
31

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

Journal of Computer Science Research
https://journals.bilpubgroup.com/index.php/jcsr

*CORRESPONDING AUTHOR:
Christian Mancas, Mathematics and Computer Science Department, Ovidius University, Constanta, CT, 900 527, Romania; Email: christian.mancas@
gmail.com

ARTICLE INFO
Received: 25 January 2024 | Revised: 26 February 2024 | Accepted: 27 February 2024 | Published Online: 8 March 2024
DOI: https://doi.org/10.30564/jcsr.v6i1.6227

CITATION
Mancas, C., 2024. On Enforcing Dyadic-type Homogeneous Binary Function Product Constraints in MatBase. Journal of Computer Science Re-
search. 6(1): 31–42. DOI: https://doi.org/10.30564/jcsr.v6i1.6227

COPYRIGHT
Copyright © 2024 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

ARTICLE

On Enforcing Dyadic-type Homogeneous Binary Function Product
Constraints in MatBase

Christian Mancas

Mathematics and Computer Science Department, Ovidius University, Constanta, CT, 900 527, Romania

ABSTRACT
Homogeneous binary function products are frequently encountered in the sub-universes modeled by databases,

spanning from genealogical trees and sports to education and healthcare, etc. Their properties must be discovered and
enforced by the software applications managing such data to guarantee plausibility. The (Elementary) Mathematical
Data Model provides 17 types of dyadic-based homogeneous binary function product constraint categories. MatBase,
an intelligent data and knowledge base management system prototype, allows database designers to simply declare
them by only clicking corresponding checkboxes and automatically generates code for enforcing them. This paper
describes the algorithms that MatBase uses for enforcing all 17 types of homogeneous binary function product
constraint, which may also be employed by developers without access to MatBase.
Keywords: Database constraints; Homogeneous binary function products; Dyadic relations; Modelling as
programming; The (Elementary) Mathematical Data Model; MatBase

1. Introduction
Very many database (db) sub-universes include

homogeneous binary function products [1–4]. Homo-
geneous binary function products (hbfp) are, on one
hand, cases of functions (i.e., of type f • g : D → (C

∪ NULLS)2, where NULLS is a distinguished count-
able set of null values), called homogeneous as the
codomains of its two components are the same and,
on the other, generalizations of dyadic relations (i.e.,
for which their canonical Cartesian projections might
also take null values and their product must not be

https://journals.bilpubgroup.com/index.php/jcsr
mailto:christian.mancas@gmail.com
mailto:christian.mancas@gmail.com
https://doi.org/10.30564/jcsr.v6i1.6227
https://doi.org/10.30564/jcsr.v6i1.6227
https://orcid.org/0000-0002-4000-3316

32

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

minimally one-to-one) [5].
As such, besides general function properties (i.e.,

minimal one-to-oneness/injectivity, ontoness/sur-
jectivity, etc.), they may also enjoy all the 11 dyadic
relation type ones (i.e., connectivity, reflexivity, irre-
flexivity, symmetry, asymmetry, transitivity, intransi-
tivity, Euclideanity, inEuclideanity, equivalence, and
acyclicity).

For example, Husband • Wife : MARRIAGES →
PERSONS2, Mother • Spouse : PERSONS → (PER-
SONS ∪ NULLS)2, Father • Spouse : PERSONS →
(PERSONS ∪ NULLS)2, and Mother • Father : PER-
SONS → (PERSONS ∪ NULLS)2 are hbfps frequently
encountered in db schemes. All 4 are:
 irreflexive (as nobody may be his own

spouse, no parent may be somebody’s spouse, and
no mother may also be a father, respectively);
 asymmetric (as no husband may be a wife or

vice-versa, and whenever y is x’s parent and z is his/
her spouse, neither z may be x’s parent, nor y may be
x’s spouse, and whenever y is x’s mother and z is his/
her father, neither z may be x’s mother, nor y may be
x’s father, respectively);
 acyclic (as no husband may be a wife or

vice-versa, no parent may be somebody’s spouse, and
no mother may also be a father, respectively); and
 inEuclidean (same as for acyclicity).
As both f and g may take null values (e.g., there

are single persons, as well as persons without known
fathers or/and mothers), the (Elementary) Mathemat-
ical Data Model ((E)MDM) [2,4] considers 6 addition-
al types of dyadic-type hbfp constraints [6–8], namely
(where iff is the abbreviation for “if and only if”):

o null-reflexivity, iff, for any element y of C,
there is at least one element x of D such that either
f(x) = y = g(x), or f(x) = y and g(x) ∈ NULLS, or
g(x) = y and f(x) ∈ NULLS;

o null-identity, iff, for any element x of D,
either f(x) = g(x), or f(x) = x and g(x) ∈ NULLS, or
g(x) = x and f(x) ∈ NULLS, or f(x) ∈ NULLS and
g(x) ∈ NULLS;

o null-symmetry, iff, for any elements u and
v of C for which there is an x of D such that f(x) = u
and g(x) = v, there is at least one element y of D such

that either f(y) = v and g(y) = v, or f(y) = u and g(y) ∈
NULLS, or g(y) = v and f(y) ∈ NULLS;

o null-transitivity, iff, for any elements u, v
and w of C for which there are elements x and y of
D such that f(x) = u, g(x) = v, f(y) = v, and g(y) = w,
there is at least one element z of D such that either
f(z) = u and g(z) = w, or f(z) = u and g(z) ∈ NULLS,
or g(z) = w and f(z) ∈ NULLS;

o null-Euclideanity, iff, for any elements u, v
and w of C for which there are elements x and y of
D such that f(x) = u, g(x) = v, f(y) = u, and g(y) = w,
there is at least one element z of D such that either
f(z) = v and g(z) = w, or f(z) = v and g(z) ∈ NULLS,
or g(z) = w and f(z) ∈ NULLS;

o null-equivalence, iff f • g is both null-reflex-
ive and null-Euclidean.

On one hand, as with any other constraint
(business rule), failing to enforce any of the above
ones could lead to storing unplausible data in the
corresponding db (e.g., for some persons x and y,
Mother(x) = y = Spouse(x), or/and Mother(x) = y ∧
Spouse(y) = x, etc.).

On the other hand, as connectivity, reflexivity,
symmetry, transitivity, and Euclideanity constraints
are of type tuple generating, enforcing them is also
saving time for end-users, as the corresponding hbfp
values might be automatically generated by the db
software applications managing that data.

Of course, the dyadic-type hbfp constraint types
are not enough to guarantee data plausibility, not
even for PERSONS: as usual, all other existing con-
straints in the corresponding sub-universe should
also be enforced. For example, Mother acyclic (No
woman may be the mother of one of her ascendants
or grandchildren or descendants of at least 2 gener-
ations.), Spouse null-symmetric (If y is x’s spouse,
then x is y’s spouse.), etc.

Unfortunately, while, for example, uniqueness
may be enforced by almost any commercial Data-
base Management System (DBMS) with unique in-
dexes, no such DBMS may enforce dyadic-type hbfp
constraints. Consequently, developers must enforce
them within the software applications that manage
corresponding dbs (through either extended SQL

33

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

triggers or event-driven methods of high-level pro-
gramming languages embedding SQL).

MatBase [2–4,6–10] is an intelligent prototype data
and knowledge base management system, based
on both the (E)MDM, the Entity-Relationship (E-
R) Data Model (E-RDM) [1,11,12], the Relational Data
Model (RDM) [1,13,14], and Datalog¬ [4,15,16].

Fortunately, MatBase provides, through its (E)
MDM interface, a very user-friendly experience for
db architects (e.g., for the Husband • Wife, Mother •
Father, Mother • Spouse, and Father • Spouse of
PERSONS above, you only need to click their cor-
responding inEuclidean and Acyclic checkboxes,
as their other 2 properties are implied by it, so re-
dundant) and its associated code-generating power,
which is both constructing underlying db tables,
standard MS Windows forms for them, as well as
event-driven code in their classes for enforcing the
corresponding constraints that cannot be enforced by
the available DBMSes.

As such, MatBase not only saves developing time
but also saves testing and debugging time, which
promotes the 5th programming language genera-
tion—modelling as programming [9,10,16]. This paper
presents the pseudocode algorithms used by Mat-
Base to automatically generate code for enforcing
dyadic-type hbfp constraints.

Other approaches related to the (E)MDM are
based on business rules management (BRM) [17–22]
and their corresponding implemented systems
(BRMS) and process managers (BPM), like the IBM
Operational Decision Manager [23], IBM Business
Process Manager [24], Red Hat Decision Manager [25],
Agiloft Custom Workflow/BPM [26], etc.

They are generally based on XML (but also on
the Z notation, the Business Process Execution Lan-
guage, the Business Process Modeling Notation, the
Decision Model and Notation models, Drools Rule
Language files, guided decision tables, or the Seman-
tics of Business Vocabulary and Business Rules).

This is the only other field of endeavor trying to
systematically deal with business rules, even infor-
mally. However, this is not done at the db design lev-
el, but at the software application one, and without

providing automatic code generation.
From this perspective, (E)MDM also belongs to

the panoply of tools expressing business rules and
MatBase is also a BRMS, but a formal, automatic
code-generating one.

