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We first introduce several sphere packing ways such as simple cubic 
packing (SC), face-centered cubic packing (FCC), body-centered cubic 
packing (BCC), and rectangular body-centered cuboid packing (recBCC), 
where the rectangular body-centered cuboid packing means the packing 
method based on a rectangular cuboid whose base is square and whose 
height is  times the length of one side of its square base such that the 
congruent spheres are centered at the 8 vertices and the centroid of the 
cuboid. The corresponding lattices are denoted as SCL, FCCL, BCCL, 
and recBCCL, respectively. Then we consider properties of those lattices, 
and show that FCCL and recBCCL are the same. Finally we point out 
some possible applications of the recBCC lattices.
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1. Introduction

Throughout this paper, let R , Z , and N  de-
note the set of real numbers, integers and natural 
numbers, respectively. For any n N∈  and 1x

, 2x ,…, nx R∈ , the notation ( )1 2, , ... , nx x x  
denotes the coordinates of an n  dimensional point or de-
notes an n  dimensional vector depending on the context. 
If 

1u , 2u , …, and nu  are n  linearly independent vectors 
in nR , then the set 

1
: 1, 2,...,

n

i i i
i

L k u k Z for i n
=

 = • ∈ = 
 
∑

is called an n  dimensional lattice generated by 1u , 
2u ,…, and nu . These n  vectors are called a set of gener-

ators of the lattice. An n  dimensional Cartesian lattice is 
generated by n  vectors that have the same length and are 
orthogonal to each other.  A hexagonal lattice is a lattice 
generated by two vectors that have the same length and 
the angle between them is 120  or 60 . Figure 1 shows 
a hexagonal lattice and a 2-dimensional Cartesian lattice. 
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Figure 1. The left and the right show a set of generators 
in blue color of a hexagonal lattice and a square lattice, 

respectively
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The usual computations are done on a Cartesian lattice 
for discretization of a geometric object. However optimal 
sampling lattices have better adjacency relation than the 
corresponding Cartesian lattices, and sometimes provide 
more efficient sampling. Each lattice point in a hexagonal 
lattice has six equidistant neighbors. Hexagonal lattices 
may be applied in image processing tasks such as recon-
struction and segmentation. In [1] by Ikeda and Murota, 
and in [2] by Vince and Zheng, hexagonal lattices are con-
sidered for Earth mapping. In [3] by Hofmann and Tiede, 
hexagonal sampling grids are applied for Earth image 
segmentation. In [4] by Wei et al. and in [5] by Burdescu et 
al., graph cuts methods and hexagonal grids are applied to 
image segmentation. Mostafa and Her in [6] applied hexag-
onal grids for edge detection.

To make the application of hexagonal lattices conve-
nient, some tools for scientific computations on hexagonal 
lattices have been developed. As shown in [2] by Vince 
and Zheng, some efficient algorithms for discrete Fourier 
transforms on hexagonal lattices were developed. Voronoi 
splines for hexagonal lattices were studied in [7] by Van 
De Ville et al. and in [8] by Mirzargar and Entezari. Li in 
[9] implemented a simulated display system for hexagonal 
image processing. 

In this following, we first introduce some 3-dimensional 
sphere packing ways and related lattices. Then we consid-
er the corresponding optimal sampling lattices and their 
properties. Finally, we point out some possible applica-
tions of those properties.

2. Some 3-dimensional Sphere Packing Ways 
and Related Lattices

As in Wikipedia webpage [10], the proportion of space 
filled by the spheres is called the packing density. The fol-
lowing are several sphere packing examples.
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Figure 2. The left shows simple cubic packing of spheres, 
and the right shows the eight red star points that are the 

centroids of those spheres

Example 1: Simple Cubic packing introduced in Wiki-
pedia webpage [11]. As shown in the left of Figure 2, corre-
sponding to the simple cubic packing, spheres are stacked 
layer by layer such that each sphere in the second level 

DOI: https://doi.org/10.30564/jcsr.v1i2.641

touches and is directly above a sphere in the first layer. 
As shown in the right of Figure 2, the centroids of those 
spheres are lattice points of a cubic lattice that is generat-
ed by three vectors which are orthogonal to each other and 
have the same length. It is easy to verify that the packing 

density is 52.36%
6
π
≈ .
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Figure 3. The left shows FCC packing of spheres, and the 
right shows the 14 red star points that are the centroids of 

those spheres

Example 2: Face-Centered Cubic packing introduced in 
Wikipedia webpage [11]. As shown in the left of Figure 3, 
corresponding to the Face-Centered Cubic packing (FCC), 
there are eight spheres centered at the vertices of a cube 
and there are six spheres whose center points are exactly 
the center points of the six faces of the cube. Let  be the 
radius of the spheres in Figure 3 and let s  be the length 
of one side of the cube shown in the right side of Figure 3. 
Then the length of each diagonal of a face for the cube is 
4r . Hence 2 2s r= . 

