
1

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

Journal of Computer Science Research
https://journals.bilpubgroup.com/index.php/jcsr

*CORRESPONDING AUTHOR:
Huitao Zhang, Northen Arizona University, San Francisco St, Flagstaff, AZ 86011, United States Of America; Email: hz345@nau.edu

ARTICLE INFO
Received: 15 May 2024 | Revised: 19 May 2024 | Accepted: 21 May 2024 | Published Online: 31 May 2024
DOI: https://doi.org/10.30564/jcsr.v6i2.6632

CITATION
Xiong, S.G., Zhang, H.T., 2024. A Multi-model Fusion Strategy for Android Malware Detection Based on Machine Learning Algorithms. Journal
of Computer Science Research. 6(2): 1–11. DOI: https://doi.org/10.30564/jcsr.v6i2.6632

COPYRIGHT
Copyright © 2024 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

1. Introduction

In the digital age, the widespread use of Android

devices has led to a surge in security threats, espe-

cially malware. As the most popular mobile operat-
ing system worldwide, Android is a primary target
for malicious actors. The emergence of sophisticated
malware strains capable of bypassing conventional

ARTICLE

A Multi-model Fusion Strategy for Android Malware Detection Based
on Machine Learning Algorithms

Shuguang Xiong 1, Huitao Zhang 2*

1 Microsoft Inc., Way,Redmond,Washington 98052-6399,United States Of America
2 Northen Arizona University, San Francisco St, Flagstaff, AZ 86011, United States Of America

ABSTRACT
In the digital age, the widespread use of Android devices has led to a surge in security threats, especially malware.

Android, as the most popular mobile operating system, is a primary target for malicious actors. Conventional antivirus
solutions often fall short in identifying new, modified, or zero-day attacks. To address this, researchers have explored
various approaches for Android malware detection, including static and dynamic analysis, as well as machine
learning (ML) techniques. However, traditional single-model ML approaches have limitations in generalizing across
diverse malware behaviors. To overcome this, a multi-model fusion approach is proposed in this paper. The approach
integrates multiple machine learning models, including logistic regression, decision tree, and K-nearest neighbors, to
improve detection accuracy. Experimental results demonstrate that the fusion method outperforms individual models,
offering a more balanced and robust approach to Android malware detection. This methodology showcases the
potential of ensemble techniques in enhancing prediction accuracy, providing valuable insights for future research in
cybersecurity.
Keywords: Component; Multi-model fusion; Malware detection; Machine learning

mailto:hz345@nau.edu
https://doi.org/10.30564/jcsr.v6i2.6632
https://doi.org/10.30564/jcsr.v6i2.6632
https://creativecommons.org/licenses/by-nc/4.0/

2

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

detection techniques calls for more advanced defen-
sive approaches. The critical need for robust Android
malware detection is undeniable. Malware can result
in substantial financial losses, privacy violations, and
even jeopardize the security of crucial infrastruc-
ture. Traditional antivirus solutions typically use
signature-based detection, which is efficient against
known threats but often falls short in identifying
new, modified, or zero-day attacks. Additionally, the
evolving and polymorphic characteristics of contem-
porary malware render signature-based approaches
increasingly outdated.

Android malware detection has evolved over the
years, with researchers exploring various approach-
es, from static analysis, which examines the code
without execution, to dynamic analysis, which ob-
serves the behavior of applications during runtime.
Each method has its benefits and limitations. Static
analysis can be fast and safe but often fails to detect
sophisticated obfuscation techniques or runtime be-
haviors. Dynamic analysis is more effective against
such techniques but is resource-intensive and can be
circumvented by malware that detects the analysis
environment. Machine learning (ML) has emerged
as a potent tool in cybersecurity due to their excel-
lent performance in many domains [1–8], capable of
learning from data to detect patterns indicative of
malicious behavior shown in Figure 1. For example,
Arshad et al. [9] compared 20 Android malware detec-
tion tools from the perspectives of static and dynamic
analysis, supported by 62 references. Rashidi et al. [10]
offered an overview of Android security threats and
defenses through static and dynamic analysis, citing
141 references. An extensive review of 124 methods
using static analysis of Android apps was conducted
in [11], which included 188 references. Furthermore,
Tam et al. [12] presented 36 Android malware detec-
tion tools, expanding into static, dynamic, and hybrid
analysis, with 181 references. Despite these compre-
hensive surveys of software engineering approaches,
the internal ML or deep learning (DL) algorithms
were only superficially analyzed. A few surveys have
explored traditional ML-based methods, such as
in [13,14], where Faruki et al. [15] provided an overview

of Android malware penetration and defense strat-
egies, including ML-based detection tools with 117
references. Ebtesam et al. [16] briefly reviewed four
ML algorithm families—SVM, NB, perceptron, and
Deep Neural Network (DNN)—for Android malware
detection. Traditional ML algorithms like K-means,
Support Vector Machine, Decision Tree, fuzzy logic,
Artificial Neural Network, Gaussian methods, and
Meta-heuristic approaches were detailed in [17], fo-
cusing on signatures and behaviors.

