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1. Introduction

In the digital age, the widespread use of Android 

devices has led to a surge in security threats, espe-

cially malware. As the most popular mobile operat-
ing system worldwide, Android is a primary target 
for malicious actors. The emergence of sophisticated 
malware strains capable of bypassing conventional 
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detection techniques calls for more advanced defen-
sive approaches. The critical need for robust Android 
malware detection is undeniable. Malware can result 
in substantial financial losses, privacy violations, and 
even jeopardize the security of crucial infrastruc-
ture. Traditional antivirus solutions typically use 
signature-based detection, which is efficient against 
known threats but often falls short in identifying 
new, modified, or zero-day attacks. Additionally, the 
evolving and polymorphic characteristics of contem-
porary malware render signature-based approaches 
increasingly outdated.

Android malware detection has evolved over the 
years, with researchers exploring various approach-
es, from static analysis, which examines the code 
without execution, to dynamic analysis, which ob-
serves the behavior of applications during runtime. 
Each method has its benefits and limitations. Static 
analysis can be fast and safe but often fails to detect 
sophisticated obfuscation techniques or runtime be-
haviors. Dynamic analysis is more effective against 
such techniques but is resource-intensive and can be 
circumvented by malware that detects the analysis 
environment. Machine learning (ML) has emerged 
as a potent tool in cybersecurity due to their excel-
lent performance in many domains [1–8], capable of 
learning from data to detect patterns indicative of 
malicious behavior shown in Figure 1. For example, 
Arshad et al. [9] compared 20 Android malware detec-
tion tools from the perspectives of static and dynamic 
analysis, supported by 62 references. Rashidi et al. [10] 
offered an overview of Android security threats and 
defenses through static and dynamic analysis, citing 
141 references. An extensive review of 124 methods 
using static analysis of Android apps was conducted 
in [11], which included 188 references. Furthermore, 
Tam et al. [12] presented 36 Android malware detec-
tion tools, expanding into static, dynamic, and hybrid 
analysis, with 181 references. Despite these compre-
hensive surveys of software engineering approaches, 
the internal ML or deep learning (DL) algorithms 
were only superficially analyzed. A few surveys have 
explored traditional ML-based methods, such as  
in [13,14], where Faruki et al. [15] provided an overview 

of Android malware penetration and defense strat-
egies, including ML-based detection tools with 117 
references. Ebtesam et al. [16] briefly reviewed four 
ML algorithm families—SVM, NB, perceptron, and 
Deep Neural Network (DNN)—for Android malware 
detection. Traditional ML algorithms like K-means, 
Support Vector Machine, Decision Tree, fuzzy logic, 
Artificial Neural Network, Gaussian methods, and 
Meta-heuristic approaches were detailed in [17], fo-
cusing on signatures and behaviors.

Figure 1. The workflow of machine learning-based Android 
malware detection.

However, traditional Android malware detection 
has relied on single machine learning models, which 
presents several disadvantages. These models can be 
limited in their ability to generalize across diverse 
malware behaviors, leading to reduced detection ac-
curacy, especially with new or sophisticated threats. 
A single model may also be prone to overfitting, 
where it performs well on training data but fails to 
predict accurately on unseen data. To address these 
issues, considering the fusion of multiple models 
offers significant advantages. Combining different 
models can harness their individual strengths, lead-
ing to more robust and accurate detection across a 
broader range of malware types. This approach can 
improve the system’s resilience to zero-day attacks 
and polymorphic malware, which often evade sin-
gle-model systems. Additionally, model fusion can 
enhance the adaptability of the detection system, 
allowing it to evolve with emerging threats more ef-
fectively.

In this paper, we develop a multi-model fusion 
approach for predicting Android malware detection. 
Initially, the study employs various machine learning 
models, specifically KNN, decision tree, and logistic 
regression. Each model is trained with malware data 
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using different parameters to determine the single 
best predictive model. Subsequently, these three ma-
chine learning models are integrated through fusion 
and compared with the individual best-performing 
model. The evaluation criteria clearly indicate that 
the multi-model fusion method achieves higher ac-
curacy and provides better malware prediction. Ad-
ditionally, this paper utilizes a decision tree feature 
importance analysis experiment to identify the key 
factors influencing malware. Compared to traditional 
single-model algorithms, this multi-model fusion ap-
proach using machine learning could offer valuable 
insights for future predictions.

This paper is structured as follows: section 2 de-
tails the related works of Android malware detection. 
Following that, section 3 provides the workflow of 
the proposed method in this study. The experimental 
results and corresponding discussion are provided in 
section 4. Finally, section 5 provides a comprehen-
sive conclusion of this paper.

