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ABSTRACT
Reducing neonatal mortality is a critical global health objective, especially in resource-constrained developing 

countries. This study employs machine learning (ML) techniques to predict fetal health status based on cardiotocography 
(CTG) examination findings, utilizing a dataset from the Kaggle repository due to the limited comprehensive healthcare 
data available in developing nations. Features such as baseline fetal heart rate, uterine contractions, and waveform 
characteristics were extracted using the RFE wrapper feature engineering technique and scaled with a standard scaler. 
Six ML models—Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), 
Categorical Boosting (CB), and Extended Gradient Boosting (XGB)—are trained via cross-validation and evaluated 
using performance metrics. The developed models were trained via cross-validation and evaluated using ML performance 
metrics. Eight out of the 21 features selected by GB returned their maximum Matthews Correlation Coefficient (MCC) 
score of 0.6255, while CB, with 20 of the 21 features, returned the maximum and highest MCC score of 0.6321. The 
study demonstrated the ability of ML models to predict fetal health conditions from CTG exam results, facilitating early 
identification of high-risk pregnancies and enabling prompt treatment to prevent severe neonatal outcomes.
Keywords: Neonatal; Mortality rate; Cardiotocography; Machine learning; Foetus health; Prediction; Features engineering

1. Introduction
Neonatal mortality, the death of a foetus between 

the 22nd week of gestation and the first week of 
birth is a major public health challenge in develop-
ing countries. Despite significant progress in reduc-
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ing prenatal mortality rates in developed countries, 
the rates in developing countries remain high, with 
over 80% of all prenatal deaths occurring in these 
countries [1]. The high rate of maternal mortality re-
mains a tenacious burden of developing countries. 
213 million pregnancies were reported globally in 
2012 [2], 89% of this statistic occurred in developing 
nations and 11% in developed nations. Lack of tech-
nology is a major obstacle to the provision of decent 
and adequate healthcare in developing countries. 
The Millennium Development Goals (MDGs) aim 
of reducing child mortality globally by 67% in 2015 
was not achieved [3]. The World Health Organization 
(WHO) estimates that over two-thirds of prenatal 
deaths occur in low- and middle-income countries [4].  
One factor that contributes to neonatal mortality is 
inadequate foetus monitoring during pregnancy [5]. 
Cardiotocography (CTG) is a non-invasive test used 
to assess foetus well-being during pregnancy. CTG 
exams are routinely performed during pregnancy, 
especially in high-risk cases, to monitor a foetus 
well-being. However, the interpretation of CTG 
exam results can be challenging, leading to subjec-
tive assessments and potential misdiagnosis. There-
fore, developing a machine learning (ML) model to 
predict Foetus Health Status (FHS) from CTG exam 
results can help improve the accuracy and consisten-
cy of diagnoses and ultimately improve patient.

The CTG utilizes ultrasound technology to mon-
itor the baby’s heart rate. High-frequency sound 
waves, which are inaudible to the human ear, are 
emitted and detected by specialized machines [6]. 

Ultrasound travels freely through fluid and soft 
tissues, but when it encounters a solid surface, it 
bounces back as echoes. For instance, if it hits a 
solid valve or a gallstone, it will echo back strongly. 
The strength of the echoes varies depending on the 
density of the structure being hit. CTG monitoring 
employs a specific kind of ultrasound known as Dop-
pler to measure moving structures, making it suitable 
for heart rate monitoring [7]. Meanwhile, the other 
plate on the CTG gauges the tension in the mother’s 
abdomen to indicate when the uterus is contracting. 
The results from the CTG are either printed out or 

viewed electronically by the obstetrician who then 
decides the health status of the foetus and pregnan-
cy in general. The data returned by the CTG exam 
have been standardized in their interpretation with 
numerous bodies adopting the same nomenclature 
for interpretation. Examples of fields returned by the 
CTG exam include defined risk, contractions (uterine 
activity), baseline foetus heart rate (FHR), baseline 
FHR variability, presence of accelerations, periodic 
or episodic decelerations, and changes or trends of 
FHR patterns over time.

According to the American College of Obste-
tricians and Gynaecologists (2020), the benefits of 
CTG include but are not limited to [5]:

1) It allows Early Detection of Foetus Distress: 
CTG is an effective tool for detecting Foetus dis-
tress, which can occur due to a variety of reasons, 
including problems with the placenta, lack of oxygen 
to the baby, or infections. Early detection of Foetus 
distress can help healthcare providers take appropri-
ate measures to prevent complications.