Figure 1. The workflow of machine learning-based Android
malware detection.

However, traditional Android malware detection
has relied on single machine learning models, which
presents several disadvantages. These models can be
limited in their ability to generalize across diverse
malware behaviors, leading to reduced detection ac-
curacy, especially with new or sophisticated threats.
A single model may also be prone to overfitting,
where it performs well on training data but fails to
predict accurately on unseen data. To address these
issues, considering the fusion of multiple models
offers significant advantages. Combining different
models can harness their individual strengths, lead-
ing to more robust and accurate detection across a
broader range of malware types. This approach can
improve the system’s resilience to zero-day attacks
and polymorphic malware, which often evade sin-
gle-model systems. Additionally, model fusion can
enhance the adaptability of the detection system,
allowing it to evolve with emerging threats more ef-
fectively.

In this paper, we develop a multi-model fusion
approach for predicting Android malware detection.
Initially, the study employs various machine learning
models, specifically KNN, decision tree, and logistic
regression. Each model is trained with malware data

3

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

using different parameters to determine the single
best predictive model. Subsequently, these three ma-
chine learning models are integrated through fusion
and compared with the individual best-performing
model. The evaluation criteria clearly indicate that
the multi-model fusion method achieves higher ac-
curacy and provides better malware prediction. Ad-
ditionally, this paper utilizes a decision tree feature
importance analysis experiment to identify the key
factors influencing malware. Compared to traditional
single-model algorithms, this multi-model fusion ap-
proach using machine learning could offer valuable
insights for future predictions.

This paper is structured as follows: section 2 de-
tails the related works of Android malware detection.
Following that, section 3 provides the workflow of
the proposed method in this study. The experimental
results and corresponding discussion are provided in
section 4. Finally, section 5 provides a comprehen-
sive conclusion of this paper.

2. Literature review
Android malware detection

With the rapid advancement of mobile internet
and smart devices, malware targeting the Android
platform has evolved into various forms. Tradition-
ally, Android malware is categorized into types such
as trojans, backdoors, worms, botnets, spyware, ag-
gressive adware, and ransomware [18]. Felt et al. [19]
further distinguished Android malware based on the
motivations behind human behaviors, which include
seeking novelty and amusement, selling user infor-
mation, stealing credentials, making premium-rate
calls, sending SMS messages, distributing SMS
spam, enhancing search engine optimization, and
extracting ransom. Zhou and Jiang [20] analyzed An-
droid malware through the lenses of installation, acti-
vation, malicious payloads, and permission exploita-
tion. In its reports, Google [21] employs conservative
terminology to describe such software, referring to
them as potentially harmful applications (PHAs).
In the Google Play Store, these PHAs are classified
under various categories, including click fraud, SMS

fraud, spyware, toll fraud, trojans, hostile download-
ers, backdoors, phishing, privilege escalation, and
commercial spyware.

Several studies have also explored the extraction
of static features from unique perspectives. Protsen-
ko et al. [22] approaches Android malware detection
by analyzing software complexity, extracting 144
features that reflect a program’s control flow, data
flow, and object-oriented design. Meanwhile, Yang
et al. [23] introduces a static feature named a modality
vector, generated through a three-step process: be-
havior graph generation, sensitive node extraction,
and modality generation. Xu et al. [24] focuses on
malware detection from the perspective of inter-com-
ponent communication (ICC) among Android appli-
cations, extracting features related to ICC from com-
ponents, explicit intents, implicit intents, and intent
filters.

Yang et al. [25] detects malware by analyzing tex-
tual features within grayscale images. It begins by
unzipping the APK file, converting the files classes.
dex, AndroidManifest.xml, resources.arsc, and cert.
rsa into 8-bit unsigned integer vectors, and then
transforming them into grayscale images for further
analysis. Martín et al. [26] emphasizes static features
of third-party API calls, which are difficult to obfus-
cate and can enhance detection accuracy.

