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ABSTRACT
Although the image recognition has been a research topic for many years, many researchers still have a keen 

interest in it. In some papers, however, there is a tendency to compare models only on one or two datasets, either 
because of time restraints or because the model is tailored to a specific task. Accordingly, it is hard to understand 
how well a certain model generalizes across image recognition field. In this paper, we compare four neural networks 
on MNIST dataset with different division. Among of them, three are Convolutional Neural Networks (CNN), 
Deep Residual Network (ResNet) and Dense Convolutional Network (DenseNet) respectively, and the other is our 
improvement on CNN baseline through introducing Capsule Network (CapsNet) to image recognition area. We 
show that the previous models despite do a quite good job in this area, our retrofitting can be applied to get a better 
performance. The result obtained by CapsNet is an accuracy rate of 99.75%, and it is the best result published so far. 
Another inspiring result is that CapsNet only needs a small amount of data to get the excellent performance. Finally, 
we will apply CapsNet’s ability to generalize in other image recognition field in the future.
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1. Introduction
Motivated by the rapid development of artificial 

intelligence and its numerous applications, there 
has been significant progress in the field of image 
recognition over the past decade [1]. This progress 
includes the introduction of many innovative models 
that have pushed the boundaries of what is possible 
in recognizing and interpreting visual data. Addition-
ally, the creation of benchmark datasets has provided 
a standard against which these new models can be 
measured, facilitating the comparison and evalua-
tion of different approaches [2]. The improvements in 
computational power and the advent of deep learning 
have further accelerated advancements in this area, 
leading to remarkable achievements in various image 
recognition tasks [3].

In some papers, however, there is a noticeable 
tendency to evaluate models using only one or two 
datasets. This is often due to constraints such as 
limited time or the specific focus of the model on a 
particular task [4]. As a result, these studies may not 
fully capture the model’s ability to generalize across 
the broader field of image recognition. Evaluating a 
model on a limited number of datasets can provide in-
sights into its performance on those specific tasks, but 
it leaves questions about how well the model would 
perform in different contexts or on more diverse data-
sets [5]. This limitation underscores the need for more 
comprehensive evaluations to better understand the 
generalizability of image recognition models.

In this paper, our main contributions are, there-
fore, centered around a comprehensive comparison 
of four mainstream image recognition models using 
the MNIST dataset, with varying data divisions [6]. 
Among these models, three are well-known: Convo-
lutional Neural Network (CNN), Deep Residual Net-
work (ResNet), and Dense Convolutional Network 
(DenseNet). These models have already been proven 
to deliver high performance in image recognition 
tasks, and their characteristics and strengths are sum-
marized in detail in Section 2. However, despite their 
success, we identify certain drawbacks in the standard 
CNN model, as highlighted in previous research [7,8]. 
To address these issues, we use the CNN model as 

a baseline and introduce improvements by applying 
Capsule Network (CapsNet) optimizations. This en-
hanced model, which is our fourth, is described in 
detail in Section 3.

We use the MNIST dataset for our experiments 
because the recognition of handwritten digits re-
mains a practical and significant topic in the field of 
image recognition. The MNIST dataset has been a 
cornerstone in this research area, serving as a stand-
ard benchmark for evaluating new models and tech-
niques [9]. It offers several advantages: firstly, the ex-
istence of well-established benchmark datasets like 
MNIST allows for easy acquisition and comparison 
of results. Secondly, there is a wealth of publications 
and established techniques related to MNIST, pro-
viding a solid foundation for building upon existing 
research. To assess the generalizability of the mod-
els in the field of image recognition, we divided the 
MNIST dataset into subsets of 25%, 50%, 75%, and 
100% for testing purposes.

Ultimately, our study contributes to a deeper un-
derstanding of the performance of different model 
architectures on the MNIST dataset. Through our ex-
periments, we have determined that CapsNet outper-
forms the other models across all tasks, consistently 
providing better results than the baseline. The exper-
imental results are detailed in Section 4, showcasing 
the superior performance of CapsNet. The conclu-
sion and implications of our findings are discussed in 
Section 5, offering insights into the future potential 
of CapsNet and other advanced models in the broad-
er field of image recognition [10].