The sphere centered at the origin has exactly 
1
8  of the 

volume enclosed in the cube because the cube is in the 
first octant and the volume of the sphere in each of the 
8 octants is the same. For a similar reason, each sphere 
centered at one of the vertices of the cube in Figure 3 has 

exactly 
1
8

 of the volume enclosed in the cube. The sphere 
centered at the centroid of one face of the cube has half of 
its volume enclosed in the cube. In Figure 3, there are 8 
spheres centered at the 8 vertices and there are 6 spheres 
centered at the 6 faces of the cube. Hence the total volume 
of the spheres enclosed in the cube is 

3 31 1 4 168 6 .
8 2 3 3spheres

r rV π π = • + • • = 
 

The volume of the cube is 3 316 2cubeV s r= = • .  
The structure enclosed by the cube is a representative 
unit meaning that we get a bigger structure with the same 
packing density if we tessellate this structure side by side. 
Hence the packing density of FCC lattices is 

74.05%
3 2

spheres

cube

V
V

π
= ≈

.
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Example 3: Body-Centered Cubic packing introduced 
in Wikipedia webpage [11]. Corresponding to Body-Cen-
tered Cubic packing (BCC), congruent spheres are stacked 
such that 8 of them are centered at the 8 vertices of a cube 
(shown in the right side of Figure 4) and one of them is 
centered at the centroid of the cube. Let s  be the length 
of one side of the cube and assume that the cube is in 
the first octant with ( )0,0,0 , ( ),0,0s , ( )0, ,0s , and ( )0,0, s
as vertices. Then the coordinates of the centroid of the 

cube are , ,
2 2 2
s s s 

 
  . It follows that the distance between the 

centroid and the origin is 
3

2
s . Since 

3 2
2

s r= , where r  

is the radius of the spheres in Figure 4, we have 3
4

r s= .  

Each sphere centered at the 8 vertices of the cube has 
1
8  

volume enclosed in the cube and the sphere at the centroid 

of the cube is completely enclosed in the cube. Hence the 
total volume of the sphere enclosed in the cube is 

3 3
31 4 8 38 1

8 3 3 8spheres
r rV sπ π π• = • + • = = • 

  .

The volume of the cube is 
3

cubeV s= . Therefore the 
packing density of BCC lattices is 

3 68.02%
8

spheres

cube

V
V

π
= ≈

.
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Figure 4. The left shows BCC packing of spheres, and the 
right shows the 9 red star points that are the centroids of 

those spheres

As mentioned in [12] by Kim et al., BCC lattices and 
FCC lattices outperform the Cartesian lattices for the re-
construction of tri-variate functions; BCC lattice are the 
optimal 3D sampling lattices; and FCC lattices exhibit 
nearly-optimal sampling properties. As displayed in [13] by 
Zheng and Gu, each lattice point in an FCC lattice has 12 
equidistant neighbors, and the lattice has a uniform notion 
of voxel neighborhood. Hence FCC lattices are more suit-
able than 3D Cartesian lattices for morphological opera-
tions. 
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Figure 5. The left shows rectangular BCC packing of 
spheres, and the right shows the 9 red star points that are 

the centroids of those spheres

   Some tools for scientific computations on FCC and 
BCC lattices have been developed. Fast algorithms for 
discrete Fourier transform on FCC and BCC lattices were 
studied as shown in [13] by Zheng and Gu. For FCC and 
BCC lattices, Voronoi splines are studied in [8] by Mir-
zargar and Entezari; and the box spline reconstruction for 
FCC lattices is studied in [12] by Kim et al. In the follow-
ing, we consider another novel kind of sphere packing and 
its related lattices. Interestingly enough, the related lattic-
es turn out to be the same as FCC lattices.

Example 4: Rectangular Body-Centered Cuboid pack-
ing. To explore the relation between FCC lattices and 
BCC lattices, in this paper, we introduce rectangular 
body-centered cuboid packing that is defined in the fol-
lowing. Consider a rectangular cuboid that has a square 
base and whose height is 2  times the length of one side 
of its square base as shown in the right side of Figure 5. 
As shown in the left side of Figure 5, congruent spheres 
are stacked such that 8 of them are centered at the 8 
vertices of the cuboid and one of them is centered at the 
centroid of the cuboid. Because the height of the cuboid is 
different from the length of one side of its square base, we 
call this kind of stacking the rectangular Body-Centered 
Cuboid ( recBCC ) packing.