2. Materials and methods
Let f • g : D → (C ∪ NULLS)2 be an arbitrary

hbfp. For enforcing hbfp dyadic type constraints on
f • g, C and D must have Graphic User Interface
(GUI) forms (associated to their corresponding ta-
bles) and (see Figure 1):
 Classes C and D of these forms must contain

private AfterInsert(x) and AfterInsert(f, g) methods,
respectively;
 Moreover, class D must contain:
o The definition of two private numeric varia-

bles fOldValue and gOldValue;
o A private method Current(x, f, g), to be called

each time the cursor of the D’s form enters a new ele-
ment (line, row, record) x of its underlying data;

o A private method BeforeInsert(x, f, g), to be
called each time end-users ask for adding a new ele-
ment x to D;

o A private method BeforeUpdate(x, f, g), to
be called each time a new or existing element x of
its underlying data whose values for columns <f, g>
were <fOldValue, gOldValue> and that were then
modified to <u, v> is about to be saved in the db;

o A private method AfterUpdate(x, f, g), to
be called each time an existing element x of its
underlying data whose values for columns <f, g>
were <fOldValue, gOldValue> were then modified
to <u, v> and successfully saved to the db;

o A private method Delete(x, f, g), to be called
each time end-users ask for the deletion of an exist-
ing x element of its underlying data;

o A private method AfterDelSuccess(x, f, g),
to be called each time an existing element x of its
underlying data whose values for columns <f, g>
were <fOldValue, gOldValue> was successfully de-
leted from the db.

All these methods and variables are automatical-
ly generated by MatBase the first time it needs them.

34

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

Code insertion in all these methods is always done im-
mediately before their blank code line (see Figure 1).

Moreover, MatBase has in its public General
library the function definition IsCycle, based on the
pseudocode algorithm from Figure 2, needed for
enforcing hbfp acyclicities (which is a variant of the
computeDyadicRelInstantiationTransClosure one,
based on the pseudocode algorithm shown in Figure
21 from Mancas [27]).

Figure 1. Initially generated pseudocode for classes C and D.

2.1 Enforcing connectivity constraints

Generally, a hbfp f • g : D → C2 is connected
whenever, for any values y,z ∈ C, y ≠ z, there is a
value x in D such that y == f(x) and z == g(x) or z ==
f(x) and y == g(x). According to this definition, en-
forcing such constraints for f • g requires that:

(i). Each time a new element x is added to C,
pairs <x, y> or <y, x> must be automatically added to
f • g’s graph, for any other element y of C. Moreover,
whenever f • g is also symmetric, both these pairs
should be added.

(ii). Each time a pair <x, y> of f • g’s graph, y ≠
x, is modified in <u, v>, with either u ≠ x or v ≠ y and
u,v ∉ NULLS, and there is no <y, x> or <y, > in f •
g’s graph, then either <x, y> or <y, x> must be auto-
matically added to f • g’s graph. Moreover, whenever
f • g is also symmetric, such pair may be modified to
only <x, > or < , y>.

(iii). No pair <x, y> of f • g’s graph, y ≠ x, x, y
not nulls, should be deleted, if there is no pair <y, x>
or <y, > or < , x> in f • g’s graph. Moreover, when-
ever f • g is also symmetric, no such pair should ever
be deleted, unless both x and y are nulls.

Consequently, MatBase adds the pseudocode al-

gorithms from Figure 3 to the ones in Figure 1.

2.2 Enforcing reflexivity and null-reflexivity
constraints

Generally, a hbfp f • g : D → C2 is reflexive when-
ever, for any value y ∈ C, there is a value x in D
such that y = f(x) = g(x). In other words, it is reflex-
ive whenever its instance (i.e., Im(f • g)) contains the
first diagonal of the product between the union of the
instances of its members with itself (i.e., (Im(f) ∪
Im(g))2, where Im(f) = {y | ∃x∈D, y = f(x)} ⊆ C).

According to this definition, enforcing such con-
straints for f • g requires that:

(i). Each time a new element x is added to C, the
system must automatically add the reflexive pair <x,
x> to Im(f • g).

(ii). No pair <x, x> may be modified to anything
else than <x, > or <, x>; dually, the only accepted
modification of a pair <x, > or <, x> is <x, x>.Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

public Boolean function IsCycle(text D, text #D, int x, text f, int u, text g, int v)
// returns True if <u=f(x), v=g(x)> closes at least one cycle in f g‘s graph and False otherwise;
// based on the algorithm for computing instantiations of hbfp transitivity closures;
Input: functions (columns) f and g defined on (table) D and their values u and v for x, the one

of the autonumber #D (object id, primary key) for D‘s current element (row);
Strategy:
IsCycle = False; // no cycle found yet
if u NULLS or v NULLS then IsCycle = True; // null values may not close cycles
elseif u == v then IsCycle = True; // reflexivity cycle found!
elseif yD such that f(y) == v and g(y) == u then IsCycle = True; // symmetry cycle found!
else // check for higher arity cycles
if existsTable(“TransClosure”) then execute(“DROP TABLE TransClosure”);
execute(“CREATE TABLE TransClosure(x COUNTER, [Level] INT, d INT, a INT)”);
int oldCard = 0; // TransClosure is empty
// initialize TransClosure with the not null elements of the f g‘s graph, except for x
execute(“INSERT INTO TransClosure SELECT 1 AS [Level], [” & f & “], [“ & g &

“] FROM [“ & D & “] WHERE “ & #D & “ <>” & x & “ AND NOT [“ & f & “] IS ”
& “NULL AND NOT [“ & g & “] IS NULL”);

execute(“DELETE FROM TransClosure WHERE x IN (SELECT x FROM (SELECT x, “
& “d, a FROM TransClosure AS Tmp GROUP BY d, a HAVING Count(*) > 1 AND“
& “ a = TransClosure.a)) AS TCdups WHERE x NOT IN (SELECT MIN(x) FROM “
& “TCDups GROUP BY d, a)”); // delete duplicates

int Card = execute(“SELECT COUNT(*) FROM TransClosure”);
int level = 2;
while Card ≠ oldCard and not IsCycle
oldCard = Card; // avoid infinite looping
// add to the transitive closure the next level elements
execute(“INSERT INTO TransClosure SELECT “ & level & “, TransClosure.d, [“ & D &

“].[“ & g &“] FROM [“ & D & “] INNER JOIN TransClosure ON TransClosure.a = [“
& D & “].[“ & f & “] WHERE NOT [“ & D & “.[“ & g & “] IS NULL AND “ &
“[Level] =” & level – 1 & “ & #D & “ <>” & x);

Card = execute(“SELECT Count(*) FROM TransClosure WHERE d = “ & v &
“ AND a =” & u) // how many <v, u> pairs were computed in this step?

if Card > 0 then IsCycle = True; // cycle of length level found!
else // delete duplicates, set next level, and compute new TransClosure’s cardinal
execute(“DELETE FROM TransClosure WHERE x IN (SELECT x FROM (SELECT“

& “ x, d, a FROM TransClosure AS Tmp GROUP BY d, a HAVING Count(*) “
& “> 1 AND a = TransClosure.a)) AS TCdups WHERE x NOT IN “ &
“(SELECT MIN(x) FROM TCDups GROUP BY d, a)”);

level = level + 1;
Card = execute(“SELECT COUNT(*) FROM TransClosure”);

end if;
end while;

end if;
end function IsCycle;

Figure 2. The pseudocode of the function IsCycle from theMatBase’s General library.
Figure 2. The pseudocode of the function IsCycle from the
MatBase’s General library.

35

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024
Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

// code added to method AfterInsert of class C
// f g connected
loop for all y C, y ≠ x
add <x, y> to Im(f g); INS = True; if f g symmetric then add <y, x> to Im(f g);

end loop;
// code added to method BeforeUpdate of class D
// f g connected
if not Cancel (f == fOldValue g NULLS f NULLS g == gOldValue) f g
symmetric then Cancel = True; display “Request rejected: f g connected and symmetric!”;

end if;
// code added to method AfterUpdate of class D
// f g connected
if f g symmetric fOldValue ≠ gOldValue (f ≠ fOldValue g ≠ gOldValue)

f,g NULLS <gOldValue, fOldValue> Im(f g) then
add <gOldValue, fOldValue> to Im(f g); INS = True;

end if;
// code added to method Delete of class D
// f g connected
if not Cancel f g symmetric then if f NULLS g NULLS then Cancel = True;
else if not Cancel f NULLS g NULLS f ≠ g (xD)(<g(x), f(x)> Im(f g)

<g(x), > Im(f g) <, f(x)> Im(f g)) then Cancel = True;
end if;
if Cancel then t = “Request rejected: f g connected”;

if f g symmetric then t = t & “ and symmetric”;
t = t & “!”; display t;

end if;

Figure 3. Code added to the methods from Figure 1 when f g is connected.

(iii). Deletion of <x, x> maybe accepted only if Im(f g) also contains <x, > or <, x>;
deletion of <x, > maybe accepted only if Im(f g) also contains <x, x> or <, x>; deletion
of <, x> maybe accepted only if Im(f g) also contains <x, x> or <x, >.

Consequently, MatBase adds the pseudocode algorithms from Figure 4 to the corresponding
methods from Figure 1, but only when f g is not null-identical as well (when, according to the
algorithms for the coherence and minimality of the constraint sets [2,4,7,8], reflexivity is redundant).

2.3 Enforcing null-identity constraints
Note that for hbfps the case of the identity (i.e., (x D)(f(x) = g(x))) is not semantically
interesting at all, as it means that you would request, in the end, that two columns of a same table
to always have identical values, i.e., maintain a redundant copy of a column.
However, null-identity might be of use, e.g., when it is desired to store the same values for two
distinct properties of an object set whenever it is applicable for both, but some of them might not
be applicable to both. Obviously, any null-identical hbfp is also null-reflexive.
According to the null-identity definition, enforcing such constraints for f g requires that only
pairs of type <y, y>, <, y>, <y, >, or <, >, y NULLS, may be saved to Im(f g)’s graph.
Consequently, MatBase adds the pseudocode algorithm from Figure 5 to the corresponding
method from Figure 1.

Figure 3. Code added to the methods from Figure 1 when f • g is
connected.

(iii). Deletion of <x, x> may be accepted only if
Im(f • g) also contains <x, > or <, x>; deletion of <x, >
may be accepted only if Im(f • g) also contains <x,
x> or <, x>; deletion of <, x> may be accepted only
if Im(f • g) also contains <x, x> or <x, >.