2) It helps in monitoring high-risk pregnancies, 
such as those involving preterm labour, multiple 
pregnancies, or women with pre-existing medical 
conditions.

3) It helps healthcare providers keep a close 
eye on the health of the foetus and make timely deci-
sions to prevent complications.

4) It helps in assessing the well-being of the 
foetus.

5) It is a non-invasive and safe test that poses 
no threat to the mother and the foetus.

6) It ensures peace of mind for the mother, 
knowing that their baby’s health is monitored closely.

ML is defined as a field of artificial intelligence 
that focuses on the implementation of algorithms 
that learn with the aid of data [8]. Supervised and un-
supervised learning are the two major types of ML: 
Supervised MLis trained on labelled data, where the 
desired output is known, and the algorithm learns to 
predict the output based on the input data, classifica-
tion and regression are examples of supervised learn-
ing. Unsupervised ML, on the other hand, is trained 
on unlabelled data, where the desired output is not 
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known, and the algorithm must find patterns and re-
lationships within the data on its own, clustering and 
association are examples of unsupervised learning [9].  
The importance of data in the learning process of 
ML algorithms cannot be overstated. The ability of 
ML algorithm to recognize patterns and make accu-
rate predictions is directly related to the amount and 
quality of data that is available for training [10]. Data 
are the foundation on which ML models are built, 
and the more, and diverse the available data to train 
the ML algorithms, the more accurate and robust the 
model becomes. 

ML algorithms are computer programs that learn 
from data to make predictions or decisions based on 
that knowledge inferred during the learning process, 
the performance of ML models depends on several 
factors, including the quality and quantity of data 
used to train the ML algorithm, the choice of the ML 
algorithms implemented, the selection of features of 
the dataset used in training the, and the turning of the 
hyper-parameter of the algorithms [9,10].

Data pre-processing and modelling are two crucial 
steps in the creation of an ML model. These steps im-
prove the quality of the data and prepare it for the ML 
process. The resulting model performs better and is 
more accurate, while the cost, time, and complexity of 
the model-building process are decreased. It involves 
cleaning, removing duplicate records, and filling 
in missing values, correcting invalid values, trans-
forming, and organizing the data for model training. 
Olayemi et al. (2022) employed data pre-processing 
and ensemble method to improve prediction accura-
cy of diagnoses of knee osteoarthritis risk in adults. 
Data modelling entails choosing and transforming a 
pre-processed dataset’s features into a format appro-
priate for ML in order to increase the effectiveness 
and efficiency of ML models, it aims to increase the 
dataset’s quality used for ML [11]. Data transformation 
involves converting the data into a suitable format for 
ML and analysis. This includes techniques such as 
scaling, normalization, and feature engineering. The 
sensitivity of ML algorithm to the scale and distribu-
tion of the input data make data transformation neces-
sary for ML and data analysis [12]. 

Feature selection identifies the most relevant fea-
tures of a dataset that are most useful for predicting 
the target variable [13], it helps to reduce the complex-
ity of the model and improves its performance. Fea-
ture selection was applied to improve ML model per-
formance improvement for the diagnoses of breast 
cancer [14]. In data modelling, the reduced features of 
the pre-processed and transformed dataset are used 
to train MLalgorithms to build an MLmodel, this 
process involves the validation and the turning of 
the dataset to obtain an optimal result, and the built 
model is then used to evaluate a new and unknown 
test dataset. ML models have been widely and in-
creasingly applied to analyse datasets to identify pat-
terns that may be difficult for humans and build ML 
models for the diagnoses and prediction of diseases 
and infections, such as cancer, heart diseases, Par-
kinson’s disease and the prediction of FHS.

Most of the previous research carried out on the 
FHS either focuses on systematics review, or the pre-
diction of the FHS using a clinical dataset or a small 
sample of a dataset, furthermost of the research on 
the prediction of FHS from the CTG examination 
result does not carry out the feature selection of the 
relevant risk factors (features) correlated to the deter-
mination of the FHS before it was used to build the 
prediction models. As a result of its bias towards the 
majority class in the imbalance dataset, the accuracy 
metric, which is frequently used to assess the per-
formance of FHS predictive models, was also found 
to produce misleading results. In order to reduce the 
neonatal mortality rate in developing countries, this 
study investigated and selected importantt features 
extracted from the CTG examination result to train 
and build models for six ML algorithms: Logistic 
Regression (LR) and Decision Tree (DT), and four 
ensemble learning models; Random Forest (RF), 
Gradient Boosting (GB), Categorical Boosting (CB), 
and Extended Gradient Boosting (XGB). Each of the 
models was assessed using the accuracy; precision, 
Matthew’s correlation coefficient (MCC) and the F1 
score metrics. This study has the following contribu-
tion to knowledge:

1) Class distribution of the dataset can affect 
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the performances of an ML model’s training and 
evaluation.

