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ARTICLE

Learning Dominant Urban Flows around High-Rise Buildings with 
Data-Driven Balance Models

Zhiyu Huo

Department of Civil Engineering, IMPERIAL COLLEGE LONDON, London, SW7 2AZ, UK

ABSTRACT
This thesis develops a data-driven dominant balance model to recognise and cluster the flow pattern blowing 

through a high-rise building in an urban area under neutral atmospheric conditions. To be consistent with the governing 
equation used in simulations, the Reynolds-Averaged Navier-Stokes (RANS) equation is selected as the governing 
equation. It is divided into six sub-parts based on the physical meanings of each term in RANS. The time-averaged 
simulation results are used as the data set basis for further machine learning and clustering. The approach used to 
achieve the final dominant balance models consists of knowledge from fluid mechanics, statistics and programming. 
Knowledge from fluid mechanics is mainly used for proposing governing equations and interpreting the final outcomes, 
whereas the knowledge from programming is used for script writing and program running. Finally, the knowledge 
from statistics is the key for algorithms to achieve the clustering and dominant balance model acquirement. This 
approach includes the finite difference method, Gaussian mixture models (GMM), singular value decomposition and 
sparse principal component analysis (SPCA). The finite difference method is used for approximating the derivatives in 
RANS, which works as a post-processing step. GMM are trained by using randomly subsampled points and applied for 
the clustering of the processed data points. A drawback of yielding overlapping and trivial clusters of GMM is spotted 
and SPCA is applied as the solution to trivial results, using regularisation to proceed with a sparse approximation for 
excessive cluster elimination. The final data-driven dominant balance models are obtained and visualised by generating 
two tables for two cases.
Keywords: Machine learning; Urban flows; Fluid mechanics

https://doi.org/10.30564/jcsr.v6i4.6984
https://doi.org/10.30564/jcsr.v6i4.6984


2

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

1. Introduction

1.1 Overview

Nowadays more than half of the population 
lives in urban areas and this number is expected to 
continuously increase in the future [1]. This makes 
the development of cities important because urban 
areas are the centre of energy consumption and heat 
and pollution emissions. An increasing number of 
articles and technical reports are focusing on urban 
areas, aiming for a better understanding of the urban 
climate and an improvement in the living standards 
of urban residents.

Many aspects of urban areas have been focused on 
by academics, such as pollution and waste dispersion 
and the urban heat island effects. To mitigate these 
problems, it is imperative to understand the flow pat-
terns in complicated urban areas, so that making the 
buildings contribute to the heat and pollution trans-
portation processes. Many experimental and compu-
tational approaches have been applied to simulate the 
flow interacting with building geometries.

As a result of the continuously increasing popu-
lation in urban areas, skyscrapers and other kinds of 
high-rise buildings have been constructed to house 
more people. From the logarithmic profile of the 
atmospheric boundary layer, it is obvious that the 
high-rise buildings will suffer from a faster air flow. 
Consequently, the interactions between these build-
ings and air flows are of great importance.

The experimental, numerical and other tradi-
tional methods for urban flow study are extremely 
demanding. It would normally take days to run a 
single simulation on sophisticated hardware such as 
a supercomputer. Moreover, the simulation results 
would not be able to illustrate the flow regimes and 
therefore, the understanding based on the simulation 
results would be limited – especially when buildings 
in urban areas have different heights and geometries.

However, the data-driven dominant balance mod-
el would be able to solve this problem of limited un-
derstanding. By using machine learning techniques, 
this model can identify different dominant terms 
of the Reynolds Averaged Navier Stokes Equation 

(RANS) in the urban flow field and cluster the re-
gions into different clusters for further study and 
analysis.

To the best of my knowledge, no one has yet ap-
plied this method to urban flow analysis. Therefore, 
this research project will be the application and testing 
of a brand-new approach to this field of study. The ur-
ban flow model will be demonstrated in the following 
background section, which is the work of one of the 
last-year graduates. The methodology section focus-
es on the methods and principles covered in the da-
ta-driven dominant balance model. Finally, the results 
and discussion section pays attention to the results of 
the model. All the computations and model training 
processes are completed in MATLAB and Python. At-
taching the scripts to this paper would be unnecessary, 
with further reasoning provided in the appendix.

1.2 Background

The urban model used in this research is the 
staggered cubic arrays and high-rise buildings that 
is generated by colleagues. Two cases with different 
atmospheric conditions have been set and simulated 
in Zhang’s paper. The basis of this research project is 
the simulation results of the case with neutral atmos-
pheric conditions.