Consequently, MatBase adds the pseudocode
algorithms from Figure 4 to the corresponding
methods from Figure 1, but only when f • g is not
null-identical as well (when, according to the algo-
rithms for the coherence and minimality of the con-
straint sets [2,4,7,8], reflexivity is redundant).

2.3 Enforcing null-identity constraints

Note that for hbfps the case of the identity (i.e.,
(∀x∈D)(f(x) = g(x))) is not semantically interesting
at all, as it means that you would request, in the end,
that two columns of a same table to always have
identical values, i.e., maintain a redundant copy of a
column.

However, null-identity might be of use, e.g., when
it is desired to store the same values for two distinct
properties of an object set whenever it is applicable
for both, but some of them might not be applicable
to both. Obviously, any null-identical hbfp is also
null-reflexive.

According to the null-identity definition, enforc-
ing such constraints for f • g requires that only pairs
of type <y, y>, <, y>, <y, >, or <, >, y ∉ NULLS,

may be saved to Im(f • g)’s graph.
Consequently, MatBase adds the pseudocode al-

gorithm from Figure 5 to the corresponding method
from Figure 1.
Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

// code added to method AfterInsert of class C
// f g reflexive
add <x, x> to Im(f g); INS = True;
// code added to method BeforeUpdate of class D
// f g reflexive
if not Cancel fOldValue == gOldValue fOldValue NULLS gOldValue NULLS

(f NULLS f ≠ fOldValue g NULLS)
(f NULLS g ≠ gOldValue g NULLS) then Cancel = True;

elseif not Cancel (fOldValue NULLS gOldValue NULLS gOldValue NULLS
fOldValue NULLS) (f ≠ fOldValue f NULLS g ≠ fOldValue g NULLS)
then Cancel = True;

if Cancel then display “Request rejected: f g reflexive!”;
// code added to method Delete of class D
// f g reflexive
if not Cancel f == g f NULLS then
if (yD)(<f(y) == f, > Im(f g) <, g(y) == g> Im(f g)) then Cancel = True;

elseif not Cancel f NULLS g NULLS then
if (yD)(<f(y) == f, g(y) == f > Im(f g) <, g(y) == f > Im(f g)) then Cancel = True;

elseif not Cancel f NULLS g NULLS then
if (yD)(<f(y) == g, g(y) == g > Im(f g) <f(y) == g,> Im(f g)) then Cancel = True;

if Cancel then display “Request rejected: f g reflexive!”;

Figure 4. Code added to the methods from Figure 1 when f g is reflexive.

// code added to method BeforeUpdate of class D
// f g null-identical
if not Cancel (f NULLS g NULLS f == g f NULLS g NULLS f
NULLS g NULLS) then Cancel = True; display “Request rejected: f g null-identical!”;

end if;

Figure 5. Code added to the methods from Figure 1 when f g is null-identical.

2.4 Enforcing irreflexivity constraints
Generally, a hbfp f g: D C2 is irreflexive whenever there is no value x in D such that y = f(x)
= g(x). According to this definition, enforcing such constraints for f g requires that each time a
pair <x, x> (be it new or obtained by modifying an existing <u, v>) is about to be saved in the db,
f g’s image, saving must be canceled.
Consequently, MatBase adds the pseudocode algorithm from Figure 6 to the corresponding
method from Figure 1, but only when f g is neither asymmetric, nor intransitive, nor
inEuclidean as well (cases in which, according to the algorithms for the coherence and minimality
of the constraint sets [2,4,7,8], irreflexivity is redundant).

// code added to method BeforeUpdate of class D
// f g irreflexive
if not Cancel f == g then Cancel = True; display “Request rejected: f g irreflexive!”; end if;

Figure 6. Code added to the methods from Figure 1 when f g is irreflexive.

Figure 4. Code added to the methods from Figure 1 when f • g is
reflexive.

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

// code added to method AfterInsert of class C
// f g reflexive
add <x, x> to Im(f g); INS = True;
// code added to method BeforeUpdate of class D
// f g reflexive
if not Cancel fOldValue == gOldValue fOldValue NULLS gOldValue NULLS

(f NULLS f ≠ fOldValue g NULLS)
(f NULLS g ≠ gOldValue g NULLS) then Cancel = True;

elseif not Cancel (fOldValue NULLS gOldValue NULLS gOldValue NULLS
fOldValue NULLS) (f ≠ fOldValue f NULLS g ≠ fOldValue g NULLS)
then Cancel = True;

if Cancel then display “Request rejected: f g reflexive!”;
// code added to method Delete of class D
// f g reflexive
if not Cancel f == g f NULLS then
if (yD)(<f(y) == f, > Im(f g) <, g(y) == g> Im(f g)) then Cancel = True;

elseif not Cancel f NULLS g NULLS then
if (yD)(<f(y) == f, g(y) == f > Im(f g) <, g(y) == f > Im(f g)) then Cancel = True;

elseif not Cancel f NULLS g NULLS then
if (yD)(<f(y) == g, g(y) == g > Im(f g) <f(y) == g,> Im(f g)) then Cancel = True;

if Cancel then display “Request rejected: f g reflexive!”;

Figure 4. Code added to the methods from Figure 1 when f g is reflexive.

// code added to method BeforeUpdate of class D
// f g null-identical
if not Cancel (f NULLS g NULLS f == g f NULLS g NULLS f
NULLS g NULLS) then Cancel = True; display “Request rejected: f g null-identical!”;

end if;

Figure 5. Code added to the methods from Figure 1 when f g is null-identical.

2.4 Enforcing irreflexivity constraints
Generally, a hbfp f g: D C2 is irreflexive whenever there is no value x in D such that y = f(x)
= g(x). According to this definition, enforcing such constraints for f g requires that each time a
pair <x, x> (be it new or obtained by modifying an existing <u, v>) is about to be saved in the db,
f g’s image, saving must be canceled.
Consequently, MatBase adds the pseudocode algorithm from Figure 6 to the corresponding
method from Figure 1, but only when f g is neither asymmetric, nor intransitive, nor
inEuclidean as well (cases in which, according to the algorithms for the coherence and minimality
of the constraint sets [2,4,7,8], irreflexivity is redundant).

// code added to method BeforeUpdate of class D
// f g irreflexive
if not Cancel f == g then Cancel = True; display “Request rejected: f g irreflexive!”; end if;

Figure 6. Code added to the methods from Figure 1 when f g is irreflexive.

Figure 5. Code added to the methods from Figure 1 when f • g is
null-identical.

2.4 Enforcing irreflexivity constraints

Generally, a hbfp f • g : D → C2 is irreflexive
whenever there is no value x in D such that y =
f(x) = g(x). According to this definition, enforcing
such constraints for f • g requires that each time a
pair <x, x> (be it new or obtained by modifying an
existing <u, v>) is about to be saved in the db f • g’s
image, saving must be canceled.

Consequently, MatBase adds the pseudocode al-
gorithm from Figure 6 to the corresponding method
from Figure 1, but only when f • g is neither asym-
metric, nor intransitive, nor inEuclidean as well
(cases in which, according to the algorithms for the
coherence and minimality of the constraint sets [2,4,7,8],
irreflexivity is redundant).

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

// code added to method AfterInsert of class C
// f g reflexive
add <x, x> to Im(f g); INS = True;
// code added to method BeforeUpdate of class D
// f g reflexive
if not Cancel fOldValue == gOldValue fOldValue NULLS gOldValue NULLS

(f NULLS f ≠ fOldValue g NULLS)
(f NULLS g ≠ gOldValue g NULLS) then Cancel = True;

elseif not Cancel (fOldValue NULLS gOldValue NULLS gOldValue NULLS
fOldValue NULLS) (f ≠ fOldValue f NULLS g ≠ fOldValue g NULLS)
then Cancel = True;

if Cancel then display “Request rejected: f g reflexive!”;
// code added to method Delete of class D
// f g reflexive
if not Cancel f == g f NULLS then
if (yD)(<f(y) == f, > Im(f g) <, g(y) == g> Im(f g)) then Cancel = True;

elseif not Cancel f NULLS g NULLS then
if (yD)(<f(y) == f, g(y) == f > Im(f g) <, g(y) == f > Im(f g)) then Cancel = True;

elseif not Cancel f NULLS g NULLS then
if (yD)(<f(y) == g, g(y) == g > Im(f g) <f(y) == g,> Im(f g)) then Cancel = True;

if Cancel then display “Request rejected: f g reflexive!”;

Figure 4. Code added to the methods from Figure 1 when f g is reflexive.

// code added to method BeforeUpdate of class D
// f g null-identical
if not Cancel (f NULLS g NULLS f == g f NULLS g NULLS f
NULLS g NULLS) then Cancel = True; display “Request rejected: f g null-identical!”;

end if;

Figure 5. Code added to the methods from Figure 1 when f g is null-identical.

2.4 Enforcing irreflexivity constraints
Generally, a hbfp f g: D C2 is irreflexive whenever there is no value x in D such that y = f(x)
= g(x). According to this definition, enforcing such constraints for f g requires that each time a
pair <x, x> (be it new or obtained by modifying an existing <u, v>) is about to be saved in the db,
f g’s image, saving must be canceled.
Consequently, MatBase adds the pseudocode algorithm from Figure 6 to the corresponding
method from Figure 1, but only when f g is neither asymmetric, nor intransitive, nor
inEuclidean as well (cases in which, according to the algorithms for the coherence and minimality
of the constraint sets [2,4,7,8], irreflexivity is redundant).

// code added to method BeforeUpdate of class D
// f g irreflexive
if not Cancel f == g then Cancel = True; display “Request rejected: f g irreflexive!”; end if;

Figure 6. Code added to the methods from Figure 1 when f g is irreflexive.Figure 6. Code added to the methods from Figure 1 when f • g is
irreflexive.