2) Precision and Accuracy metrics only can 
give a wrong evaluation of ML Models, especially 
for imbalanced datasets.

3) Feature selection can improve the perfor-
mance of an ML model.

4) Matthew’s correlation coefficient (MCC) 
is a better metric than the F1-score to evaluate ML 
models, while the F1-score does not consider TN in 
its computation, MCC considered all four confusion 
matrix indices.

2. Literature review
According to Fawole et al., there is a significant 

correlation associated withthe level of education, 
lack of antenatal, high-risk, parity, mode of delivery 
and maternal mortality [15]. Akbulut et al. compared 
the performance of nine ML models (Averaged 
Perceptron, Boosted Decision Tree, Bayes Point 
Machine, Decision Forest, Decision Jungle, Local-
ly-Deep Support Vector Machine, Logistic Regres-
sion, Neural Network, Support Vector Machine) for 
the prediction of FHS based on accuracy, F1-score, 
AUC measures metrics from a clinical dataset com-
piled from 96 pregnant women’s responses to a ma-
ternal questionnaire. The decision tree recorded the 
highest validation accuracy of 87.5% and prediction 
accuracy of 87.5% from the testing of a new dataset 
of 16 pregnant women records. The small dataset 
employed in the study limits the generalizability 
of its results [16]. Sundar et al. applied a supervised 
artificial neural network to classify foetus heart rate 
and uterine contractions into one of three categories: 
normal, suspicious and pathological [17]. 

The results of the work by Alfirevic et al. [7] 

showed that the proposed method achieved a classifi-
cation accuracy of 92.2%, F1-score metrics better es-
pecially when the class is balanced or in balance and 
the cost of misclassification is very high. The work of 
Batra et al. applied five algorithms, including decision 
trees (DT), support vector machines (SVM), random 
forests, neural networks, and gradient boosting, to 
evaluate foetus distress. The study claimed to have 

recorded an accuracy of 99.25%, which is higher than 
what was obtained in previous research. However, 
the source and size of the dataset were not mentioned, 
and the F1-score would have been a better metric to 
measure the performance of its model [18]. The study 
of Agrawal and Mohan also reported the ability of ML 
to predict the foetus health rate and do so accurately [19].  
The systematic review of 16 selected studies by the 
American College of Obstetricians and Gynaecol-
ogists in 2020 revealed the potential of ML models 
to predict prenatal mortality with receiver operating 
curve (AUC) of over 0.80 and limitation of small 
sample sizes and lack of external validation [5]. 

A machine learning (ML) model was developed 
in a study by Park et al. to distinguish between nor-
mal and abnormal fetal cardiotocography (CTG) 
data. 17,592 fetal CTG records were obtained from 
three teaching hospitals, which were divided into 
training and validation sets. The model achieved an 
average area under the receiver operating character-
istic curve (AUROC) of 0.73 and an area under the 
precision-recall curve (AUPRC) of 0.40 in the ex-
ternal validation dataset [20]. It’s noteworthy that the 
study did not carry out a feature selection process to 
identify relevant features for fetal health status mod-
el building and prediction. However, the findings 
underscored the efficacy of ML techniques in pre-
dicting health conditions, as supported by existing 
literature.

3. Methodology 
The dataset utilized for this project was obtained 

from the Kaggle dataset itcontained two files: the 
training dataset with 1488 instances (records) and 22 
attributes (fields), and one of the attributes is the tar-
get class, it was used for the training and validation 
of our models. We observed a target class bias in the 
training set as follows: normal value (1158), suspect 
value (202), and pathological value (123), we min-
imise this level of bias by combining both suspects 
and pathological values together as abnormal. The 
second file is the testing dataset, it was used to test 
our validated models, it consists of 21 attributes and 
638 instances, the target class has a normal value 
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(317), suspect value (199), and pathological val-
ue (121), and for the purpose of evaluation of our 
models, we combined the suspects and pathological 
values together as abnormal (320). Both the training 
and testing datasets do not have any missing values. 
The name of the features of both datasets and their 
descriptions is depicted in Table 1. 