Case in neutral atmospheric conditions

The domain size of the urban geometry configura-
tion is 3200 m × 640 m × 480 m for x, y, and z direc-
tions, respectively and it is set in the Cartesian coor-
dinate system. The layout of the geometry is shown 
in Figure 1. From the upper elevation view, it is ob-
vious that a high-rise building is located in the front 
of the domain. It has the dimensions 40m × 40m × 
240m in length, width and height, respectively. Put-
ting the high building in the front is useful for form-
ing a clear wake development in the rest of the do-
main. All other buildings have the same dimensions 
but only 80m in height. The lower graph in Figure 
1 shows the plane view of the urban model, which 
is staggered cubic arrays. The streets between build-
ings are modelled as canyons extending the entire 
length of the y-direction (640 m). Furthermore, there 
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is a relatively large area at the end of the domain to 
allow the air to smoothly flow out. The final reso-
lution of the geometry configuration is Nx × Ny ×  
Nz = 640 × 128 × 192.

The simulation dataset for this research is based 
on this geometry and under neutral atmospheric con-
ditions. ‘Neutral atmospheric conditions’ refers to the 
environmental lapse rate equalling the dry adiabatic 
rate in dry air. For example, if a parcel of air is lifted 
through a neutral layer, the temperature and pressure 
of the parcel will be identical to the temperature and 
pressure of the surrounding air at every height and 
will always be in equilibrium with the environment [2].

Figure 1. Schematic diagram of the urban model geometries. 
The upper graph shows the elevation view and the lower one 
shows the plane view.

Data-driven dominant balance models

Exploration of the data-driven dominant balance 
models on the urban fluid mechanics is inspired by 
an article written by Callaham et al. in 2021, which 
introduces the application of a data-driven approach 
to dominant balance analysis on a variety of physical 
processes, including the boundary layer in transition 
to turbulence, the nonlinear optical pulse propaga-
tion, geostrophic balance in the Gulf of Mexico and a 
generalised Hodgkin-Huxley model. Take the bound-
ary layer in transition to turbulence for example, the 
general steps are introducing the governing equation, 
plotting the Reynolds-averaged fields, clustering and 
obtaining the dominant balance models. Finally, a 
general graph of the clustering regions is plotted for 
better visualisation and discussion. These steps are 
shown in Figure 2.

The data-driven approach to dominant balance 
analysis generalises traditional methods in several 

critical directions. Firstly, this approach does not 
depend on any explicit assumption of asymptotic 
scaling. Secondly, the clustering method provides 
pointwise estimates of the spatiotemporally local 
dominant balance not afforded by traditional scaling 
analysis in complex geometries. Moreover, it pro-
vides an objective, reproducible approach to testing 
these hypotheses while many dominant balance re-
gimes have been proposed or assumed based on heu-
ristic or intuitive arguments. Finally, the probabilistic 
Gaussian mixture modelling framework is fully com-
patible with the relative nature of dominant balance 
analysis, providing natural estimates of uncertainty 
in the identified balance [3].

1.3 Aims and objectives

The objectives of this study are to:
(a) Learn and understand the Gaussian Mixture 

Model and Sparse Principal Component analysis 
and achieve model training and clustering based on 
Zhang’s high-rise building simulation data sets.

(b) Apply the finite difference method to discre-
tise and approximate the terms in the Reynolds Aver-
aged Navier Stokes equation.

(c) Train GMM and apply it for clustering the 
data sets. Then, use 1 regularisation in SPCA to pro-
ceed with a sparse approximation to reconstruct the 
clustering results.

(d) Interpret and compare the difference between 
the results before and after sparse approximation and 
interpret the results. Finally, dominant balance mod-
els are obtained after sparse approximation.

2. Methodology
In this section, the methods and theories that have 

been covered in the research will be illustrated, includ-
ing the governing equation determination of the urban 
flow field, the finite difference (FD) method, Gaussian 
Mixture Models, Sparse Principal Component Anal-
ysis as well as the Dominant Balance Models. The 
following sub-sections will not only introduce the 
principles and equations from each method or theory 
but also the related MATLAB or Python commands.
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2.1 Governing equation

Navier-Stokes equations are certain partial differ-
ential equations that describe the motion of Newtoni-
an fluid substances. They can be used for modelling 
weather, ocean currents and waves, pollution disper-
sions and air flows around an aerofoil. Mathematically 
speaking, the essence of the equations is the conser-
vation of momentum and the conservation of mass, 
which are the governing equations of the simulation 
software. The equations in full can be written as:

(1)

(2)

(3)

The equations (1), (2) and (3) are Navier-Stokes 
equations in the x, y and z-direction, respective-
ly. The velocity u, v, and w are in four dimensions 
which are x, y, z and time. However, the time di-
mension is not useful because the primary objective 
is to identify different flow regimes of the high-rise 
building model, hence time-varying variables are not 

Figure 2. Schematic of the dominant balance identification procedure applied to a turbulent boundary layer.