3. The Equivalence of FCC Lattices and Rect-
angular Body Centered Cuboid Packing Lat-
tices

In this section, by considering the generators of those 
lattices, we show that each FCC lattice is generated by 
three vectors that have the same length and the angle 
between any two of these three vectors is 60 . So is each 
recBCC  lattice. Hence the set of FCC lattices is the 
same as the set of recBCC  lattices. In other words, 
FCCL recBCCL=  where FCCL  and recBCCL  
denote the set of FCC lattices and the set of recBCC  
lattices respectively.

DOI: https://doi.org/10.30564/jcsr.v1i2.641
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Figure 6. The left and the right show a set of generators in 
blue color of a BCC lattice and a rectangular BCC lattice, 

respectively

The FCC lattice shown in the left side of Fig-

ure 6 is generated by three vectors ( )1 2,0, 2 ,u k= •

( )2 2, 2,0 ,u k= • and ( )3 0, 2, 2u k= •  for some scaling 
factor 0k > . Hence any FCC lattice is generated by three 
vectors that have the same length and the angle between 
any two of them is 60 . To show that the lattice displayed 
at the right side of Figure 6 is also such a lattice, we need 
some definitions as in the following.

Let ia  and b  be vectors for each 1,2,...,i m= . If there 

exist integers 1k , 2k , ..., and mk such that 
1

m

i i
i

b k a
=

= •∑ , 

then the vector b  is called an integer linear combination 
of 1a , 2a , …, and ma . For two sets of vectors, if each 
vector in any of those two sets is an integer linear combi-
nation of the vectors in another set, then those two sets of 
vectors are called equivalent with respect to integer linear 
combinations. The following Lemma 1 shows that, if two 
sets of vectors are equivalent with respect to integer linear 
combinations, then these two sets generate the same lat-
tice. Lemma 1 will be applied to prove Proposition 2.

Lemma 1. Let ,m n N∈ and let { }1 2, ,..., mS a a a=

and { }1 2, ,..., nT b b b=  be two sets of vectors. If L  is a 

lattice generated by the vectors in S  and if T  is equiva-
lent to S  with respect to integer linear combinations, then 
T  is also a set of generators of the lattice L .

Proof of Lemma 1. Because the lattice L  is generated 
by the vectors in S , we have

{ }1 1 2 2 1 2... : , ,...,m m mL k a k a k a k k k Z= • + • + + • ∈  (1)

Because S  and T  are equivalent with respect to in-

teger linear combinations, for each { }1,2,...,i n∈ , the 

vector ib  is an integer linear combination of 1a , 2a , …, 
and ma . By Equation 1, we have ib L∈ .

On the other hand, for any vector x L∈ , Equation 1 
implies that there exist integers 1k , 2k , …, and mk  such 

that 

1

m

i i
i

x k a
=

= •∑
     (2)

For each { }1,2,...,i m∈ , because ia  is an integer 

linear combination of vectors in the set T , there exist in-
tegers ,1il , ,2il , ..., and ,i nl  such that

,
1

n

i i j j
j

a l b
=

= •∑
     (3)

By  combin ing  Equa t i ons  2  and  3 ,  we  have 

,
1 1

n m

i i j j
j i

x k l b
= =

 = • 
 

∑ ∑ . Hence x  is an integer linear 

combination of 1b , 2b , …, and nb .  Thus T  is also a set 
of generators of the lattice L . 

Proposition 2. FCCL = recBCCL .
P r o o f  o f  P r o p o s i t i o n  2 .  T h e  recBCC  l a t -

tice shown in the right side of Figure 6 is generat-

e d  b y  ( )1 2,0,0v k= • ,  ( )2 0, 2,0v k= • ,  a n d 

( )3 1,1, 2v k= •  for some scaling factor 0k > .  
It is easy to check that those three vectors have the 
same length, 1v  and 2v  are orthogonal, and the an-
gle between iv  and 3v  is 60  for each 1, 2i = . Let 

( )1 1 2,0,0b v k= = • ,  ( )2 2 3 1, 1, 2b v v k= − + = • − , 

 a n d  ( )3 3 1,1, 2b v k= = • .  T h e n  t h e  t w o  s e t s 

{ }1 2 3, ,v v v  and { }1 2 3, ,b b b are equivalent with respect to 

integer linear combinations. Because the three vectors 1b , 

 2b , and 3b  have the same length and the angle between 
any two of them is 60 , they generate an FCC lattice. 
Therefore, by Lemma 1, we have FCCL = recBCCL .
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Figure 7. One level of an FCC lattice generated by two 

different sets of generators { }1 2 3, ,v v v  and { }1 2 3, ,b b b
,respectively.  The left shows a square lattice generated by 