Machine learning algorithms are also considered
due to their strong feature extraction and prediction
performance [27–36]. Shen et al. [37] defines a data flow
named Complex-Flows, extracts API call sequences
using data flow analysis tools like BlueSeal, gener-
ates feature sets in the form of n-grams, and employs
an SVM algorithm for malware detection. In Gorla
et al. [38], natural language processing (NLP) technol-
ogy and the k-means algorithm are initially used to
process each application’s description in the market,
combined with extracted sensitive API calls, and
finally, an SVM algorithm is applied for malware
detection. Lastly, Li et al. [39] adopts an incremental
SVM algorithm that utilizes prior information from
historical samples to avoid retraining all data when
new samples are added, thus enhancing detection ef-
ficiency.

4

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

3. Method
3.1 Dataset preparation

The dataset used in this study consists of 7,845
entries, each described by 14 features. These fea-
tures include name, which identifies the Android
application; tcp_packets, representing the number
of TCP packets sent and received; dist_port_tcp, the
number of distinct TCP ports; external_ips, the count
of unique external IP addresses contacted; vulume_
bytes, the total volume of data sent and received in
bytes; udp_packets, the number of UDP packets;
tcp_urg_packet, the count of TCP packets with URG
flags; source_app_packets, the total packets sent by
the application; remote_app_packets, the total pack-
ets received from the remote application; source_
app_bytes, the total bytes sent by the application;
remote_app_bytes, the total bytes received from the
remote application; source_app_packets.1, a possibly
duplicated column of source_app_packets; dns_que-
ry_times, the number of DNS queries made by the
application; and type, indicating whether the traffic
was benign or malicious.

In the preprocessing phase of our study, we trans-
formed the labels in the dataset into numerical for-
mat for compatibility with machine learning models.
Specifically, we converted the type feature, which
originally categorized traffic as either “benign” or
“malicious”, into binary labels: “0” for benign and
“1” for malicious. Additionally, we partitioned the
dataset into a training set and a test set, allocating
70% of the data to the training set to train our mod-
el, and reserving 30% for the test set to evaluate the
model’s performance on unseen data. This division
ensures a robust assessment of the predictive capa-
bilities of our developed models.

3.2 The introduction of used machine learning
models

Logistic regression
Logistic regression is a fundamental statistical

method used primarily for binary classification prob-
lems, where the objective is to predict a binary out-

come from a set of variables. Originating in the field
of statistics, logistic regression has found extensive
application in machine learning due to its simplicity,
interpretability, and efficiency in scenarios where the
response variable is categorical—particularly when
it is dichotomous (e.g., yes/no, true/false, positive/
negative).

The core idea behind logistic regression is to
model the probability of the default category (of-
ten labeled as ‘1’) of a binary dependent variable
as a logistic function of one or more independent
variables (predictors). Unlike linear regression
that might predict any value from negative to pos-
itive infinity, logistic regression outputs proba-
bilities between 0 and 1 by using the logistic (or
sigmoid) function. This function is mathemati-
cally represented as σ(z) =

1
1 + e– z , where z is a

linear combination of the input features weighted
by their coefficients z = β0 + β1x1 + β2x2 + … +
βnxn. In logistic regression, the coefficients (β) are
estimated using the method of maximum likelihood
estimation (MLE). The goal of MLE is to find the set
of coefficients that maximizes the likelihood of the
observed sample, which effectively means choosing
the coefficients that make the observed outcomes
most probable under the model. This approach ad-
justs the coefficients to fit the model such that the
predicted probability reflects the actual distribution
of the outcomes as closely as possible. Once the
model is trained, the logistic regression can predict
the probability that a new observation belongs to
the default category. These probabilities can then be
converted to class predictions by setting a thresh-
old, commonly 0.5 in binary classification, where
probabilities above this threshold predict the default
category, and those below predict the alternative cat-
egory.

Decision tree
A decision tree is a versatile machine learning

model used for both classification and regression
tasks. It is one of the most intuitive and easy-to-un-
derstand models, as it mirrors human decision-mak-
ing processes by splitting data into branches to reach
conclusions or predictions. This model’s structure

5

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

resembles an inverted tree, starting with a root node
and expanding into branches and leaves representing
decisions and outcomes, respectively.

At the heart of a decision tree is a sequence of
questions and decisions about the data. Each internal
node in the tree represents a “test” on an attribute, each
branch represents the outcome of the test, and each
leaf node represents a class label (in classification) or a
continuous value (in regression). The paths from root
to leaf represent classification rules or regression paths.
To build a decision tree, algorithms like ID3, C4.5,
Classification and Regression Trees (CART), or others
iteratively split the dataset into subsets based on differ-
ent features. The selection of features and the point at
which to split them are determined using metrics such
as Gini impurity, entropy, or variance reduction. These
metrics help to identify the feature and threshold that
most effectively split the data to maximize the homoge-
neity of the subsets.

