility and predictability coefficients of the regressions supported by the Hybrid Model HM-100 obtained by the 
automation strategy.

Process Variable R2 Q2

Styrene flowrate 1.000 1.000
Reflux ratio 1.000 1.000
Total EB conversion 0.999 0.999
H2 mole fraction on S17 0.995 0.995
Recycle EB flowrate 0.999 0.999
Power heaters 1.000 1.000
T-100 reboiler duty 0.997 0.997
LP-steam flowrate 1.000 1.000
 S17 flowrate 0.999 0.999
B/T flowrate 0.990 0.990
 S24 flowrate 0.999 0.999

S22 flowrate 1.000 1.000

   

    

  

 

Figure 8. Validation of the Neural Network. a) styrene stream flow rate; b) S22 stream flow rate, c) recirculation stream flow rate 
(bottom flow rate of T-101); d) low pressure steam stream flow rate; e) S24 stream flow rate (gas flow rate of T-100); f ) S17 stream 
flow rate; g) B/T stream flow rate (distillate flow rate of T-101); h) reflux ratio of T-100; i) total EB conversion; j) hydrogen purity of 
S17 stream; k) furnace power; l) T-100 boiler consumption.
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Similarly, to that observed with the Aspen Hybrid 
Model, an excellent prediction was achieved with the 
Neural Network selected. This NN can be considered 
representative as a Digital Twin of the whole process 
of styrene production. 

4. Conclusions
Both the Aspen Technology AI Model Builder and 

a MS Excel VBA code were successfully used for 
generating a Digital Twins based on a Neural Network 
to describe the steady state production of styrene. 
The raw data used for generating the Digital Twins 
were obtained from process simulations using Aspen 
HYSYS and/or Aspen Plus. The interconnection of 
both, Aspen HYSYS and Aspen Plus, via Automation 
was required for solving the entire simulation flow-
sheet when the second alternative was considered. 
In this case, Aspen HYSYS was used for solving the 
pre-heating, reaction, and stabilization sections of the 
process meanwhile whereas Aspen Plus ensured the 
computing of the separation and purification columns. 
Both procedures led to excellent predictions.
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Supplementary information

Table S1. Limiting values of the input variables considered for 
creating the Digital Twin of the styrene process.

Operating Variable Lowest 
Value

Initial 
Value

Highest 
Value

Fresh EB flow [kg/h] 5170 5308 5446
Steam 1 flow [kg/h] 1755 1802 1849
Steam 2 flow [kg/h] 13710 14070 14440
Pressure HP-H2O 
[kPa] 292.2 300 307.8

Pressure LP-H2O 
[kPa] 175.3 180 184.7

Source: [24].
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