Table 1. Attributes and description dataset utilized.

Index Feature

1 Baseline value
2 Accelerations
3 Foetus movement
4 Uterine contractions
5 Light decelerations
6 Severe decelerations
7 Prolongued decelerations
8 Abnormal short-term variability
9 Mean value of short-term variability

10 Percentage of time with abnormal long-term 
variability

11 Mean value of long-term variability
12 Histogram width
13 Histogram min
14 Histogram max
15 Histogram number of peaks
16 Histogram number of zeros
17 Histogram mode
18 Histogram mean
19 Histogram median
20 Histogram variance
21 Histogram tendency
22 Foetus health Status

We first applied scaling to the dataset to reduce 
the values of each column in the dataset to reduce 
the computation power required; a standard scaler 
was used in scaling the dataset. Then we plotted the 
heat map of the correlation between the columns 
of the dataset in Figure 1, to get an insight into the 
important columns that are important in the dataset 
target class.

We then defined a Python reusable function for 
the training and validation of different ML algo-
rithms. The ML models used in our experiment are 
Logistic Regression (LR) and Decision Tree (DT), 

Random Forest (RF), Gradient Boosting (GB), 
Categorical Boosting (CB), and Extended Gradient 
Boosting (XGB). The function takes 6 arguments, 
two of which were the recursive feature elimination 
(REF) and n (number of features from 2 to 21). The 
function uses a FOR loop to iterate over different 
models, fit the model and validate it. The validation 
for each model is stored in a dictionary and returned 
as a data frame (tabular data). 

REF repeatedly trains the model on thenumber 
of selected subsets of the features, and assesses their 
performance on a validation set, until the optimal 
subset of features with the best performance is iden-
tified. We applied ten-fold cross validation using the 
whole features of the training dataset for the training 
and validation of our models, and, then passed as 
arguments to the function aforementioned, to obtain 
the baseline metric table. We then performed RFE, 
varying the features selected between 2 to 21 fea-
turesto see the performances of the selected features, 
and compare with the baseline models using the 
function aforementioned. We obtained the optimal 
number of features that returned optimal validation 
scores for each metric that were average, and plotted 
out the bar chart that denotes the optimal number 
of features with optimal scores for each model. The 
models with the optimal validation scores were then 
used to evaluate the testing dataset.

4. Evaluation metrics
Evaluation metrics are measurable metrics used 

to assess the efficacy and performance of ML mod-
els in terms of their predictions or classifications.
The confusion matrix provides the foundation for the 
computation of these evaluation metrics, and it pre-
sents the counts of true positive (TP), true negative 
(TN), false positive (FP) and false negative (FN) to 
evaluation model performance. This work consid-
ered four evaluation metrics of accuracy, precision, 
F1-score and the Matthews Correlation Coefficient 
(MCC) for the evaluation of the foetus health status 
prediction model. 

Accuracy metrics is a straightforward, easy-to-un-
derstand, and widely used measure; it calculates the 
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proportion of correctly predicted instances over the 
total number of instances. It is often used as a base-
line metric for initial model evaluation in addition to 
other metrics. It provides a general sense of the mod-
el’s predictive capability and is useful when the tar-
get classes are well-balanced. It is not suitable when 
dealing with imbalanced or biased models. Precision 
metrics measure the accuracy of positive predictions 
made by a model. Precision is importantwhen the 
quality of positive predictions is emphasized, such as 
when false positives are not desirable. It contributes 
to determining the model’s capacity to prevent false 
positives and create accurate positive predictions. 
A high precision score suggests a low rate of false 
positives, indicating that the model is accurate for 
predicting favourable situations.

The F1 scores and Matthews Correlation Coeffi-
cient (MCC) are binary classification evaluation met-
rics. The F1-score combines accuracy and recall into 
a single value, providing a balanced measure of the 
model’s performance by considering both the ability 
to make accurate positive predictions (precision) and 
the ability to capture all positive instances (recall), 
when both precision and recall are important and no 
extreme class imbalance exists. When dealing with 
imbalanced datasets, other metrics such as the Mat-
thews Correlation Coefficient (MCC) will provide 
more suitable insights into the model’s performance. 
The F1 value ranges between 0 and 1, with 1 indicat-
ing perfect precision and recall, and 0 indicating the 
worst performance. The MCC, on the other hand, is 
a balanced measure that takes into consideration all 
four values in the confusion matrix, making it appro-
priate for imbalanced datasets, or when the cost of 
false positives and false negatives differs significant-
ly. It provides an in-depth evaluation of a model’s 
ability to accurately predict both positive and neg-
ative instances in the presence of class imbalance. 
MCC evaluation values range between –1 and +1, 
where +1 indicates a perfect prediction, 0 denotes 
a random prediction, and –1 represents a total dis-
agreement between predictions and actual labelled 
values. 