K-nearest neighbors
K-nearest neighbors is a straightforward and

versatile machine learning algorithm used for both
classification and regression tasks. It is a non-par-
ametric method, which means it makes no explicit
assumptions about the underlying data distribution.
This simplicity and flexibility make KNN a popular
choice for many practical applications, particularly
when the data is well structured and labeled.

The essence of KNN lies in predicting the label
of a new data point by examining the ‘k’ closest
labeled data points from the training set. Here, ‘k’
represents the number of nearest neighbors the al-
gorithm considers in its prediction process. KNN
begins by calculating the distance between the test
instance and every instance in the training set, using
distance metrics such as Euclidean, Manhattan, or
Minkowski. After calculating these distances, it sorts
all training instances by proximity and selects the ‘k’
nearest ones. For classification tasks, the most com-
mon class among these neighbors is assigned to the
test instance, typically through majority voting. In
regression tasks, the algorithm predicts a value based
on the average or another statistical measure of the
dependent variable among these neighbors.

Random forest
Random Forest is a powerful ensemble learning

technique used in machine learning for both classifi-
cation and regression tasks. It builds on the simplic-
ity and effectiveness of decision trees by combining
multiple such trees to improve predictive perfor-
mance and control overfitting. The fundamental prin-
ciple behind Random Forest is to create a “forest” of
decision trees, each trained on different parts of the
same dataset, and then aggregate their predictions to
produce a more accurate and stable result than any
single tree could provide.

The process begins with the creation of multiple
decision trees during the training phase. Each tree in
a Random Forest is constructed using a random sub-
set of the training data and features, a method known
as “bootstrap aggregating” or bagging. This ran-
domness helps in diversifying the individual trees,
reducing the correlation between them, and thereby
enhancing the overall model’s robustness. When
making predictions, for classification tasks, the mode
of the classes predicted by individual trees is taken
(majority voting), and for regression, the average of
the outputs is considered.

3.3 Multi-model fusion strategy for Android
malware detection

In this paper, we introduce a novel model fusion
strategy designed to enhance the robustness and ac-
curacy of predictive modeling. The process begins
by feeding the original dataset into three different
models for training. Using the optimal model, pre-
dictions are generated for both the training and test
sets. The predicted values from the three models—
logistic regression, decision tree and K-nearest
neighbors—are then aggregated to form a new set of
features. The essence of this strategy lies in utilizing
these aggregated features as inputs to train and fine-
tune the random forest model. The experimental
framework is implemented using the sklearn library
within the Python3 environment. Figure 2 illustrates
the model fusion process. The following steps detail
the model fusion approach: (1) To start, import the

6

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

dataset and split it into training and test sets, adher-
ing to a 70:30 ratio. Additionally, set the random
state parameter to a fixed value to ensure that the
data splits are consistent across all three models. (2)
Training three regression models: logistic regression,
decision tree and K-nearest neighbors. Iteratively
adjust these parameters to find the optimal configura-
tion for each model. (3) Building on the achievement

of identifying the optimal single model, aggregating
the predictions from these three models to create a
new set of features. Use these aggregated features
as input to train and fine-tune an enhanced Random
Forest model. (4) Evaluating the performance of dif-
ferent models using accuracy and confusion matrix
metrics.

Figure 2. The workflow of the proposed model fusion method.

4. Results and discussion
4.1 The performance of the model

In the context of Android Malware Detection,
the performance of various machine learning mod-
els was evaluated using a dataset with two classes
shown in Table 1, Figure 3, Figure 4, Figure 5 and
Figure 6. The classes represent benign and malicious
Android applications. This analysis aimed to deter-
mine which model could most effectively distinguish
between the two. The Logistic Regression model
achieved an accuracy of 70% in identifying benign
and malicious applications. The confusion matrix
shows that it correctly identified 1324 benign apps as
benign and 313 malicious apps as malicious. How-
ever, it misclassified 626 malicious apps as benign
and 91 benign apps as malicious. The relatively high
number of false negatives indicates that while logis-
tic regression is somewhat effective, it might not be
sufficiently sensitive to all malware patterns without
further tuning or feature engineering. The Decision
Tree model showed an improvement, achieving an
accuracy of 74%. According to its confusion matrix,
1314 benign apps and 439 malicious apps were cor-

rectly classified. However, 500 malicious apps were
incorrectly labeled as benign, and 101 benign apps
were mistakenly classified as malicious. This mod-
el offers better sensitivity than logistic regression
but still struggles with a substantial number of false
negatives. The KNN model demonstrated significant
improvement with an accuracy of 84%. It correctly
identified 1235 benign apps and 754 malicious apps,
with fewer false negatives (185) and false positives
(180) compared to the previous models. KNN’s
higher accuracy suggests it is better at capturing the
complexities and nuances in the data that distinguish
between the app types.