2. Literature review
Android malware detection

With the rapid advancement of mobile internet 
and smart devices, malware targeting the Android 
platform has evolved into various forms. Tradition-
ally, Android malware is categorized into types such 
as trojans, backdoors, worms, botnets, spyware, ag-
gressive adware, and ransomware [18]. Felt et al. [19] 
further distinguished Android malware based on the 
motivations behind human behaviors, which include 
seeking novelty and amusement, selling user infor-
mation, stealing credentials, making premium-rate 
calls, sending SMS messages, distributing SMS 
spam, enhancing search engine optimization, and 
extracting ransom. Zhou and Jiang [20] analyzed An-
droid malware through the lenses of installation, acti-
vation, malicious payloads, and permission exploita-
tion. In its reports, Google [21] employs conservative 
terminology to describe such software, referring to 
them as potentially harmful applications (PHAs). 
In the Google Play Store, these PHAs are classified 
under various categories, including click fraud, SMS 

fraud, spyware, toll fraud, trojans, hostile download-
ers, backdoors, phishing, privilege escalation, and 
commercial spyware.

Several studies have also explored the extraction 
of static features from unique perspectives. Protsen-
ko et al. [22] approaches Android malware detection 
by analyzing software complexity, extracting 144 
features that reflect a program’s control flow, data 
flow, and object-oriented design. Meanwhile, Yang 
et al. [23] introduces a static feature named a modality 
vector, generated through a three-step process: be-
havior graph generation, sensitive node extraction, 
and modality generation. Xu et al. [24] focuses on 
malware detection from the perspective of inter-com-
ponent communication (ICC) among Android appli-
cations, extracting features related to ICC from com-
ponents, explicit intents, implicit intents, and intent 
filters.

Yang et al. [25] detects malware by analyzing tex-
tual features within grayscale images. It begins by 
unzipping the APK file, converting the files classes.
dex, AndroidManifest.xml, resources.arsc, and cert.
rsa into 8-bit unsigned integer vectors, and then 
transforming them into grayscale images for further 
analysis. Martín et al. [26] emphasizes static features 
of third-party API calls, which are difficult to obfus-
cate and can enhance detection accuracy. 

Machine learning algorithms are also considered 
due to their strong feature extraction and prediction 
performance [27–36]. Shen et al. [37] defines a data flow 
named Complex-Flows, extracts API call sequences 
using data flow analysis tools like BlueSeal, gener-
ates feature sets in the form of n-grams, and employs 
an SVM algorithm for malware detection. In Gorla 
et al. [38], natural language processing (NLP) technol-
ogy and the k-means algorithm are initially used to 
process each application’s description in the market, 
combined with extracted sensitive API calls, and 
finally, an SVM algorithm is applied for malware 
detection. Lastly, Li et al. [39] adopts an incremental 
SVM algorithm that utilizes prior information from 
historical samples to avoid retraining all data when 
new samples are added, thus enhancing detection ef-
ficiency.
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3. Method
3.1 Dataset preparation

The dataset used in this study consists of 7,845 
entries, each described by 14 features. These fea-
tures include name, which identifies the Android 
application; tcp_packets, representing the number 
of TCP packets sent and received; dist_port_tcp, the 
number of distinct TCP ports; external_ips, the count 
of unique external IP addresses contacted; vulume_
bytes, the total volume of data sent and received in 
bytes; udp_packets, the number of UDP packets; 
tcp_urg_packet, the count of TCP packets with URG 
flags; source_app_packets, the total packets sent by 
the application; remote_app_packets, the total pack-
ets received from the remote application; source_
app_bytes, the total bytes sent by the application; 
remote_app_bytes, the total bytes received from the 
remote application; source_app_packets.1, a possibly 
duplicated column of source_app_packets; dns_que-
ry_times, the number of DNS queries made by the 
application; and type, indicating whether the traffic 
was benign or malicious.

In the preprocessing phase of our study, we trans-
formed the labels in the dataset into numerical for-
mat for compatibility with machine learning models. 
Specifically, we converted the type feature, which 
originally categorized traffic as either “benign” or 
“malicious”, into binary labels: “0” for benign and 
“1” for malicious. Additionally, we partitioned the 
dataset into a training set and a test set, allocating 
70% of the data to the training set to train our mod-
el, and reserving 30% for the test set to evaluate the 
model’s performance on unseen data. This division 
ensures a robust assessment of the predictive capa-
bilities of our developed models.