36

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

2.5 Enforcing symmetry and null-symmetry
constraints

Generally, a hbfp f • g : D → C2 is symmetric
whenever, for any pair <u, v> ∈ Im(f • g), there is a
pair <v, u> ∈ Im(f • g). According to this definition,
enforcing such constraints for f • g not connected (the
case f • g connected is dealt with in subsection 2.1)
requires that:

(i). Each time a pair <x, y>, x ≠ y, is added to
Im(f • g), a pair <y, x> must automatically be added
to Im(f • g) as well.

(ii). Each time a pair <x, x> of Im(f • g) is mod-
ified in <u, v>, with u ≠ v and either u ≠ x or v ≠ x,
then <v, u> must automatically be added to Im(f •
g); each time a pair <x, y> of Im(f • g), y ≠ x, is mod-
ified in <u, v>, with u ≠ v and either u ≠ x or v ≠ y,
then <y, x> must automatically be replaced in
Im(f • g) by <v, u>, whenever f • g is not connect-
ed; and each time a pair <x, y> of Im(f • g), y ≠
x, is modified in <u, u> and either u ≠ x, or u ≠ y,
then <y, x> must automatically be deleted from
Im(f • g), whenever f • g is not connected.

(iii). Each time a pair <x, y> of Im(f • g), y ≠ x, is
deleted, then <y, x> must automatically be deleted
from Im(f • g) as well, whenever f • g is not connect-
ed.

Consequently, MatBase adds the pseudocode al-
gorithms from Figure 7 to the corresponding meth-
ods from Figure 1.

In Mancas [4,28] it is shown that Im(f • g) = D2, so
computable, whenever f • g is both symmetric, re-
flexive, and connected.

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

2.5 Enforcing symmetry and null-symmetry constraints
Generally, a hbfp f g : D C2 is symmetric whenever, for any pair <u, v> Im(f g), there is a
pair <v, u> Im(f g). According to this definition, enforcing such constraints for f g not
connected (the case f g connected is dealt with in subsection 2.1) requires that:

(i). Each time a pair <x, y>, x y, is added to Im(f g), a pair <y, x>must automatically be
added to Im(f g) as well.

(ii). Each time a pair <x, x> of Im(f g) is modified in <u, v>, with u v and either u x or v
 x, then <v, u> must automatically be added to Im(f g); each time a pair <x, y> of Im(f
 g), y x, is modified in <u, v>, with u v and either u x or v y, then <y, x> must
automatically be replaced in Im(f g) by <v, u>, whenever f g is not connected; and
each time a pair <x, y> of Im(f g), y x, is modified in <u, u> and either u x, or u y,
then <y, x> must automatically be deleted from Im(f g), whenever f g is not connected.

(iii). Each time a pair <x, y> of Im(f g), y x, is deleted, then <y, x> must
automatically be deleted from Im(f g) as well, whenever f g is not connected.

Consequently, MatBase adds the pseudocode algorithms from Figure 7 to the corresponding
methods from Figure 1.
In Mancas [4,28] it is shown that Im(f g) = D2, so computable, whenever f g is both symmetric,
reflexive, and connected.

// code added to method AfterInsert of class D
// f g symmetric
if f g not connected f ≠ g then add <g, f > to Im(f g); INS = True; end if;
// code added to method AfterUpdate of class D
// f g symmetric
if f g not connected (f ≠ fOldValue g ≠ gOldValue) then
if f ≠ g fOldValue ≠ gOldValue then replace <gOldValue, fOldValue> by <g, f >;
elseif f == g fOldValue ≠ gOldValue then delete <gOldValue, fOldValue> from Im(f g);
elseif f ≠ g fOldValue == gOldValue then add <g, f > to Im(f g); INS = True;
end if;

end if;
// code added to method AfterDelSuccess of class D
// f g symmetric
if f g not connected f ≠ g fOldValue ≠ gOldValue then
replace <gOldValue, fOldValue> by <g, f >;

Figure 7. Code added to the methods from Figure 1 when f g is symmetric.

2.6 Enforcing asymmetry constraints
Generally, a hbfp f g : D C2 is asymmetric whenever, for any pair <u, v> Im(f g), there is
no pair <v, u> Im(f g). According to this definition, enforcing such constraints for f g
requires that:

(i) Each time a pair <x, y>, x y, is about to be added to Im(f g), this must be rejected
whenever a pair <y, x> exists in Im(f g).

(ii) Each time a pair <x, y> of Im(f g) is modified in <u, v>, with u v and either u x or v
 y, this must be rejected whenever a pair <v, u> exists in Im(f g).

Consequently, MatBase adds the pseudocode algorithms from Figure 8 to the corresponding
methods from Figure 1, but only when f g is neither acyclic, nor irreflexive and transitive as
well (cases in which, according to the algorithms for the coherence and minimality of the

Figure 7. Code added to the methods from Figure 1 when f • g is
symmetric.

2.6 Enforcing asymmetry constraints

Generally, a hbfp f • g : D → C2 is asymmetric
whenever, for any pair <u, v> ∈ Im(f • g), there is no
pair <v, u> ∈ Im(f • g). According to this definition,
enforcing such constraints for f • g requires that:

(i) Each time a pair <x, y>, x ≠ y, is about to be
added to Im(f • g), this must be rejected whenever a
pair <y, x> exists in Im(f • g).

(ii) Each time a pair <x, y> of Im(f • g) is mod-
ified in <u, v>, with u ≠ v and either u ≠ x or v ≠ y,
this must be rejected whenever a pair <v, u> exists in
Im(f • g).

Consequently, MatBase adds the pseudocode al-
gorithms from Figure 8 to the corresponding meth-
ods from Figure 1, but only when f • g is neither
acyclic, nor irreflexive and transitive as well (cases
in which, according to the algorithms for the co-
herence and minimality of the constraint sets [2,4,7,8],
asymmetry is redundant), nor connected (as asym-
metry implies not connectivity—see Mancas [4,28]).
Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

constraint sets [2,4,7,8], asymmetry is redundant), nor connected (as asymmetry implies not
connectivity—see Mancas [4,28]).

// code added to method BeforeInsert of class D
// f g asymmetric
if not Cancel f ≠ g f NULLS g NULLS then
if <g, f > Im(f g) then Cancel = True; display “Request rejected: f g asymmetric!”; end if;

end if;
// code added to method BeforeUpdate of class D
// f g asymmetric
if not Cancel f ≠ g f NULLS g NULLS (f ≠ fOldValue g ≠ gOldValue) then
if <g, f > Im(f g) then Cancel = True; display “Request rejected: f g asymmetric!”; end if;

end if;

Figure 8. Code added to the methods from Figure 1 when f g is asymmetric.

2.7 Enforcing transitivity and null-transitivity constraints
Generally, a hbfp f g : D C2 is transitive whenever, for any pairs <u, v>, <v, w> Im(f g),
there is a pair <u, w> Im(f g). According to this definition, enforcing such constraints for f g
requires that:

(i). Each time a pair <x, y>, x y, is added to Im(f g) and Im(f g) contains a pair <y, z>, z
 y, a pair <x, z>must automatically be added to Im(f g) as well, iff it does not exist
already.

(ii). Each time a pair <x, z> of Im(f g) is modified in <u, v>, with either u x or v z, and
there is at least a y in C such that both <x, y> and <y, z> belong to Im(f g), then
modification of <x, z> must be rejected; each time a pair <x, x> of Im(f g) is modified in
<u, v>, with u v and either u x or v x, and there is at least a y in C such that either <u,
y> or <y, v> are in Im(f g), then either <y, v> or <u, y> must automatically be added to
Im(f g), iff they do not exist already.

(iii). Each time a pair <x, z> of Im(f g) is about to be deleted and there is at least a y in C
such that both <x, y> and <y, z> belong to Im(f g), then deletion of <x, z> must be rejected.

Consequently, MatBase adds the pseudocode algorithms from Figure 9 to the corresponding methods
from Figure 1, but only when f g is neither connected and symmetric, nor Euclidean as well (cases
in which, according to the algorithms for the coherence and minimality of the constraint sets [2,4,7,8],
transitivity is redundant), nor intransitive as well (case in which it adds the algorithms from Figure
11).

2.8 Enforcing intransitivity constraints
Generally, a hbfp f g : D C2 is intransitive whenever, for any pairs <u, v>, <v, w> Im(f g),
there is no pair <u, w> Im(f g). According to this definition, enforcing such constraints for f g
requires that:

(i). Each time a pair <x, z> is about to be added to Im(f g) and there are at least two pairs <x, y>
and <y, z> stored by Im(f g), then adding <x, z> to Im(f g) must be rejected.

(ii). Each time a pair <u, v> of Im(f g) is modified in <x, z>, with either u x or v z, and there
is at least a y in C such that both <x, y> and <y, z> belong to Im(f g), with y x and y z,
then modification of <u, v> must be rejected.

Consequently, MatBase adds the pseudocode algorithms from Figure 10 to the corresponding
methods from Figure 1, but only when f g is not symmetric and inEuclidean as well (case in which,

Figure 8. Code added to the methods from Figure 1 when f • g is
asymmetric.

2.7 Enforcing transitivity and null-transitivi-
ty constraints

Generally, a hbfp f • g : D → C2 is transitive
whenever, for any pairs <u, v>, <v, w> ∈ Im(f • g),
there is a pair <u, w> ∈ Im(f • g). According to this
definition, enforcing such constraints for f • g re-
quires that:

(i). Each time a pair <x, y>, x ≠ y, is added to
Im(f • g) and Im(f • g) contains a pair <y, z>, z ≠ y, a
pair <x, z> must automatically be added to Im(f • g)
as well, iff it does not exist already.