A fusion approach combining Logistic Regres-
sion, Decision Tree, and K-Nearest Neighbors was
implemented to leverage the strengths of individual
models. This method achieved the highest accura-
cy of 88%. The confusion matrix for this approach
indicates a robust performance with 1304 benign
apps correctly identified and 773 malicious apps ac-
curately detected. The reduction in false negatives
(166) and false positives (111) demonstrates that
integrating multiple models provides a more bal-
anced approach, effectively increasing sensitivity

7

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

and specificity. The integration of diverse modeling
techniques in the proposed fusion method appears
to mitigate individual model weaknesses, leading to
more accurate malware detection. This methodology
not only highlights the importance of model selec-
tion in cybersecurity tasks but also underscores the
potential of ensemble techniques in enhancing pre-
diction accuracy. Thus, this approach could be high-
ly beneficial for developing robust Android malware
detection systems.

Table 1. The performance of different models in testing dataset.

Model Name Testing Accuracy
LR 0.70
DT 0.74
KNN 0.84
Proposed model fusion
method (LR+DT+KNN) 0.88

Figure 3. The confusion matrix based on the logistic regression.

Figure 4. The confusion matrix based on the decision tree.

Figure 5. The confusion matrix based on the KNN.

Figure 6. The confusion matrix based on the proposed model
fusion method.

Figure 7 illustrates the impact of varying the
number of estimators in Random Forest model in the
performance of model fusion method for a given da-
taset. The accuracy increases sharply as the number
of estimators rises from 1 to around 5. This suggests
that the model benefits significantly from an initial
increase in the number of trees, which helps to re-
duce variance and improve model stability. Between
5 and 15 estimators, accuracy shows some fluctua-
tions, peaking at around 10 and 15 estimators. This
variation indicates that certain configurations of the
forest are more optimal for this specific dataset, cap-
turing the underlying patterns more effectively than
others. After reaching approximately 10 estimators,
the accuracy tends to plateau, with slight increases
and decreases but generally maintaining a high level
of performance. This plateau suggests that adding
more estimators beyond this point does not contrib-

8

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

ute significantly to improving accuracy, indicating a
point of diminishing returns. The highest observed
accuracy is just under 0.88, demonstrating that the
Random Forest model, when properly tuned with the
right number of estimators, can achieve a high de-
gree of predictive accuracy. This analysis is crucial
for understanding how the complexity of a Random
Forest model affects its performance. By tuning the
number of estimators, one can balance the trade-off
between training time and model accuracy. The find-
ings suggest that for this particular dataset and fu-
sion method, using around 10 to 15 estimators might
offer an optimal balance.

Figure 7. The influence of number of estimators in the
performance of model fusion method.

4.2 Discussion

The experimental results provide valuable
insights into the efficacy and limitations of the
proposed multi-model fusion approach for An-
droid malware detection. While the fusion method
demonstrates significant improvements in detection
accuracy compared to individual models, several
important aspects warrant discussion. Although the
fusion approach yields higher accuracy, it is essen-
tial to acknowledge that it also introduces addition-
al complexity to the detection system. Integrating
multiple machine learning models requires careful
consideration of computational resources and model
interpretability. The computational overhead associ-
ated with training and deploying a fused model may
pose challenges, particularly in resource-constrained
environments such as mobile devices. Using more
advanced hardware may solve this issue [40–43]. More-

over, the interpretability of the fused model may be
compromised, making it challenging to understand
the underlying decision-making process and identi-
fy potential vulnerabilities or biases. Furthermore,
while the fusion approach enhances detection ac-
curacy, it may not completely eliminate the risk of
false positives and false negatives. Despite achieving
a high level of accuracy, the fused model still exhib-
its misclassifications, as evidenced by the confusion
matrix analysis. False positives can lead to unnec-
essary alerts or actions, while false negatives can
result in undetected malware threats, both of which
have significant implications for system security
and usability. Additionally, the choice of machine
learning models included in the fusion approach
warrants consideration. While logistic regression,
decision tree, and K-nearest neighbors are com-
monly used for classification tasks, they each have
inherent strengths and weaknesses. For example,
logistic regression may struggle with capturing com-
plex nonlinear relationships, while decision trees are
prone to overfitting. By combining these models, the
fusion approach attempts to leverage their comple-
mentary strengths, but it also inherits their respective
limitations. Therefore, exploring alternative or more
sophisticated modeling techniques [44,45] may further
enhance the effectiveness of the fusion approach.