3.2 The introduction of used machine learning 
models

Logistic regression
Logistic regression is a fundamental statistical 

method used primarily for binary classification prob-
lems, where the objective is to predict a binary out-

come from a set of variables. Originating in the field 
of statistics, logistic regression has found extensive 
application in machine learning due to its simplicity, 
interpretability, and efficiency in scenarios where the 
response variable is categorical—particularly when 
it is dichotomous (e.g., yes/no, true/false, positive/
negative).

The core idea behind logistic regression is to 
model the probability of the default category (of-
ten labeled as ‘1’) of a binary dependent variable 
as a logistic function of one or more independent 
variables (predictors). Unlike linear regression 
that might predict any value from negative to pos-
itive infinity, logistic regression outputs proba-
bilities between 0 and 1 by using the logistic (or 
sigmoid) function. This function is mathemati-
cally represented as σ(z) = 

1
1 + e– z  , where z is a 

linear combination of the input features weighted 
by their coefficients z = β0 + β1x1 + β2x2 + … +  
βnxn. In logistic regression, the coefficients (β) are 
estimated using the method of maximum likelihood 
estimation (MLE). The goal of MLE is to find the set 
of coefficients that maximizes the likelihood of the 
observed sample, which effectively means choosing 
the coefficients that make the observed outcomes 
most probable under the model. This approach ad-
justs the coefficients to fit the model such that the 
predicted probability reflects the actual distribution 
of the outcomes as closely as possible. Once the 
model is trained, the logistic regression can predict 
the probability that a new observation belongs to 
the default category. These probabilities can then be 
converted to class predictions by setting a thresh-
old, commonly 0.5 in binary classification, where 
probabilities above this threshold predict the default 
category, and those below predict the alternative cat-
egory.

Decision tree
A decision tree is a versatile machine learning 

model used for both classification and regression 
tasks. It is one of the most intuitive and easy-to-un-
derstand models, as it mirrors human decision-mak-
ing processes by splitting data into branches to reach 
conclusions or predictions. This model’s structure 
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resembles an inverted tree, starting with a root node 
and expanding into branches and leaves representing 
decisions and outcomes, respectively.

At the heart of a decision tree is a sequence of 
questions and decisions about the data. Each internal 
node in the tree represents a “test” on an attribute, each 
branch represents the outcome of the test, and each 
leaf node represents a class label (in classification) or a 
continuous value (in regression). The paths from root 
to leaf represent classification rules or regression paths. 
To build a decision tree, algorithms like ID3, C4.5, 
Classification and Regression Trees (CART), or others 
iteratively split the dataset into subsets based on differ-
ent features. The selection of features and the point at 
which to split them are determined using metrics such 
as Gini impurity, entropy, or variance reduction. These 
metrics help to identify the feature and threshold that 
most effectively split the data to maximize the homoge-
neity of the subsets.

K-nearest neighbors
K-nearest neighbors is a straightforward and 

versatile machine learning algorithm used for both 
classification and regression tasks. It is a non-par-
ametric method, which means it makes no explicit 
assumptions about the underlying data distribution. 
This simplicity and flexibility make KNN a popular 
choice for many practical applications, particularly 
when the data is well structured and labeled.

The essence of KNN lies in predicting the label 
of a new data point by examining the ‘k’ closest 
labeled data points from the training set. Here, ‘k’ 
represents the number of nearest neighbors the al-
gorithm considers in its prediction process. KNN 
begins by calculating the distance between the test 
instance and every instance in the training set, using 
distance metrics such as Euclidean, Manhattan, or 
Minkowski. After calculating these distances, it sorts 
all training instances by proximity and selects the ‘k’ 
nearest ones. For classification tasks, the most com-
mon class among these neighbors is assigned to the 
test instance, typically through majority voting. In 
regression tasks, the algorithm predicts a value based 
on the average or another statistical measure of the 
dependent variable among these neighbors.

Random forest
Random Forest is a powerful ensemble learning 

technique used in machine learning for both classifi-
cation and regression tasks. It builds on the simplic-
ity and effectiveness of decision trees by combining 
multiple such trees to improve predictive perfor-
mance and control overfitting. The fundamental prin-
ciple behind Random Forest is to create a “forest” of 
decision trees, each trained on different parts of the 
same dataset, and then aggregate their predictions to 
produce a more accurate and stable result than any 
single tree could provide.