(ii). Each time a pair <x, z> of Im(f • g) is mod-

37

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

ified in <u, v>, with either u ≠ x or v ≠ z, and there
is at least a y in C such that both <x, y> and <y, z>
belong to Im(f • g), then modification of <x, z> must
be rejected; each time a pair <x, x> of Im(f • g) is
modified in <u, v>, with u ≠ v and either u ≠ x or v ≠
x, and there is at least a y in C such that either <u, y>
or <y, v> are in Im(f • g), then either <y, v> or <u, y>
must automatically be added to Im(f • g), iff they do
not exist already.

(iii). Each time a pair <x, z> of Im(f • g) is about
to be deleted and there is at least a y in C such that
both <x, y> and <y, z> belong to Im(f • g), then dele-
tion of <x, z> must be rejected.

Consequently, MatBase adds the pseudocode al-
gorithms from Figure 9 to the corresponding meth-
ods from Figure 1, but only when f • g is neither
connected and symmetric, nor Euclidean as well
(cases in which, according to the algorithms for the
coherence and minimality of the constraint sets [2,4,7,8],
transitivity is redundant), nor intransitive as well
(case in which it adds the algorithms from Figure
11).

2.8 Enforcing intransitivity constraints

Generally, a hbfp f • g : D → C2 is intransitive
whenever, for any pairs <u, v>, <v, w> ∈ Im(f • g),
there is no pair <u, w> ∈ Im(f • g). According to this
definition, enforcing such constraints for f • g re-
quires that:

(i). Each time a pair <x, z> is about to be added
to Im(f • g) and there are at least two pairs <x, y>
and <y, z> stored by Im(f • g), then adding <x, z> to
Im(f • g) must be rejected.

(ii). Each time a pair <u, v> of Im(f • g) is mod-
ified in <x, z>, with either u ≠ x or v ≠ z, and there
is at least a y in C such that both <x, y> and <y, z>
belong to Im(f • g), with y ≠ x and y ≠ z, then modifi-
cation of <u, v> must be rejected.

Consequently, MatBase adds the pseudocode
algorithms from Figure 10 to the corresponding
methods from Figure 1, but only when f • g is not
symmetric and inEuclidean as well (case in which,
according to the algorithms for the coherence and
minimality of the constraint sets [2,4,7,8], intransitivity

is redundant) and when it is not also transitive.
Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

according to the algorithms for the coherence and minimality of the constraint sets [2,4,7,8], intransitivity
is redundant) and when it is not also transitive.

// code added to method AfterInsert of class D
// f g transitive and not intransitive
if f ≠ g f NULLS g NULLS then
loop for all <g, z> Im(f g), g ≠ z z NULLS

if <f, z> Im(f g) then add <f, z> to Im(f g); INS = True; end if;
end loop;

end if;
// code added to method BeforeUpdate of class D
// f g transitive and not intransitive
if not Cancel (f ≠ fOldValue g ≠ gOldValue) then
if fOldValue ≠ gOldValue then
if zC such that <fOldValue, z> Im(f g) <z, gOldValue> Im(f g) then
Cancel = True; display “Request rejected: f g transitive!”;

end if;
elseif f ≠ g then
loop for all <f, z> Im(f g), f ≠ z z NULLS
if <z, g> Im(f g) then add <z, g> to Im(f g); INS = True; end if;

end loop;
loop for all <z, g> Im(f g), g ≠ z z NULLS
if <f, z> Im(f g) then add <f, z> to Im(f g); INS = True; end if;

end loop;
end if;

end if;
// code added to method Delete of class D
// f g transitive and not intransitive
if not Cancel zC such that <f, z> Im(f g) <z, g> Im(f g) then

Cancel = True; display “Request rejected: f g transitive!”;
end if;

Figure 9. Code added to the methods from Figure 1 when f g is transitive and not
intransitive.

// code added to method BeforeInsert of class D
// f g intransitive and not transitive
if not Cancel zC such that <f, z> Im(f g) <z, g> Im(f g) then
Cancel = True; display “Request rejected: f g intransitive!”;

end if;
// code added to method BeforeUpdate of class D
// f g intransitive and not transitive
if not Cancel zC such that <f, z> Im(f g) <z, g> Im(f g) f NULLS
g NULLS then Cancel = True; display “Request rejected: f g intransitive!”;

end if;

Figure 10. Code added to the methods from Figure 1 when f g is intransitive and not
transitive.

Figure 9. Code added to the methods from Figure 1 when f • g is
transitive and not intransitive.

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

according to the algorithms for the coherence and minimality of the constraint sets [2,4,7,8], intransitivity
is redundant) and when it is not also transitive.

// code added to method AfterInsert of class D
// f g transitive and not intransitive
if f ≠ g f NULLS g NULLS then
loop for all <g, z> Im(f g), g ≠ z z NULLS

if <f, z> Im(f g) then add <f, z> to Im(f g); INS = True; end if;
end loop;

end if;
// code added to method BeforeUpdate of class D
// f g transitive and not intransitive
if not Cancel (f ≠ fOldValue g ≠ gOldValue) then
if fOldValue ≠ gOldValue then
if zC such that <fOldValue, z> Im(f g) <z, gOldValue> Im(f g) then
Cancel = True; display “Request rejected: f g transitive!”;

end if;
elseif f ≠ g then
loop for all <f, z> Im(f g), f ≠ z z NULLS
if <z, g> Im(f g) then add <z, g> to Im(f g); INS = True; end if;

end loop;
loop for all <z, g> Im(f g), g ≠ z z NULLS
if <f, z> Im(f g) then add <f, z> to Im(f g); INS = True; end if;

end loop;
end if;

end if;
// code added to method Delete of class D
// f g transitive and not intransitive
if not Cancel zC such that <f, z> Im(f g) <z, g> Im(f g) then

Cancel = True; display “Request rejected: f g transitive!”;
end if;

Figure 9. Code added to the methods from Figure 1 when f g is transitive and not
intransitive.

// code added to method BeforeInsert of class D
// f g intransitive and not transitive
if not Cancel zC such that <f, z> Im(f g) <z, g> Im(f g) then
Cancel = True; display “Request rejected: f g intransitive!”;

end if;
// code added to method BeforeUpdate of class D
// f g intransitive and not transitive
if not Cancel zC such that <f, z> Im(f g) <z, g> Im(f g) f NULLS
g NULLS then Cancel = True; display “Request rejected: f g intransitive!”;

end if;

Figure 10. Code added to the methods from Figure 1 when f g is intransitive and not
transitive.Figure 10. Code added to the methods from Figure 1 when f • g

is intransitive and not transitive.

Indeed, unlike reflexivity and irreflexivity or
symmetry and asymmetry, which are duals of each
other, respectively, transitivity and intransitivity are
orthogonal to each other, i.e., there may be relations
that are both transitive and intransitive iff, for any
pair <u, v> ∈ Im(f • g), u ≠ v, there is no pair <v, w>
∈ Im(f • g), w ≠ v.

According to this definition, enforcing this pair of
constraints for f • g requires that:

(i). Each time a pair <v, w> is about to be added
to Im(f • g) and there is a pair <u, v> stored by Im(f •
g), with u ≠ v and w ≠ v, then adding <x, w> to Im(f •
g) must be rejected.

(ii). Each time a pair <x, y> of Im(f • g) is modi-
fied in <v, w>, with v ≠ w, and there is at least a u in
C such that <u, v> belongs to Im(f • g), with u ≠ v,
then modification of <x, y> must be rejected.

Consequently, MatBase adds the pseudocode al-
gorithms from Figure 11 to the corresponding meth-

38

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

ods from Figure 1 whenever f • g is both transitive
and intransitive.

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

Indeed, unlike reflexivity and irreflexivity or symmetry and asymmetry, which are duals of each
other, respectively, transitivity and intransitivity are orthogonal to each other, i.e., there may be
relations that are both transitive and intransitive iff, for any pair <u, v> Im(f g), u v, there is
no pair <v, w> Im(f g), w v.
According to this definition, enforcing this pair of constraints for f g requires that:

(i). Each time a pair <v, w> is about to be added to Im(f g) and there is a pair <u, v> stored
by Im(f g), with u v and w v, then adding <x, w> to Im(f g) must be rejected.

(ii). Each time a pair <x, y> of Im(f g) is modified in <v, w>, with v w, and there is at least
a u in C such that <u, v> belongs to Im(f g), with u v, then modification of <x, y>
must be rejected.

Consequently, MatBase adds the pseudocode algorithms from Figure 11 to the corresponding
methods from Figure 1 whenever f g is both transitive and intransitive.

// code added to method BeforeInsert of class D
// f g transitive and intransitive
if not Cancel f g uC such that <u, f > Im(f g), u f then
Cancel = True; display “Request rejected: f g both transitive and intransitive!”;

end if;
// code added to method BeforeUpdate of class D
// f g transitive and intransitive
if not Cancel f g uC such that <u, f > Im(f g) , u f then
Cancel = True; display “Request rejected: f g both transitive and intransitive!”;

end if;

Figure 11. Code added to the methods from Figure 1 when f g is both transitive and
intransitive.

2.9 Enforcing Euclideanity and null-Euclideanity constraints
Generally, a hbfp f g : D C2 is Euclidean whenever, for any pairs <u, v>, <u, w> Im(f g),
v w, there are pairs <v, w>, <w, v> Im(f g). According to this definition, enforcing such
constraints for f g requires that:

(i). Each time a pair <x, y> is added to Im(f g) and Im(f g) contains a pair <x, z>, pairs <y,
z> and <z, y> must automatically be added to Im(f g) as well, iff they do not exist
already.

(ii). Each time a pair <y, z> or <z, y> of Im(f g) is modified in <u, v>, with either u y or u
 z or v z or v y, respectively, and there is at least a x in C such that both <x, y> and
<x, z> belong to Im(f g), then modification of <y, z> or <z, y> must be rejected.

(iii). Each time a pair <y, z> or <z, y> of Im(f g) is about to be deleted and there is at
least a x in C such that both <x, y> and <x, z> belong to Im(f g), then deletion of <y, z>
or <z, y> must be rejected.