5. Conclusions
In conclusion, the study highlights the critical

importance of robust Android malware detection in
the face of escalating security threats in the digital
era. Traditional single-model machine learning ap-
proaches have demonstrated limitations in effective-
ly capturing the diverse behaviors of malware. To
address this challenge, a novel multi-model fusion
approach was developed, leveraging the strengths
of logistic regression, decision tree, and K-nearest
neighbors models. The fusion method exhibited su-
perior performance compared to individual models,
achieving higher accuracy and better malware pre-
diction. This indicates that integrating diverse mode-
ling techniques enhances the resilience and accuracy
of detection systems, particularly in identifying new

9

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

and sophisticated threats. Moreover, the study un-
derscores the significance of ensemble techniques
in cybersecurity tasks, providing a pathway for
future research in developing more robust Android
malware detection systems. By advancing detection
methodologies, we can better safeguard users’ priva-
cy, financial assets, and critical infrastructure in the
ever-evolving landscape of digital security threats.

Conflict of Interest
The authors declare no conflict of interest.

References
[1] Zhou, L., Luo, Z., Pan, X., 2024. Machine

learning-based system reliability analysis with
Gaussian Process Regression. arXiv preprint
arXiv:2403.11125.

[2] Pan, X., Luo, Z., Zhou, L., 2024. Navigating
the landscape of distributed file systems: Archi-
tectures, implementations, and considerations.
arXiv preprint arXiv:2403.15701.

[3] Qiu, Y., Wang, J., Jin, Z., Chen, H., Zhang, M.,
Guo, L., 2022. Pose-guided matching based on
deep learning for assessing quality of action on
rehabilitation training. Biomedical Signal Pro-
cessing and Control, 72, 103323.

[4] Chen, F., et al., 2024. Comprehensive Sur-
vey of Model Compression and Speed up
for Vision Transformers. arXiv preprint arX-
iv:2404.10407.

[5] Zhou, L., Wang, M., Zhou, N., 2024. Distrib-
uted Federated learning-based deep learning
model for privacy MRI brain tumor detection.
arXiv preprint arXiv:2404.10026.

[6] Zhou, L., Zhang, H., Zhou, N., 2024. Dou-
ble-compressed artificial neural network for
efficient model storage in customer churn pre-
diction. Artificial Intelligence Advances. 6(1),
1-12.

[7] Liu, Y., et al., 2021. Measuring distance using
ultra-wideband radio technology enhanced
by extreme gradient boosting decision tree
(XGBoost). Automation in Construction, 126,

103678.
[8] Liu, Y., Bao, Y., 2023. Real-time remote mea-

surement of distance using ultra-wideband
(UWB) sensors. Automation in Construction,
150, 104849.

[9] Arshad, S., et al., 2016. Android malware de-
tection and protection: a survey. International
Journal of Advanced Computer Science and
Applications, 7(2), 463–475.

[10] Rashidi, B., Fung, C.J., 2015. A survey of an-
droid security threats and defenses. Journal of
Wireless Mobile Networks, Ubiquitous Com-
puting, and Dependable Applications, 6(3),
3-35.

[11] Arshad, S., Shah, M. A., Khan, A., Ahmed,
M., 2016. Android malware detection and
protection: a survey. International Journal of
Advanced Computer Science and Applications,
7(2), 463–475.

[12] Rashidi, B., Fung, C.J., 2015. A survey of An-
droid security threats and defenses. Journal of
Wireless Mobile Networks, Ubiquitous Com-
puting, and Dependable Applications. 6(3),
3–35.

[13] Li, L., et al., 2017. Static analysis of Android
apps: A systematic literature review. Informa-
tion and Software Technology. 88, 67–95.

[14] Tam, K., Feizollah, A., Anuar, N. B., Salleh, R.,
Cavallaro, L., 2017. The evolution of Android
malware and Android analysis techniques.
Computing Surveys. 49(4), 76:1–76:41.

[15] Faruki, P., et al., 2015. Android security: a
survey of issues, malware penetration, and
defenses. IEEE Communications Surveys and
Tutorials. 17(2), 998–1022.

[16] Alqahtani, E.J., Zagrouba, R., Almuhaideb, A.,
2019. A survey on Android malware detection
techniques using machine learning algorithms.
Proceedings of the 6th International Confer-
ence on Software Defined Systems. 110–117.