The process begins with the creation of multiple 
decision trees during the training phase. Each tree in 
a Random Forest is constructed using a random sub-
set of the training data and features, a method known 
as “bootstrap aggregating” or bagging. This ran-
domness helps in diversifying the individual trees, 
reducing the correlation between them, and thereby 
enhancing the overall model’s robustness. When 
making predictions, for classification tasks, the mode 
of the classes predicted by individual trees is taken 
(majority voting), and for regression, the average of 
the outputs is considered.

3.3 Multi-model fusion strategy for Android 
malware detection

In this paper, we introduce a novel model fusion 
strategy designed to enhance the robustness and ac-
curacy of predictive modeling. The process begins 
by feeding the original dataset into three different 
models for training. Using the optimal model, pre-
dictions are generated for both the training and test 
sets. The predicted values from the three models—
logistic regression, decision tree and K-nearest 
neighbors—are then aggregated to form a new set of 
features. The essence of this strategy lies in utilizing 
these aggregated features as inputs to train and fine-
tune the random forest model. The experimental 
framework is implemented using the sklearn library 
within the Python3 environment. Figure 2 illustrates 
the model fusion process. The following steps detail 
the model fusion approach: (1) To start, import the 
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dataset and split it into training and test sets, adher-
ing to a 70:30 ratio. Additionally, set the random 
state parameter to a fixed value to ensure that the 
data splits are consistent across all three models. (2) 
Training three regression models: logistic regression, 
decision tree and K-nearest neighbors. Iteratively 
adjust these parameters to find the optimal configura-
tion for each model. (3) Building on the achievement 

of identifying the optimal single model, aggregating 
the predictions from these three models to create a 
new set of features. Use these aggregated features 
as input to train and fine-tune an enhanced Random 
Forest model. (4) Evaluating the performance of dif-
ferent models using accuracy and confusion matrix 
metrics.

Figure 2. The workflow of the proposed model fusion method.

4. Results and discussion
4.1 The performance of the model

In the context of Android Malware Detection, 
the performance of various machine learning mod-
els was evaluated using a dataset with two classes 
shown in Table 1, Figure 3, Figure 4, Figure 5 and 
Figure 6. The classes represent benign and malicious 
Android applications. This analysis aimed to deter-
mine which model could most effectively distinguish 
between the two. The Logistic Regression model 
achieved an accuracy of 70% in identifying benign 
and malicious applications. The confusion matrix 
shows that it correctly identified 1324 benign apps as 
benign and 313 malicious apps as malicious. How-
ever, it misclassified 626 malicious apps as benign 
and 91 benign apps as malicious. The relatively high 
number of false negatives indicates that while logis-
tic regression is somewhat effective, it might not be 
sufficiently sensitive to all malware patterns without 
further tuning or feature engineering. The Decision 
Tree model showed an improvement, achieving an 
accuracy of 74%. According to its confusion matrix, 
1314 benign apps and 439 malicious apps were cor-

rectly classified. However, 500 malicious apps were 
incorrectly labeled as benign, and 101 benign apps 
were mistakenly classified as malicious. This mod-
el offers better sensitivity than logistic regression 
but still struggles with a substantial number of false 
negatives. The KNN model demonstrated significant 
improvement with an accuracy of 84%. It correctly 
identified 1235 benign apps and 754 malicious apps, 
with fewer false negatives (185) and false positives 
(180) compared to the previous models. KNN’s 
higher accuracy suggests it is better at capturing the 
complexities and nuances in the data that distinguish 
between the app types.

A fusion approach combining Logistic Regres-
sion, Decision Tree, and K-Nearest Neighbors was 
implemented to leverage the strengths of individual 
models. This method achieved the highest accura-
cy of 88%. The confusion matrix for this approach 
indicates a robust performance with 1304 benign 
apps correctly identified and 773 malicious apps ac-
curately detected. The reduction in false negatives 
(166) and false positives (111) demonstrates that 
integrating multiple models provides a more bal-
anced approach, effectively increasing sensitivity 
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and specificity. The integration of diverse modeling 
techniques in the proposed fusion method appears 
to mitigate individual model weaknesses, leading to 
more accurate malware detection. This methodology 
not only highlights the importance of model selec-
tion in cybersecurity tasks but also underscores the 
potential of ensemble techniques in enhancing pre-
diction accuracy. Thus, this approach could be high-
ly beneficial for developing robust Android malware 
detection systems.

Table 1. The performance of different models in testing dataset.

Model Name Testing Accuracy
LR 0.70
DT 0.74
KNN 0.84
Proposed model fusion 
method (LR+DT+KNN) 0.88

Figure 3. The confusion matrix based on the logistic regression.