1v  and 2v ; and the right shows a hexagonal lattice gener-

ated by 1b  and 2b
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4. Possible Applications of the Rectangular 
Body Centered Cuboid Packing Lattices

In [14] by Biswas and Bhowmick, cubes are used to build 
a spherical object approximately. Because FCC and BCC 
lattices have certain advantages over simple cubic lattic-
es, for some geometric objects, the discretization effect 
using those optimal sampling lattices may be better than 
the discretization effect using the corresponding Cartesian 
lattices. In the following, we introduce Hausdorff distance 
and use it to verify the discretization effects using differ-

ent sampling lattices. For any , na b R∈ , let ( ),d a b  

denote the distance between a  and b ; and let A  and B  

be two nonempty subsets of nR . In the following, Sup  

and Inf denote the supremum and infimum respectively. 

For each a A∈  let ( ) ( ){ }, , :d a B Inf d a b b B= ∈ . 

 L e t  ( ) ( ){ }, , :d A B Sup d a B a A= ∈ .  A s  i n  [ 1 5 ] 

by Zheng, the Hausdorff distance between A  and B is 

( ) ( ) ( ){ }, : max , , ,h A B d A B d B A= , and measures 

how far are A  and B  from each other.
To visualize the discretization effects easily, we first 

show a 2-dimensional example. Let Ω  be the ellip-

t i c  r e g i o n  ( )
2 2

2
2 2, | 1

35 8
x yx y R

 
∈ + ≤ 

 
,  a n d  l e t 

( )
2 2

2
2 2, | 1

35 8
x yx y R

 
Ω = ∈ + = 

 
  w h i c h  i s  t h e 

boundary of Ω . The ellipse Ω  is shown in red color in 
the subfigures of Figure 8. The top of Figure 8 shows the 
discretization of Ω  using the Cartesian lattice generated 

by the two vectors ( )2,0  and ( )0,2 . The bottom of 

Figure 8 shows the discretization of Ω  using the hexag-

onal lattice generated by the two vectors 
3 1,

2 2
c

 
•  
 

 

and 
3 1,

2 2
c

 
• −  
 

 where 8
3

c = . Because the 

area of a Voronoi cell for both the Cartesian and hexag-
onal lattice is 4, the resolution of sampling the elliptic 
region Ω  using the Cartesian lattice is the same as that 
using the hexagonal lattice. Let C  and H  denote the 
sets consisting of all the sampled points of the region Ω  
using the Cartesian lattice and the hexagonal lattice, re-

spectively. We may assume that C ⊆ Ω  and H ⊆ Ω  as 

usual. Hence ( ), 0d C Ω =  and ( ), 0d H Ω = . These 

two equations imply that ( ) ( ), ,h C d CΩ = Ω  and 

( ) ( ), ,h H d HΩ = Ω . Because C ⊆ Ω  and Ω  is the 

boundary of Ω , we have ( ) ( ), ,d C d CΩ = Ω . Sim-

ilarly ( ) ( ), ,d H d HΩ = Ω . To get the approximate 

values of ( ),d CΩ  and ( ),d HΩ , we discretize Ω  

using the scheme ( )cosx a θ= •  and ( )siny b θ= •  

with )0,2θ π∈
 taking step size 

400
π

. Let 
SΩ denote 

the set consisting of these samples, i.e., 

( ) ( )( ) 799cos , sin | 0 : :
400 400S a b π πθ θ θ Ω = • • = 

 


.

The computations turn out that ( ), 2.2004Sd CΩ =  

and ( ), 2.0462Sd HΩ = . Because of the small step size of 

θ , the set SΩ  well represents Ω  in the comparison of 

( ),d CΩ  and ( ),d HΩ . Hence ( ) ( ), ,S Sd H d CΩ < Ω   implies 

that ( ) ( ), ,d H d CΩ < Ω  .  Therefore ( ) ( ), ,h H h CΩ < Ω , 

which means that H  represents Ω  better than C  does. 
In other words, the hexagonal sampling is better than the 
corresponding Cartesian sampling for this 2-dimensional 
elliptic region.