5. Results and discussion
From the heat map plot in Figure 1, we see that 

accelerations, uterine concentration, the mean value 
of short-time variability, the mean value of long-time 
variability, histogram mode and histogram mean had 
a negative correlation to the foetus health rate, while 
prolonged accelerations, abnormal short-term vari-
ability, and percentage of time with abnormal long-
time variability had a positive correlation with the 
foetus health rate status.

The baseline model’s validation result is shown 
in Table 2, the model’s validation performs appreci-
ably well on the dataset via ten-fold cross validation. 
From Table 2, the XGB model recorded the high-
est F1 (0.8683) and MCC scores (0.5178), though 
it recorded the same precision score as GB Model 
(0.9406), it performs better than GB based on the F1 
score (0.8683) and MCC score (0.5178). Precision 
score alone cannot give a good measurement of ML 
models performance; it does not take into account 
false negative predictions, in the case of our re-
search, foetus instances which are normal but being 
predicted as abnormal.

Figure 1. Heat map of the feature correlation.

Varying the number of features to be selected 
for each of the six models and validating the perfor-
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mance, we saw that for a lesser number of selected 
features, the models (though performing well) were 
not performing as high as they were when the base-
line model was validated. On getting to 15 features, 
we begin to see a similar or slightly better perfor-
mance compared to the baseline models. Tables 3–5 
show the performance of the best two, seven and 
fifteen features selected by RFE respectively. From 
Table 4, it could be observed that with the seven 
optimal features, the Categorical Boosting (CB) 
Model’s performance is higher than the rest of the 
models, though it recorded a lower precision than 
GB and XGB models; it has the highest F1-score and 
accuracy values. CB model maintainsits superiority 
with the fifteen features models in Table 5, it record-
ed the highest value across all the evaluation metrics, 

and RF came second in performance ahead of XGB 
across the four metrics of evaluation. 

In another experimental analysis performed, we 
wrapped each of the ML algorithms with the RFE to 
determine the features that returned the optimal test-
ing dataset validation MCC’s score. Table 6 reveals 
the number of features, and the maximum MCC’s 
score recorded by it, only 8 out of 21 features se-
lected by GB returned its maximum MCC score of 
0.6255, while CB with 20 of 21 features returned an 
MCC score of 0.6321, Table 6 represents in the bar 
chart in Figure 2. One advantage of wrapper features 
selection techniques is its ability to select the subset 
of features that gives the optimal validation score, 
unlike filtered methods that only rank features based 
on their importance to the target class.

Table 2. Baseline model metrics.

Models MCC F1-score Accuracy Precision
LR 0.1956 0.8030 0.7116 0.8562
DT 0.4030 0.8348 0.7586 0.8881
GB 0.5092 0.8665 0.8009 0.9406
RF 0.4714 0.8565 0.7868 0.9269
XGB 0.5178 0.8683 0.8041 0.9406
CATB 0.4762 0.8571 0.7884 0.9247

Table 3. Models optimal performance of two selected features by RFE.

Model Features selected MCC F1-score Accuracy Precision

LR 2,18 0.1387 0.6847 0.5972 0.6370 
DT 9,18 0.3035 0.7414 0.6708 0.6872
GB 8,10 0.0592 0.6320 0.5455 0.5685
RF 8,18 0.1866 0.7087 0.6238 0.6667
XGB 7,9 0.1774 0.7047 0.6191 0.6621
CB 8,18 0.1751 0.7055 0.6191 0.6644

Table 4. Models optimal performance ofthe seven selected features by RFE.

Model Features selected MCC F1-score Accuracy Precision

LR 1,2,7,8,17,18,20 0.1425 0.7698 0.6600 0.8208
DT 1,2,8,9,10,11,18 0.2989 0.8039 0.7163 0.8493
GB 1,2,7,8,9,10,18 0.3430 0.8185 0.7351 0.8699
RF 8,9,10,11,13,17,18 0.3578 0.8196 0.7457 0.8703
XGB 2,4,8,9,10,17,18 0.3490 0.8190 0.7367 0.8676
CB 1,2,7,8,9,10,18 0.4486 0.8345 0.7680 0.8516
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Figure 2. Best features elected by each model with the MCC 
score.