Consequently, MatBase adds the pseudocode algorithms from Figure 12 to the corresponding
methods from Figure 1, but only when f g is neither connected and symmetric, nor transitive
and symmetric as well (case in which, according to the algorithms for the coherence and
minimality of the constraint sets [2,4,7,8], Euclideanity is redundant) and when it is not also
inEuclidean.
In Mancas [4,28] it is also shown that any Euclidean f g is also symmetric and transitive and may
not be either acyclic or asymmetric or irreflexive or intransitive; moreover, any Euclidean f g
that is also reflexive and connected is computable, as the corresponding Im(f g) is equal to D2.

Figure 11. Code added to the methods from Figure 1 when f • g
is both transitive and intransitive.

2.9 Enforcing Euclideanity and null-Euclide-
anity constraints

Generally, a hbfp f • g : D → C2 is Euclidean
whenever, for any pairs <u, v>, <u, w> ∈ Im(f • g),
v ≠ w, there are pairs <v, w>, <w, v> ∈ Im(f • g). Ac-
cording to this definition, enforcing such constraints
for f • g requires that:

(i). Each time a pair <x, y> is added to Im(f •
g) and Im(f • g) contains a pair <x, z>, pairs <y, z>
and <z, y> must automatically be added to Im(f • g)
as well, iff they do not exist already.

(ii). Each time a pair <y, z> or <z, y> of Im(f • g)
is modified in <u, v>, with either u ≠ y or u ≠ z or v ≠
z or v ≠ y, respectively, and there is at least a x in C
such that both <x, y> and <x, z> belong to Im(f • g),
then modification of <y, z> or <z, y> must be reject-
ed.

(iii). Each time a pair <y, z> or <z, y> of Im(f •
g) is about to be deleted and there is at least a x in C
such that both <x, y> and <x, z> belong to Im(f • g),
then deletion of <y, z> or <z, y> must be rejected.

Consequently, MatBase adds the pseudocode
algorithms from Figure 12 to the corresponding
methods from Figure 1, but only when f • g is nei-
ther connected and symmetric, nor transitive and
symmetric as well (case in which, according to the
algorithms for the coherence and minimality of the
constraint sets [2,4,7,8], Euclideanity is redundant) and
when it is not also inEuclidean.

In Mancas [4,28] it is also shown that any Euclidean
f • g is also symmetric and transitive and may not
be either acyclic or asymmetric or irreflexive or in-

transitive; moreover, any Euclidean f • g that is also
reflexive and connected is computable, as the corre-
sponding Im(f • g) is equal to D2.
Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

// code added to method AfterInsert of class D
// f g Euclidean and not inEuclidean
if f ≠ g f NULLS g NULLS then
loop for all <f, z> Im(f g), f ≠ z z NULLS

if <g, z> Im(f g) then add <g, z> to Im(f g); INS = True; end if;
if <z, g> Im(f g) then add <z, g> to Im(f g); INS = True; end if;

end loop;
end if;
// code added to method BeforeUpdate of class D
// f g Euclidean and not inEuclidean
if not Cancel (f ≠ fOldValue g ≠ gOldValue) then
if zC such that <z, fOldValue> Im(f g) <z, gOldValue> Im(f g) then
Cancel = True; display “Request rejected: f g Euclidean!”;

end if;
end if;
// code added to method Delete of class D
// f g Euclidean and not inEuclidean
if not Cancel zC such that <z, f > Im(f g) <z, g> Im(f g) then

Cancel = True; display “Request rejected: f g Euclidean!”;
end if;

Figure 12. Code added to the methods from Figure 1 when f g is Euclidean and not
inEuclidean.

2.10 Enforcing inEuclideanity constraints
Generally, a hbfp f g : D C2 is inEuclidean whenever, for any pairs <u, v>, <u, w> Im(f
g), v w, there are no pairs <v, w> or <w, v> Im(f g). According to this definition, enforcing
such constraints for f g requires that:

(i). Each time a pair <y, z> or <z, y> is about to be added to Im(f g) and there are at least
two pairs <x, y> and <x, z> stored by Im(f g), then adding <y, z> or <z, y> to Im(f g)
must be rejected.

(ii). Each time a pair <u, v> of Im(f g) is modified in <y, z>, with either u y or v z, and
there is at least a x in C such that both <x, u> and <x, v> belong to Im(f g), with y x
and y z, then modification of <u, v> must be rejected.

Consequently, MatBase adds the pseudocode algorithms from Figure 13 to the corresponding
methods from Figure 1, but only when f g is not symmetric and intransitive as well (case in
which, according to the algorithms for the coherence and minimality of the constraint sets [2,4,7,8],
inEuclideanity is redundant) and when f g is not Euclidean as well.
Indeed, just like for transitivity and intransitivity, Euclideanity and inEuclideanity are orthogonal
to each other, i.e., there may be relations that are both Euclidean and inEuclidean iff, for any pair
<u, v> Im(f g), u v, there is no pair <u, w> Im(f g), w u (which means that any such
hbfp is functional from Im(f) to Im(g)).
According to this definition, enforcing this pair of constraints for f g requires that:

(i). Each time a pair <u, w> is about to be added to Im(f g) and there is a pair <u, v> stored
by Im(f g), with u v and w v, then adding <u, w> to Im(f g) must be rejected.

(ii). Each time a pair <x, y> of Im(f g) is modified in <u, w>, with u w, and there is at least
a v in C such that <u, v> belongs to Im(f g), with u v, then modification of <x, y>
must be rejected.

Figure 12. Code added to the methods from Figure 1 when f • g
is Euclidean and not inEuclidean.

2.10 Enforcing inEuclideanity constraints

Generally, a hbfp f • g : D → C2 is inEuclidean
whenever, for any pairs <u, v>, <u, w> ∈ Im(f • g),
v ≠ w, there are no pairs <v, w> or <w, v> ∈ Im(f •
g). According to this definition, enforcing such con-
straints for f • g requires that:

(i). Each time a pair <y, z> or <z, y> is about
to be added to Im(f • g) and there are at least two
pairs <x, y> and <x, z> stored by Im(f • g), then add-
ing <y, z> or <z, y> to Im(f • g) must be rejected.

(ii). Each time a pair <u, v> of Im(f • g) is mod-
ified in <y, z>, with either u ≠ y or v ≠ z, and there
is at least a x in C such that both <x, u> and <x, v>
belong to Im(f • g), with y ≠ x and y ≠ z, then modifi-
cation of <u, v> must be rejected.

Consequently, MatBase adds the pseudocode
algorithms from Figure 13 to the corresponding
methods from Figure 1, but only when f • g is not
symmetric and intransitive as well (case in which,
according to the algorithms for the coherence and
minimality of the constraint sets [2,4,7,8], inEuclidean-
ity is redundant) and when f • g is not Euclidean as
well.

Indeed, just like for transitivity and intransitivity,
Euclideanity and inEuclideanity are orthogonal to
each other, i.e., there may be relations that are both
Euclidean and inEuclidean iff, for any pair <u, v> ∈

39

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

Im(f • g), u ≠ v, there is no pair <u, w> ∈ Im(f • g),
w ≠ u (which means that any such hbfp is functional
from Im(f) to Im(g)).

According to this definition, enforcing this pair of
constraints for f • g requires that:

(i). Each time a pair <u, w> is about to be added
to Im(f • g) and there is a pair <u, v> stored by Im(f •
g), with u ≠ v and w ≠ v, then adding <u, w> to Im(f •
g) must be rejected.

(ii). Each time a pair <x, y> of Im(f • g) is modi-
fied in <u, w>, with u ≠ w, and there is at least a v in
C such that <u, v> belongs to Im(f • g), with u ≠ v,
then modification of <x, y> must be rejected.
Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

// code added to method BeforeInsert of class D
// f g inEuclidean and not Euclidean
if not Cancel zC such that <z, f > Im(f g) <z, g> Im(f g) then

Cancel = True; display “Request rejected: f g inEuclidean!”;
end if;
// code added to method BeforeUpdate of class D
// f g inEuclidean and not Euclidean
if not Cancel zC such that <z, f > Im(f g) <z, g> Im(f g) then

Cancel = True; display “Request rejected: f g inEuclidean!”;
end if;

Figure 13. Code added to the methods from Figure 1 when f g is inEuclidean and not
Euclidean.

Consequently, MatBase adds the pseudocode algorithms from Figure 14 to the corresponding
methods from Figure 1 whenever f g is both Euclidean and inEuclidean.

// code added to method BeforeInsert of class D
// f g Euclidean and inEuclidean
if not Cancel f g uC such that <u, g> Im(f g), u g then
Cancel = True; display “Request rejected: f g both Euclidean and inEuclidean!”;

end if;
// code added to method BeforeUpdate of class D
// f g Euclidean and inEuclidean
if not Cancel f g vC such that <f, v> Im(f g) , f v then
Cancel = True; display “Request rejected: f g both Euclidean and inEuclidean!”;

end if;

Figure 14. Code added to the methods from Figure 1 when f g is both Euclidean and
inEuclidean.

In Mancas [4,28] it is also shown that any inEuclidean f g which is symmetric too is intransitive
and may not be connected.

2.11 Enforcing equivalence and null-equivalence constraints
According to the alternative definition of relation equivalence, enforcing it for f g requires that f
 g be both reflexive and Euclidean. Consequently, equivalence and null-equivalence are
enforced by the algorithms from subsections 2.2 (Figure 4) and 2.9 (Figure 12).
In Mancas [4,28] it is also shown that any equivalence f g which is also connected has only one
equivalence class.

2.12 Enforcing acyclicity constraints
Generally, a hbfp f g : D C2 is acyclic whenever, for any pairs <u1, u2>, …, <un -1, un> Im(f
 g), n > 0, there is no pair <un, u1> Im(f g).
According to this definition, enforcing such constraints for f g requires that:

(i). Each time a pair <x, y> is about to be added to Im(f g) and there is a path of pairs <y,
x1>, …, <xn, x>, n>0, exists in Im(f g), then adding <x, y> to Im(f g) must be rejected.