[17] Souri, A., Hosseini, R., 2018. A state-of-the-art
survey of malware detection approaches using
data mining techniques. Human-centric Com-
puting and Information Sciences. 8(1), 3.

10

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

[18] Faruki, P., et al., 2015. Android security: A
survey of issues, malware penetration, and
defenses. IEEE Communications Surveys and
Tutorials. 17(2), 998–1022.

[19] Felt, A. P., Finifter, M., Chin, E., Hanna, S.,
Wagner, D., 2011. A survey of mobile mal-
ware in the wild. In Proceedings of the 1st
ACM Workshop on Security and Privacy in
Smartphones and Mobile Devices (SPSM) (pp.
3–14).

[20] Android Security and Privacy. (2018). 2018
Year In Review. [cited April 30, 2020]. Avail-
able from https://source.android.com/security/
reports/Google_Android_Security_2018_Re-
port_Final.pdf

[21] Zhou, Y., Jiang, X., 2012. Dissecting Android
malware: Characterization and evolution. In
Proceedings of the IEEE Symposium on Secu-
rity and Privacy (pp. 95–109).

[22] Protsenko, M., Muller, T., 2014. Android mal-
ware detection based on software complexity
metrics. In Proceedings of the International
Conference on Trust, Privacy & Security in
Digital Business (pp. 24–35).

[23] Yang, C., et al., 2014. DroidMiner: Automated
mining and characterization of fine-grained
malicious behaviors in Android applications.
In Proceedings of the European Symposium
on Research in Computer Security (ESORICS)
(pp. 163–182).

[24] Xu, K., Li, Y., Deng, R.H., 2016. ICCDetec-
tor: ICC-based malware detection on Android.
IEEE Transactions on Information Forensics
and Security. 11(6), 1252–1264.

[25] Yang, M., Wen, Q., 2017. Detecting Android
malware by applying classification techniques
on images patterns. In Proceedings of the IEEE
2nd International Conference on Cloud Com-
puting and Big Data Analysis (ICCCBDA) (pp.
344–347).

[26] Martín, A., Menéndez, H. D., Camacho, D.,
2017. MOCDroid: Multiobjective evolutionary
classifier for Android malware detection. Soft
Computing. 21(24), 7405–7415.

[27] Qiu, Y., et al., 2024. A novel image expres-
sion-driven modeling strategy for coke quality
prediction in the smart cokemaking process.
Energy. 294, 130866.

[28] Zhao, F., et al., 2023. A new method using
LLMs for keypoints generation in qualitative
data analysis. In 2023 IEEE Conference on Ar-
tificial Intelligence (CAI). IEEE.

[29] Liu, Y., Yang, H., Wu, C., 2023. Unveiling
patterns: a study on semi-supervised classifica-
tion of strip surface defects. IEEE Access. 11,
119933-119946.

[30] Li, S., et al., 2024. Application of semi-super-
vised learning in image classification: research
on fusion of labeled and unlabeled data. IEEE
Access.

[31] Luo, Z., Xu, H., Chen, F., 2019. Audio Senti-
ment Analysis by Heterogeneous Signal Fea-
tures Learned from Utterance-Based Parallel
Neural Network. AffCon@ AAAI.

[32] Chen, F., Luo, Z., Xu, Y., et al., 2019. Comple-
mentary fusion of multi-features and multi-mo-
dalities in sentiment analysis. arXiv preprint
arXiv:1904.08138.

[33] Luo, Z., Zeng, X, Bao, Z., et al., 2019. Deep
learning-based strategy for macromolecules
classification with imbalanced data from cel-
lular electron cryotomography. 2019 Interna-
tional Joint Conference on Neural Networks
(IJCNN). IEEE.

[34] Luo, Z., 2023. Knowledge-guided aspect-based
summarization. 2023 International Conference
on Communications, Computing and Artificial
Intelligence (CCCAI). IEEE.

[35] Shen, Y., Gu, H.M., Qin, S., Zhang, D.W.,
2022. Surf4, cargo trafficking, lipid metabo-
lism, and therapeutic implications. Journal of
Molecular Cell Biology. 14(9), mjac063.

[36] Qiu, Y., Chen, H., Dong, X., et al., 2024. IF-
ViT: Interpretable Fixed-Length Representa-
tion for Fingerprint Matching via Vision Trans-
former. arXiv preprint arXiv:2404.08237.