Figures 3–8 show the optimal features selected 
for each model by RFE with their ranking. 

From the result of the work, we can see that the 
features selected vary greatly for different models, 
and with the RFE feature selection the model’s per-
formance was increased compared to when the mod-
els were trained using the whole data. It is important 
to note that the models used are not deterministic in 
nature, therefore a rerun of the exact experiments 
can lead to a slightly different result based on some 
stochastic algorithm but our observations were made 

based on numerous reruns and an average of the 
results on each rerun. From the above plots, we can 
see that the features selected vary greatly for differ-
ent models, and with feature selection the model’s 
performance was increased compared to when the 
models were trained using the whole data. We can 
also see that balancing of target class distribution can 
improve the performances of ML models on valida-
tion and testing datasets.

Figure 3. Mean of F1-score of the number of features subset 
selected on logistic regression.

Table 5. Models optimal performance ofthe fifteen selected features by RFE.

Model Features selected MCC F1-score Accuracy Precision

LR 1,2,3,4,7,8,9,10,13,14,15,17,18,19,20 0.2098 0.8182 0.7304 0.8836

DT 1,2,4,7,8,9,10,11,12,13,14,15,17,18,19 0.3474 0.8265 0.7414 0.8973

GB 1,2,4,7,8,9,10,11,13,14,15,16,17,18,19 0.4001 0.8384 0.7602 0.9064

RF 1,2,4,7,8,9,10,11,12,13, 14,17,18,19,20 0.5945 0.8496 0.7774 0.9155

XGB 1,2,3,4,7,8,9,10, 12,13,14,17,18,19,21 0.5415 0.8414 0.7649 0.9087

CB 1,2,4,7,8,9,10,11,12,13,14,17,18,19,20 0.6120 0.8611 0.7931 0.9338

Table 6. Testing dataset validation of models with the optimal number of selected feature subsets by RFE.

Model Features selected No of features Maximum MCC score 
recorded

LR 1,2,7,8,10,17,18,19,20 9 0.4914

DT 1,2,4,8,9,10,11,12,13,17,18 11 0.5069

GB 1,2,7,8,9,10,14,18 8 0.6255

RF 1,2,4,7,8,9,10,11,12,13, 14,17,18,19,20 15 0.5945

XGB 1,2,3,4,7,8,9,10, 12,13,14,17,18,19,21 15 0.5615

CB 1,2,4,5,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21 20 0.6321



51

Journal of Computer Science Research | Volume 06 | Issue 01 | January 2024

Figure 4. Mean of F1-score of the number of features subset 
selected on decision tree.

Figure 5. Mean of F1-score of the number of features subset 
selected on gradient boosting.

Figure 6. Mean of F1-score of the number of features subset 
selected on random forest.

Figure 7. Mean of F1-score of the number of features subset 
selected on extended gradient boosting.

Figure 8. Mean of F1-score of the number of features subset 
selected on extended categorical boosting.

6. Conclusions and future works
This research underscores the potential of ma-

chine learning methodologies for addressing neonatal 
mortality rates by accurately predicting fetal health 
status from CTG examination results. By leveraging 
advanced algorithms and feature engineering tech-
niques, we have shown that ML models can enhance 
the accuracy and consistency of fetal health assess-
ments, particularly in settings with limited healthcare 
resources.

It is important to note that the models used are not 
deterministic in nature, therefore a rerun of the exact 
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experiments can lead to a slightly different result 
based on some stochastic algorithm but our observa-
tions were made based on numerous reruns and an 
average of the results on each rerun. This paper has 
shown that the prediction of foetus health rate from 
CTG is all important and contributes to the success 
of ML models depending on the methodology of the 
model. ML models can predict the FHR accurately 
from the features returned by readings from a CTG 
exam, and in training such ML models; feature se-
lection is a useful action to perform in the process of 
increasing the performance of the models. We have 
also seen that some of the persistently important fea-
tures across different models are Histogram mean, 
mean value of short-term variability, accelerations 
and baseline value. 

Moving forward, efforts should focus on enhanc-
ing model interpretability, expanding datasets to 
include diverse demographics and medical features, 
and exploring stacked ensemble learners for further 
performance improvements. Ultimately, the applica-
tion of ML in fetal health prediction holds promise 
for improving maternal and neonatal healthcare out-
comes, thereby contributing to the global effort to 
reduce neonatal mortality rates in developing coun-
tries.
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