Figure 13. Code added to the methods from Figure 1 when f • g
is inEuclidean and not Euclidean.

Consequently, MatBase adds the pseudocode al-
gorithms from Figure 14 to the corresponding meth-
ods from Figure 1 whenever f • g is both Euclidean
and inEuclidean.

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

// code added to method BeforeInsert of class D
// f g inEuclidean and not Euclidean
if not Cancel zC such that <z, f > Im(f g) <z, g> Im(f g) then

Cancel = True; display “Request rejected: f g inEuclidean!”;
end if;
// code added to method BeforeUpdate of class D
// f g inEuclidean and not Euclidean
if not Cancel zC such that <z, f > Im(f g) <z, g> Im(f g) then

Cancel = True; display “Request rejected: f g inEuclidean!”;
end if;

Figure 13. Code added to the methods from Figure 1 when f g is inEuclidean and not
Euclidean.

Consequently, MatBase adds the pseudocode algorithms from Figure 14 to the corresponding
methods from Figure 1 whenever f g is both Euclidean and inEuclidean.

// code added to method BeforeInsert of class D
// f g Euclidean and inEuclidean
if not Cancel f g uC such that <u, g> Im(f g), u g then
Cancel = True; display “Request rejected: f g both Euclidean and inEuclidean!”;

end if;
// code added to method BeforeUpdate of class D
// f g Euclidean and inEuclidean
if not Cancel f g vC such that <f, v> Im(f g) , f v then
Cancel = True; display “Request rejected: f g both Euclidean and inEuclidean!”;

end if;

Figure 14. Code added to the methods from Figure 1 when f g is both Euclidean and
inEuclidean.

In Mancas [4,28] it is also shown that any inEuclidean f g which is symmetric too is intransitive
and may not be connected.

2.11 Enforcing equivalence and null-equivalence constraints
According to the alternative definition of relation equivalence, enforcing it for f g requires that f
 g be both reflexive and Euclidean. Consequently, equivalence and null-equivalence are
enforced by the algorithms from subsections 2.2 (Figure 4) and 2.9 (Figure 12).
In Mancas [4,28] it is also shown that any equivalence f g which is also connected has only one
equivalence class.

2.12 Enforcing acyclicity constraints
Generally, a hbfp f g : D C2 is acyclic whenever, for any pairs <u1, u2>, …, <un -1, un> Im(f
 g), n > 0, there is no pair <un, u1> Im(f g).
According to this definition, enforcing such constraints for f g requires that:

(i). Each time a pair <x, y> is about to be added to Im(f g) and there is a path of pairs <y,
x1>, …, <xn, x>, n>0, exists in Im(f g), then adding <x, y> to Im(f g) must be rejected.

Figure 14. Code added to the methods from Figure 1 when f • g
is both Euclidean and inEuclidean.

In Mancas [4,28] it is also shown that any inEuclid-
ean f • g which is symmetric too is intransitive and
may not be connected.

2.11 Enforcing equivalence and null-equiva-
lence constraints

According to the alternative definition of relation
equivalence, enforcing it for f • g requires that f •
g be both reflexive and Euclidean. Consequently,
equivalence and null-equivalence are enforced by the

algorithms from subsections 2.2 (Figure 4) and 2.9
(Figure 12).

In Mancas [4,28] it is also shown that any equiv-
alence f • g which is also connected has only one
equivalence class.

2.12 Enforcing acyclicity constraints

Generally, a hbfp f • g : D → C2 is acyclic when-
ever, for any pairs <u1, u2>, …, <un -1, un> ∈ Im(f • g),
n > 0, there is no pair <un, u1> ∈ Im(f • g).

According to this definition, enforcing such con-
straints for f • g requires that:

(i). Each time a pair <x, y> is about to be added to
Im(f • g) and there is a path of pairs <y, x1>, …, <xn, x>,
n>0, exists in Im(f • g), then adding <x, y> to Im(f • g)
must be rejected.

(ii). Each time a pair <u, v> of Im(f • g) is mod-
ified in <x, y>, with either u≠x or v≠y, this must be
rejected whenever a path of pairs <y, x1>, …, <xn,
x>, n>0, exists in Im(f • g).

Consequently, MatBase adds the pseudocode
algorithms from Figure 15 to the corresponding
methods from Figure 1, but only when f • g is not
asymmetric and intransitive as well (case in which,
according to the algorithms for the coherence and
minimality of the constraint sets [2,4,7,8], acyclicity is
redundant). For the pseudocode of method IsCycle
see Figure 2.

In Mancas [4,28] it is also shown that any acyclic
f • g is also asymmetric (hence, irreflexive as well);
moreover, no Euclidean f • g may be acyclic.

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

(ii). Each time a pair <u, v> of Im(f g) is modified in <x, y>, with either ux or vy, this
must be rejected whenever a path of pairs <y, x1>, …, <xn, x>, n>0, exists in Im(f g).

Consequently, MatBase adds the pseudocode algorithms from Figure 15 to the corresponding
methods from Figure 1, but only when f g is not asymmetric and intransitive as well (case in
which, according to the algorithms for the coherence and minimality of the constraint sets [2,4,7,8],
acyclicity is redundant). For the pseudocode of method IsCycle see Figure 2.
In Mancas [4,28] it is also shown that any acyclic f g is also asymmetric (hence, irreflexive as
well); moreover, no Euclidean f g may be acyclic.

// code added to method BeforeInsert of class D
// f g acyclic
if not Cancel then Cancel = IsCycle(“D”, “x”, x, “f ”, f, “g”, g);
if Cancel then display “Request rejected: f g acyclic!”;

end if;
// code added to method BeforeUpdate of class D
// f g acyclic
if not Cancel then Cancel = IsCycle(“D”, “x”, x, “f ”, f, “g”, g);
if Cancel then display “Request rejected: f g acyclic!”;

end if;

Figure 15. Code added to the methods from Figure 1 when f g is acyclic.

3. Results
Figure 16 shows theMatBase Algorithm A9DHBFP for enforcing dyadic-type hbfp constraints.

Figure 15. Code added to the methods from Figure 1 when f • g
is acyclic.

3. Results
Figure 16 shows the MatBase Algorithm A9DH-

40

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

BFP for enforcing dyadic-type hbfp constraints.Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

MatBase Algorithm A9DHBFP for enforcing dyadic-type homogeneous binary function product constraints

Input: A db software application SA over a set D, a homogeneous binary function product
f g : D→ (C NULLS)2, and a constraint c of subtype s on f g

Output: SA augmented such as to enforce c as well

Strategy: add code to the methods from Figure 1 as follows:
switch (s)
case s: connectivity
if f g is not (irreflexive and asymmetric or intransitive) then the code from Figure 3;
break;

case s: reflexivity
if f g is not (null-identical or irreflexive or asymmetric or intransitive or inEuclidean or

acyclic) then the code from Figure 4;
break;

case s: null-identity
if f g is not (irreflexive or asymmetric or intransitive or inEuclidean or acyclic)

then the code from Figure 5;
break;

case s: irreflexivity
if f g is not (reflexive or asymmetric or intransitive or Euclidean or inEuclidean or

acyclic) then the code from Figure 6;
break;

case s: symmetry
if f g is not (asymmetric or Euclidean or acyclic) then the code from Figure 7;
break;

case s: asymmetry
if f g is not (symmetric or acyclic or (transitive or Euclidean) and (irreflexive or

intransitive)) then the code from Figure 8;
break;

case s: transitivity
if f g is not (Euclidean or connected and symmetric)

then if f g is intransitive then the code from Figure 11 else the code from Figure 9;
break;

case s: intransitivity
if f g is not (Euclidean or inEuclidean and symmetric)

then if f g is transitive then the code from Figure 11 else the code from Figure 10;
break;

case s: Euclideanity
if f g is not (acyclic or connected and symmetric)

then if f g is inEuclidean then the code from Figure 14 else the code from Figure 12;
break;

case s: inEuclideanity
if f g is not (symmetric and intransitive) then
if f g is Euclidean then the code from Figure 14 else the code from Figure 13;

break;
case s: acyclicity
if f g is not (Euclidean or reflexive or null-identity or symmetric or asymmetric and

transitive) then the code from Figure 15;
break;

case s: equivalence
if f g is not (irreflexive or asymmetric or intransitive or inEuclidean or acyclic) then

if f g is not reflexive then the code from Figure 4;
if f g is not Euclidean then the code from Figure 11;

end if;
break;

end switch;
End MatBase Algorithm A9DHBFP;

Figure 16.MatBase algorithm A9DHBFP for enforcing dyadic-type hbfp constraints.

4. Discussion

Figure 16. MatBase algorithm A9DHBFP for enforcing dyadic-
type hbfp constraints.

4. Discussion
For example, it is straightforward to check that

applying the Algorithm A9DHBFP from Figure 16
to C = D = PERSONS and its hbfp Mother • Father
from section 1, MatBase automatically generates for
D’s class the pseudocode shown in Figure 17.

Generally, the Algorithm A9DHBFP from Fig-
ure 16 automatically generates code that guaran-
tees data plausibility for any hbfp for which all its
properties are declared to MatBase as corresponding
constraints, while also automatically generating ap-
propriate data values for connectivities, reflexivities,

symmetries, transitivities, and Euclideanities, thus
saving most of the developing, testing, and data en-
tering effort.

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

For example, it is straightforward to check that applying the Algorithm A9DHBFP from Figure
16 to C = D = PERSONS and its hbfp Mother Father from section 1, MatBase automatically
generates for D’s class the pseudocode shown in Figure 17.