2. Related works
This section describes MNIST dataset which will 

be used in the experiments and then discusses the 
characteristics of the three neural network models.

2.1 Dataset

The MNIST dataset is from the National Institute 
of Standards and Technology (NIST). The training 
set consists of handwritten numbers from 250 differ-
ent people, of which 50% are high school students 
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and 50% are from the Census Bureau. The test set 
is also the same proportion of hand- written digital 
data. MNIST dataset totally contains 60,000 images 
in the training set and 10,000 patterns in the testing 
set, each of size 2828 pixels with 256 gray levels [11]. 
The dataset can be downloaded online and some exam-
ples from the MNIST corpus are shown in Figure 1.

Figure 1. Example images from the MNIST dataset, including 
60,000 images in the training set and 10,000 patterns in the 
testing set.

2.2 CNN

In machine learning, CNN is a feed-forward 
artificial neural networks, most commonly applied 
to analyzing visual imagery. For CNN, the earliest 
date can be traced back to the 1986 BP algorithm [12].  
Then in 1989 LeCun used it in multi-layer neural 
networks [13]. Until 1998, LeCun proposed the LeN-
et-5 model, and the neural network prototype was 
completed. CNN consists of one or more convolu-
tional layers and the top fully connected layer, and it 
also includes associated weights and a pooling layer. 
This structure allows the convolutional neural net-
work to take advantage of the two dimensional struc-
ture of the input data, so it can give very good results 
in image recognition [14]. So we try to apply it to the 
MNIST dataset for testing.

2.3 ResNet

Deep convolutional neural networks have led to 
a series of breakthroughs for image classification. 
However, when deeper networks are able to start 
converging, a degradation problem [15] has been ex-

posed: with the network depth increasing, accuracy 
gets saturated and then degrades rapidly. Therefore, 
ResNet is presented in 2017. It can reduce the train
error while deepening the depth of the network, and 
solve the problem of gradient dispersion [16], improv-
ing network performance, which is shown in the 
equation (1). Most importantly, ResNet can not only 
be very deep, but also has a very simple structure. It 
is a very small single module piled up, its unit mod-
ule block as shown in Figure 2.

xl = Hl(xl − 1) + xl−1
(1)

In the equation (1), l represents layer, xl repre-
sents the output of the l layer, Hl represents a nonlin-
ear transformation. For ResNet, the output of the l 
layer is the output of the l − 1 layer plus the nonline-
ar transformation of the output of the l − 1 layer.

Figure 2. Unit module block, where x means the input and F(x) 
means the output of the weight layer, the final output is the sum 
of F(x) and x.

2.4 DenseNet

In the field of image recognition, CNN has be-
come the most popular method. A milestone in the 
history of CNN is the emergence of the ResNet 
model [17]. ResNet can train deeper CNN models 
to achieve higher accuracy. The basic idea of the 
DenseNet model is the same as that of ResNet, but it 
establishes a dense connection between all previous 
and subsequent layers [18]. Its other major feature is 
feature reuse through the connection of features on 
the channel. Therefore, we also tested its perfor-
mance on the MNIST dataset.
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3. Experimental setup
We compare four models, three of which are men-

tioned in Section 2. The other is our retrofitting and 
improvement based on CNN model. It is described in 
detail in Section 4.2 and 4.3. We use the MNIST da-
tasets mentioned in Section 2.1 to test these models.

We tested all the models using a workstation built 
from commodity hardware: dual GeForce GTX 1080 
graphics cards, an i7-6800K CPU, and 64 GB of 
RAM. Our implementation is in TensorFlow and we 
use the Adam optimizer with TensorFlow default pa-
rameters, including the exponentially decaying learn-
ing rate, to minimize the sum of the margin losses.

3.1 Baseline

Our model is based on a standard CNN with 
three convolutional layers, which is demonstrated to 
achieve a low test error rate on MNIST. The chan-
nels of three layers are 256, 256, 128 respectively. 
Each layer has 5 × 5 kernels and stride of one. Fol-
lowed by the last convolutional layers are two fully 
connected layers of size 328, 192. After that is a 10 
class softmax with cross entropy loss. However, the 
baseline model has two shortcomings. First, train-
ing a powerful CNN model requires a large number 
of training data. Second, in the pooling layer, CNN 
loses some of the information, which leads to the 
ignorance of interrelation- ships between different 
component [19].