[37] Shen, F., Vecchio, J. D., Mohaisen, A., Ko, S. Y.,
Ziarek, L., 2019. Android malware detection

https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2018_Report_Final.pdf
https://arxiv.org/search/cs?searchtype=author&query=Luo,+Z
https://arxiv.org/search/cs?searchtype=author&query=Xu,+Y
https://arxiv.org/search/eess?searchtype=author&query=Zeng,+X
https://arxiv.org/search/eess?searchtype=author&query=Bao,+Z
https://arxiv.org/search/cs?searchtype=author&query=Chen,+H
https://arxiv.org/search/cs?searchtype=author&query=Dong,+X

11

Journal of Computer Science Research | Volume 06 | Issue 02 | April 2024

using complex-flows. IEEE Transactions on
Mobile Computing. 18(6), 1231–1245.

[38] Gorla, A., Tavecchia, Ilaria, Gross, Florian, et
al., 2014. Checking app behavior against app
descriptions. In Proceedings of the 36th Inter-
national Conference on Software Engineering
(ICSE) (pp. 1025–1035).

[39] Li, Y., Y. Ma, M. Chen, et al., 2017. A detecting
method for malicious mobile application based
on incremental SVM. In Proceedings of the 3rd
IEEE International Conference on Computer
Communication (ICCC) (pp. 1246–1250).

[40] Deng, X. , Oda, S. , Kawano, Y. , 2023.
Graphene-based midinfrared photodetector
with bull’s eye plasmonic antenna. Optical En-
gineering. 62(9), 097102-097102.

[41] Sugaya, T., Deng, X., 2019. Resonant frequen-
cy tuning of terahertz plasmonic structures
based on solid immersion method. 2019 44th
International Conference on Infrared, Milli-

meter, and Terahertz Waves (IRMMW-THz).
IEEE.

[42] Deng, X., Li, L., Enomoto, Mitsuhiro, et al.,
2019. Continuously frequency-tuneable plas-
monic structures for terahertz bio-sensing and
spectroscopy. Scientific reports. 9(1), 3498.

[43] Deng, X., Simanullang, M., Kawano, Y., 2018.
Ge-core/a-si-shell nanowire-based field-effect
transistor for sensitive terahertz detection. Pho-
tonics, 5(2).

[44] Li, S., Singh, Kanupriya, Riedelet, Nathan,
et al., 2022. Digital learning experience design
and research of a self-paced online course for
risk-based inspection of food imports. Food
Control. 135, 108698.

[45] Yu, F., Milord, J., Orton, Sarah, et al., 2021. Stu-
dents’ evaluation toward online teaching strat-
egies for engineering courses during COVID.
2021 ASEE Midwest Section Conference.

file:///G:/%e5%b7%a5%e4%bd%9c%e7%94%a8/%e6%9c%9f%e5%88%8a/%e8%8b%b1%e6%96%87/%e5%8f%8c%e8%af%ad/%e8%ae%a1%e7%ae%97%e6%9c%ba%e7%a7%91%e5%ad%a6%e7%a0%94%e7%a9%b6/javascript:void(0);
file:///G:/%e5%b7%a5%e4%bd%9c%e7%94%a8/%e6%9c%9f%e5%88%8a/%e8%8b%b1%e6%96%87/%e5%8f%8c%e8%af%ad/%e8%ae%a1%e7%ae%97%e6%9c%ba%e7%a7%91%e5%ad%a6%e7%a0%94%e7%a9%b6/javascript:void(0);
file:///G:/%e5%b7%a5%e4%bd%9c%e7%94%a8/%e6%9c%9f%e5%88%8a/%e8%8b%b1%e6%96%87/%e5%8f%8c%e8%af%ad/%e8%ae%a1%e7%ae%97%e6%9c%ba%e7%a7%91%e5%ad%a6%e7%a0%94%e7%a9%b6/javascript:void(0);
file:///G:/%e5%b7%a5%e4%bd%9c%e7%94%a8/%e6%9c%9f%e5%88%8a/%e8%8b%b1%e6%96%87/%e5%8f%8c%e8%af%ad/%e8%ae%a1%e7%ae%97%e6%9c%ba%e7%a7%91%e5%ad%a6%e7%a0%94%e7%a9%b6/javascript:void(0);
file:///G:/%e5%b7%a5%e4%bd%9c%e7%94%a8/%e6%9c%9f%e5%88%8a/%e8%8b%b1%e6%96%87/%e5%8f%8c%e8%af%ad/%e8%ae%a1%e7%ae%97%e6%9c%ba%e7%a7%91%e5%ad%a6%e7%a0%94%e7%a9%b6/javascript:void(0);
https://www.nature.com/articles/s41598-019-39015-6
https://www.nature.com/articles/s41598-019-39015-6
https://www.semanticscholar.org/author/J.-Milord/116083109
https://www.semanticscholar.org/author/Sarah-Orton/2141297741