// class PERSONS

int fOldValue, gOldValue;
Boole INS;
Method Current(x,Mother, Father)
fOldValue =Mother;
gOldValue = Father;
INS = False;

Method BeforeInsert(x,Mother, Father)
Boole Cancel = False;
//Mother Father inEuclidean and not Euclidean
if not Cancel zPERSONS such that <z, Mother> Im(Mother Father)

<z, Father> Im(Mother Father) then
Cancel = True; display “Request rejected:Mother Father inEuclidean!”;

end if;
//Mother Father acyclic
if not Cancel then

Cancel = IsCycle(“PERSONS”, “x”, x, “Mother”,Mother, “Father”, Father);
if Cancel then display “Request rejected:Mother Father acyclic!”;

end if;

if Cancel then deny inserting <Mother, Father> into PERSONS;
Method BeforeUpdate(x,Mother, Father)
Boole Cancel = False;
//Mother Father inEuclidean and not Euclidean
if not Cancel zPERSONS such that <z, Mother> Im(Mother Father)

<z, Father> Im(Mother Father) then
Cancel = True; display “Request rejected:Mother Father inEuclidean!”;

end if;
//Mother Father acyclic
if not Cancel then

Cancel = IsCycle(“PERSONS”, “x”, x, “Mother”,Mother, “Father”, Father);
if Cancel then display “Request rejected:Mother Father acyclic!”;

end if;

if Cancel then deny saving <Mother, Father> to PERSONS;

Figure 17.MatBase automatically generated code in class PERSONS for enforcing the dyadic-
type constraints on the homogeneous binary function productMother Father.

Generally, the Algorithm A9DHBFP from Figure 16 automatically generates code that
guarantees data plausibility for any hbfp for which all its properties are declared to MatBase as

Figure 17. MatBase automatically generated code in class
PERSONS for enforcing the dyadic-type constraints on the
homogeneous binary function product Mother • Father.

5. Conclusions
Not enforcing any existing business rule from the

sub-universe managed by a db software application
allows saving unplausible data in its db.

This paper presents the algorithms needed to en-
force the dyadic-type homogeneous binary function
product constraint types from the (E)MDM, which
are implemented in MatBase, an intelligent DBMS
prototype.

Moreover, as it automatically generates the
corresponding code, MatBase is a tool of the 5th
generation programming languages—modelling as
programming: db and software architects only need
to assert the properties of the hbfps (and not only,
but all other (E)MDM constraint types as well),

41

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

while MatBase saves the corresponding developing,
testing, and debugging time. Obviously, these algo-
rithms may also be used by developers not having
access to MatBase.

Conflict of Interest
There is no conflict of interest.

Funding
This research received no external funding.

Acknowledgments
This research was not sponsored by anybody and

nobody other than its author contributed to it.

References
[1] Mancas, C., 2015. Conceptual data modeling

and database design: A completely algorithmic
approach, Volume I: The shortest advisable
path. Apple Academic Press: Palm Bay.

[2] Mancas, C., 2018. MatBase constraint sets
coherence and minimality enforcement algo-
rithms. Advances in databases and information
systems. Springer: Cham. pp. 263–277.

[3] Mancas, C., 2019. Matbase autofunction
non-relational constraints enforcement algo-
rithms. International Journal of Computer Sci-
ence & Information Technology. 11(5), 63–76.

[4] Mancas, C., 2024. Conceptual data modeling
and database design: A completely algorithmic
approach. Volume II: Refinements for an expert
path. Apple Academic Press: Palm Bay.

[5] O’Leary, M.L., 2016. A first course in math-
ematical logic and set theory. John Wiley &
Sons: Hoboken.

[6] Mancas, C., 2002. On knowledge representa-
tion using an elementary mathematical data
model. Information and knowledge sharing
(IKS 2002). ACTA Press: Calgary. pp. 206–
211.

[7] Mancas, C., 2020. On detecting and enforcing
the non-relational constraints associated to dy-

adic relations in MatBase. Journal of Electron-
ic & Information Systems. 2(2), 1–8.

[8] Mancas, C., 2023. On enforcing dyadic rela-
tionship constraints in MatBase. World Journal
of Advanced Engineering Technology & Sci-
ences. 9(2), 298–311.

 DOI: https://doi.org/10.30574/wjaets.2023.9.2.0211
[9] Mancas, C., 2019. MatBase—A tool for trans-

parent programming while modeling data at
conceptual levels. CSITEC 2019—5th Interna-
tional Conference on Computer Science, Infor-
mation Technology; 2019 Aug 24–25; Chennai,
India. p. 15-27.

 DOI: https://doi.org/10.5121/csit.2019.91102
[10] Mancas, C., 2020. On modelware as the 5th

generation of programming languages. Acta
Scientific Computer Sciences. 2(9), 24–26.

[11] Chen, P.P.S., 1976. The entity-relationship
model—Toward a unified view of data. ACM
Transactions on Database Systems. 1(1), 9–36.

 DOI: https://doi.org/10.1145/320434.320440
[12] Thalheim, B., 2000. Entity-relationship mod-

eling: Foundations of database technology.
Springer-Verlag: Berlin.

[13] Codd, E.F., 1970. A relational model for large
shared data banks. Communications of the
ACM. 13(6), 377–387.

 DOI: https://doi.org/10.1145/362384.362685
[14] Abiteboul, S., Hull, R., Vianu, V., 1995. Foun-

dations of databases. Addison-Wesley: Read-
ing, MA.

[15] Maier, D., Warren, D.S., 1988. Computing with
logic: Logic programming with Prolog. Benja-
min/Cummings: Menlo Park, CA.

[16] Thalheim, B., 2020. Models as programms.
in: Bork D., Karagiannis D., Mayr H.C. (eds.):
Modellierung 2020, Lecture Notes in Informat-
ics (LNI), Gesellschaft für Informatik, Bonn,
Germany, pp. 193–195. Available from: https://
dl.gi.de/server/api/core/bitstreams/2c1c6312-
32b4-4333-9766-42fde9b44db9/content

[17] Von Halle, B., 2001. Business rules applied:
Building better systems using the business
rules approach. John Wiley & Sons: New York,

https://doi.org/10.30574/wjaets.2023.9.2.0211
https://doi.org/10.5121/csit.2019.91102
https://doi.org/10.1145/320434.320440
https://doi.org/10.1145/362384.362685
https://dl.gi.de/server/api/core/bitstreams/2c1c6312-32b4-4333-9766-42fde9b44db9/content
https://dl.gi.de/server/api/core/bitstreams/2c1c6312-32b4-4333-9766-42fde9b44db9/content
https://dl.gi.de/server/api/core/bitstreams/2c1c6312-32b4-4333-9766-42fde9b44db9/content

42

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

NY.
[18] Morgan, T., 2002. Business rules and informa-

tion systems: Aligning IT with business goals.
Addison-Wesley Professional: Boston, MA.

[19] Classification and Representation of Business
Rules [Internet]. Available from: https://www.
researchgate.net/publication/251521215_Clas-
sification_and_Representation_of_ Business_
Rules

[20] Ross, R.G., 2003. Principles of the business
rule approach. Addison-Wesley Professional:
Boston, MA.

[21] Halle von, B., Goldberg, L., 2006. The busi-
ness rule revolution: Running businesses the
right way. Happy About: Cupertino, CA.

[22] Taylor, J., 2019. Decision management sys-
tems: A practical guide to using business rules
and predictive analytics. IBM Press: Indianap-
olis, IN.

[23] Systems of Insights for Digital Transformation.
Using IBM Operational Decision Manager
Advanced and Predictive Analytics [internet].
Redbooks [cited 2024 Feb 26]. Available from:
https://www.redbooks.ibm.com/redbooks/pdfs/

sg248293.pdf
[24] Scaling BPM Adoption from Project to Pro-

gram with IBM Business Process Manager
[Internet]. Redbooks. [cited 2023 Dec 5].
Available from: http://www.redbooks.ibm.com/
redbooks/pdfs/sg247973.pdf

[25] Red Hat Decision Manager [Internet]. Red
Hat, Inc. [cited 2024 Feb 26]. Available from:
https://access.redhat.com/products/red-hat-de-
cision-manager

[26] Standard System Documentation [Internet].
Agiloft Inc. [cited 2023 Dec 5]. Available from:
https://wiki.agiloft.com/display/SD/Documen-
tation+Archive?preview=/31199110/43450819/
standard-kb-documentation.pdf

[27] Mancas, C., 2022. On computing transitive clo-
sures in MatBase. GSC Advanced Engineering
and Technology. 4(1), 39–58.

 DOI: https://doi.org/10.30574/gscaet.2022.4.1.0050
[28] Simple Laws about Nonprominent Properties

of Binary Relations [Internet]. [cited 2023
Dec 5]. Available from: https://arxiv.org/pd-
f/1806.05036v2.pdf

https://www.researchgate.net/publication/251521215_Classification_and_Representation_of_ Business_Rules
https://www.researchgate.net/publication/251521215_Classification_and_Representation_of_ Business_Rules
https://www.researchgate.net/publication/251521215_Classification_and_Representation_of_ Business_Rules
https://www.researchgate.net/publication/251521215_Classification_and_Representation_of_ Business_Rules
https://www.redbooks.ibm.com/redbooks/pdfs/sg248293.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg248293.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247973.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247973.pdf
https://access.redhat.com/products/red-hat-decision-manager
https://access.redhat.com/products/red-hat-decision-manager
https://wiki.agiloft.com/display/SD/Documentation+Archive?preview=/31199110/43450819/standard-kb-documentation.pdf
https://wiki.agiloft.com/display/SD/Documentation+Archive?preview=/31199110/43450819/standard-kb-documentation.pdf
https://wiki.agiloft.com/display/SD/Documentation+Archive?preview=/31199110/43450819/standard-kb-documentation.pdf
https://doi.org/10.30574/gscaet.2022.4.1.0050
https://arxiv.org/pdf/1806.05036v2.pdf
https://arxiv.org/pdf/1806.05036v2.pdf