Figure 8. Discretization of an elliptic region. The top 
shows its discretization using a Cartesian lattice and the 
bottom shows its discretization using a hexagonal lattice

Similarly, in the 3-dimensional case, let Ξ  be the el-

DOI: https://doi.org/10.30564/jcsr.v1i2.641
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lipsoid ( )
2 2 2

2
2 2 2, , | 1

13 7 6
x y zx y z R

 
∈ + + ≤ 

 
 and let 

( )
2 2 2

2
2 2 2, , | 1

13 7 6
x y zx y z R

 
Ξ = ∈ + + = 

 
  w h i c h  i s 

the boundary of Ξ . Let P  denote the set consisting of 
all the sampled points of the 3-dimensional region Ξ  
using the Cartesian lattice generated by the three vectors 

( )2,0,0 , ( )0,2,0 , and ( )0,0, 2 ; and let Q  denote the 

set consisting of all the sampled points of Ξ  using the 

FCC lattice generated by the three vectors ( )2 2,0,0• ,  

( )
1
62 0,2,0• , and ( )

1
62 1,1, 2•  shown in Proposi-

tion 2. Those three vectors for the FCC lattice are con-
venient for computer algorithms to discretize Ξ . With 
the usual assumption that P ⊆ Ξ  and Q ⊆ Ξ , we 

have ( ) ( ), ,h P d PΞ = Ξ  and ( ) ( ), ,h Q d QΞ = Ξ .  

Similar to the previous 2-dimensional case, we have 

( ) ( ), ,d P d PΞ = Ξ  and  ( ) ( ), ,d Q d QΞ = Ξ .  We 

discretize Ξ  as SΞ  where 

( ) ( ) ( ) ( ) ( )( ) 399 99cos cos , sin cos , sin | 0 : : , : :
200 200 2 200 200

a b c π π π π πθ φ θ φ φ θ φ Ξ = • • • • • = = − 
 

The computations turn out that ( ), 2.2343Sd PΞ =  

and ( ), 2.1641Sd QΞ = .  Because of the small step 

size of θ  and φ , the set SΞ  well represents Ξ  in 

the comparison of  ( ),d PΞ  and ( ),d QΞ .  Hence 

( ) ( ), ,S Sd Q d PΞ < Ξ   implies that ( ) ( ), ,d Q d PΞ < Ξ  .  

Therefore ( ) ( ), ,h Q h PΞ < Ξ , which means that the 

sampling effect using the FCC lattice is better than the ef-
fect using the corresponding Cartesian lattice.

Because FCCL  is the same as recBCCL , if we use 
the Voronoi cells of an FCC lattice (as in Figure 6 of in [13] 
by Zheng and Gu) to build an object, then a rectangular 
body-centered cuboid packing lattice may be considered 
for the convenience of machine operations or scientific 
computations as we have applied it for efficient algorithms 
discretizing the ellipsoid Ξ .

In the proof of Proposition 2, both { }1 2 3, ,v v v  and 

{ }1 2 3, ,b b b  are sets of generators of the recBCC  lat-

tice. Since 1v  and 2v  are perpendicular and have the same 
length, they generate a square lattice. When a machine 
lays spheres in one layer, usually a new sphere touches 
two previous spheres as shown in the left side of Figure 7.  
Because 1b  and 2b  generate a hexagonal lattice, when a 
machine lays spheres in one layer, a new sphere usually 
touches three previous spheres as shown in the right side 
of Figure 7.

Because the recBCC  lattice in Figure 5 is just a verti-
cal stretch of the BCC lattice in Figure 4 by a scaling fac-
tor of 2 , for any recBCC  lattice, there exists a BCC 
lattice and a direction such that the recBCC  lattice is 
just a vertical stretch of the BCC lattice by a scaling fac-
tor of 2 . Because FCCL = recBCCL , for any FCC 
lattice, there exists a BCC lattice and a direction such that 
the FCC lattice is just a vertical stretch of the BCC lattice 
by a scaling factor of 2 . Hence some algorithms for 
BCC lattices may be generalized to FCC lattices. FCC lat-
tices and BCC lattices are applied in areas such as crystal 
systems as shown in Wikipedia page [11]. Because FCC 
lattices are the same as recBCC  lattices, the relation 
between BCC lattices and recBCC  lattices may help the 
study of related crystal systems.

5. Summary

We have studied several important 3-dimensional sphere 
packing ways and related lattices. The generators of those 
lattices are useful to show some relations and properties 
among those lattices. We have shown that FCC lattices are 
the same as recBCC  lattices. Hence an FCC lattice is a 
stretched structure of a BCC lattice in one direction. We 
have also shown that the FCC lattices may achieve better 
discretization effect for some geometric objects. Those 
results may have applications in the related areas.
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