Figure 4. The confusion matrix based on the decision tree.

Figure 5. The confusion matrix based on the KNN.

Figure 6. The confusion matrix based on the proposed model 
fusion method.

Figure 7 illustrates the impact of varying the 
number of estimators in Random Forest model in the 
performance of model fusion method for a given da-
taset. The accuracy increases sharply as the number 
of estimators rises from 1 to around 5. This suggests 
that the model benefits significantly from an initial 
increase in the number of trees, which helps to re-
duce variance and improve model stability. Between 
5 and 15 estimators, accuracy shows some fluctua-
tions, peaking at around 10 and 15 estimators. This 
variation indicates that certain configurations of the 
forest are more optimal for this specific dataset, cap-
turing the underlying patterns more effectively than 
others. After reaching approximately 10 estimators, 
the accuracy tends to plateau, with slight increases 
and decreases but generally maintaining a high level 
of performance. This plateau suggests that adding 
more estimators beyond this point does not contrib-
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ute significantly to improving accuracy, indicating a 
point of diminishing returns. The highest observed 
accuracy is just under 0.88, demonstrating that the 
Random Forest model, when properly tuned with the 
right number of estimators, can achieve a high de-
gree of predictive accuracy. This analysis is crucial 
for understanding how the complexity of a Random 
Forest model affects its performance. By tuning the 
number of estimators, one can balance the trade-off 
between training time and model accuracy. The find-
ings suggest that for this particular dataset and fu-
sion method, using around 10 to 15 estimators might 
offer an optimal balance.

Figure 7. The influence of number of estimators in the 
performance of model fusion method.

4.2 Discussion

The experimental results provide valuable 
insights into the efficacy and limitations of the 
proposed multi-model fusion approach for An-
droid malware detection. While the fusion method 
demonstrates significant improvements in detection 
accuracy compared to individual models, several 
important aspects warrant discussion. Although the 
fusion approach yields higher accuracy, it is essen-
tial to acknowledge that it also introduces addition-
al complexity to the detection system. Integrating 
multiple machine learning models requires careful 
consideration of computational resources and model 
interpretability. The computational overhead associ-
ated with training and deploying a fused model may 
pose challenges, particularly in resource-constrained 
environments such as mobile devices. Using more 
advanced hardware may solve this issue [40–43]. More-

over, the interpretability of the fused model may be 
compromised, making it challenging to understand 
the underlying decision-making process and identi-
fy potential vulnerabilities or biases. Furthermore, 
while the fusion approach enhances detection ac-
curacy, it may not completely eliminate the risk of 
false positives and false negatives. Despite achieving 
a high level of accuracy, the fused model still exhib-
its misclassifications, as evidenced by the confusion 
matrix analysis. False positives can lead to unnec-
essary alerts or actions, while false negatives can 
result in undetected malware threats, both of which 
have significant implications for system security 
and usability. Additionally, the choice of machine 
learning models included in the fusion approach 
warrants consideration. While logistic regression, 
decision tree, and K-nearest neighbors are com-
monly used for classification tasks, they each have 
inherent strengths and weaknesses. For example, 
logistic regression may struggle with capturing com-
plex nonlinear relationships, while decision trees are 
prone to overfitting. By combining these models, the 
fusion approach attempts to leverage their comple-
mentary strengths, but it also inherits their respective 
limitations. Therefore, exploring alternative or more 
sophisticated modeling techniques [44,45] may further 
enhance the effectiveness of the fusion approach.

5. Conclusions
In conclusion, the study highlights the critical 

importance of robust Android malware detection in 
the face of escalating security threats in the digital 
era. Traditional single-model machine learning ap-
proaches have demonstrated limitations in effective-
ly capturing the diverse behaviors of malware. To 
address this challenge, a novel multi-model fusion 
approach was developed, leveraging the strengths 
of logistic regression, decision tree, and K-nearest 
neighbors models. The fusion method exhibited su-
perior performance compared to individual models, 
achieving higher accuracy and better malware pre-
diction. This indicates that integrating diverse mode-
ling techniques enhances the resilience and accuracy 
of detection systems, particularly in identifying new 
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and sophisticated threats. Moreover, the study un-
derscores the significance of ensemble techniques 
in cybersecurity tasks, providing a pathway for 
future research in developing more robust Android 
malware detection systems. By advancing detection 
methodologies, we can better safeguard users’ priva-
cy, financial assets, and critical infrastructure in the 
ever-evolving landscape of digital security threats.
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