Thus, for small changes in input, the output of 
CNN will be almost constant, which may result in a 
higher error rate.

3.2 Retrofitting

In order to overcome these shortcomings of CNN, 
we try to introduce CapsNet to optimize the baseline. 
Figure 3 shows the structure of the CapsNet. Caps-
Net uses capsules instead of neurons. The input and 
output of the capsule are high dimensional vectors, 
where the module length represents the probability of 
occurrence of an object, and the direction represents 
the position, color, size and other information [20]. 

The output of the low-level capsules is used to gen-
erate a prediction through transformation matrices, 
which are then linearly integrated and passed into 
high-level capsules according to certain weights. The 
method of updating the weights is a dynamic routing 
algorithm, which compares the output of high-level 
capsules with the prediction of lowlevel capsules, 
and increases the input weights of low-level capsules 
with higher similarity until convergence. Through 
the capsule, we retain the information on the details 
of the picture. In this way, on the basis of accurately 
identifying the image, small changes in the image 
input will cause small changes in the output. It has a 
human-like understanding of the three-dimensional 
space. In addition, with less information loss, it only 
needs a small amount of data to achieve amazing re-
sults compared to CNN.

Figure 3. Structure of CapsNet, where ui is the input layer.

3.3 CapsNet architecture

The architecture is showed in Figure 4, it con-
sists of one convolutional layer and two capsule 
layers [21,22]. The convolutional layer 1 has 256, 9 × 9  
convolution kernels with a stride of 1 and ReLU 
activation. This layer extracts the basic features of 
the image, and then uses them as the inputs of the 
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primary capsules layer (PrimaryCaps). The Primary-
Caps contains 32 capsules, which receives the basic 
features detected by the convolution layer, creating a 
combination of features. The 32 primary capsules in 
this layer are essentially similar to the convolutional 
layer [23]. Each has 8, 9 × 9 × 256 convolution kernels 
with a stride of 2. The output of PrimaryCaps is 6632 
eight-dimensional vector. The last layer is digital cap-
sules layer (DigitCaps), it has 10 digital capsules and 
each of which represents the prediction of number. 
Every capsule receives input from all capsules in the 
PrimaryCaps, and finally outputs the result.

Figure 4. A simple CapsNet with three layers. The convolutional 
layer extracts image features, PrimaryCaps integration the 
features, and DigitCaps output the prediction.

4. Result
We randomly divided the MNIST dataset into 

25%, 50%, 75%, and 100%. Table 1 shows the re-
sults for the four models across all divided datasets, 
and we visualize them in Figure 5. Obviously, CNN 
continues to be a strong baseline: Though it never 
provides the best result on a dataset, it gives better 
results than ResNet on 25% MNIST. Because the 
ResNet’s network structure requires a larger number 
of data to train. DenseNet performs better than CNN 
on all divided datasets. It also improves the results of 
ResNet across all datasets but 50% dataset. That is 
related to DenseNet’s parameter settings. Inspiringly, 
CapsNet is the best overall model, which outper-
forms the other models on all tasks and consistently 
beats the baseline. In addition, we can observe from 
the Table 1 that CapsNet trained with half datasets 
reach approximately equal accuracy with complete 
CNN. We attribute this to CapsNet’s ability to gener-
alize in image recognition. This is in line with other 
research [24], which suggests that this model is very 
robust across tasks as well as datasets.

Table 1. Results of experiment on divided datasets.

MNIST
Accuracy(%) Models 25% 50% 75% 100%

CNN 80.73 86.73 91.23 98.32
ResNet 79.46 90.55 93.78 99.16
DenseNet 82.57 89.24 94.20 99.37
CapsNet 87.68 97.12 98.79 99.75

Figure 5. The results for the four models across all divided 
datasets.

5. Conclusions
The goal of this paper has been to discover which 

models perform better across divided MNIST data-
sets. We com- pared four models on MNIST dataset 
with different division, and showed that CapsNet per-
form best across datasets. Additionally, we also ob-
serve surprisingly that CapsNet requires only a small 
amount of data to achieve excellent performance. 
Finally, we will apply CapsNet’s ability to generalize 
in other image recognition field in the future.
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