Source: Brunton [3].
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necessary. Therefore, the governing equation can be 
simplified into the Reynolds-Averaged Navier-Stokes 
equation (RANS). The 3-dimensional RANS equa-
tion for horizontal velocity u can be written as: 

(4)

The overline of each variable represents the time- 

average property. The new term  

is the turbulence term, representing the Reynolds 
stresses. The same decomposition method is applied 
to velocities  and  as well. The RANS equation will 
be the governing equation throughout the research.

The RANS equation has also been divided into 
six parts for further discussion and analysis.

(5)

Horizontal advection term, vertical advection 
term, pressure gradient, viscous term, horizontal 
Reynolds stresses and vertical Reynolds stresses are 
labelled as 1–6 respectively.

2.3 Gaussian mixture models

One of the popular unsupervised clustering meth-
ods is known as finite mixture models. These models 
are a mixture of Gaussian distributions with different 
means and covariances, so this method is named the 
Gaussian mixture model (GMM) [5]. A one-dimen-
sional example from C. Bishop is used here to show 
why GMM is useful [4].

The red line in Figure 3 has three dominant 
clumps, which is impossible to capture using a single 
Gaussian distribution. However, a superposition of 
three Gaussian distributions (blue lines) can signifi-
cantly improve the characterisation of the probabil-
ity function p(x). Therefore, almost any continuous 
density can be approximated by using a sufficient 
number of Gaussians and adjusting their means and 
covariances [4]. The expression for a superposition of 
K Gaussian densities can be written in the following 

form:

(6)

Each Gaussian distribution N(x|μk, ∑k) is called a 
component of the mixture, having a specific mean μk 
and covariance ∑k. The term πk is the mixing coeffi-
cient [4].

In this research, the number of Gaussian distri-
butions is set as 6, representing six different clusters 
of the mixture model. The learned covariances for 
each cluster can be interpreted in terms of active 
and inactive terms. Active terms will have a certain 
value whereas the corresponding inactive terms are 
near-zero, which is negligible. Data beyond the orig-
inal inputs can efficiently be assigned to a balance 
model using the trained GMM [3].

Figure 3: One-dimensional example of Gaussian mixture 
distribution.

Source: Callaham [4].

2.4 Singular value decomposition

Principal component analysis (PCA) is one of the 
most widely used techniques for taking high-dimen-
sional data and trying to understand it with dominant 
patterns and correlations. As the basis of PCA, the 
matrix factorisation method Singular Value Decom-
position (SVD) should be introduced in advance. 
SVD is one of the most popular approaches used in 
numerical linear algebra for data processing. It can 
be used in data reduction, dimensionality reduction 
and as the foundation of machine learning. It uses 
simple linear algebra to decompose the data set, ob-
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taining interpretable and understandable features that 
can be used to build models.

A large data set  can be written in a ma-
trix form with  rows and  columns:

(7)

Each long vector x represents elements of the 
large data set. For example, a large face database X 
with data representing a lot of people’s facial infor-
mation x. Each piece of information x is in n dimen-
sions, such as hair, nose, eyes, ears and mouth. The 
SVD is a unique matrix decomposition that exists for 
every complex-valued, non-squared matrix X.

(8)

 and  are called unitary matri-
ces with orthonormal columns.  is a matrix 
with real, non-negative entries on the diagonal and 
zeros off the diagonal. Although the diagonal matrix 
∑ has the same dimension as X, there are only m sin-
gular values in ∑, which means the elements below 
the mth singular value are zero and the vectors in ma-
trix U after mth column would be trivial. Therefore, 
economy SVD is used, acting as a simplification of 
the full SVD.

(9)

Where  and  are matrices after simplification, 
and .

2.5 Sparse principal components analysis

Principal component analysis (PCA) is a central 
use of SVD, which provides a data-driven, hierarchi-
cal coordinate system to represent high-dimensional 
correlated data. PCA pre-process the data by mean 
subtraction and setting the variance to unity before 
performing the SVD [5]. The computation of principal 
components (PCs) is the key of PCA. PCs are uncor-
related to each other but maximally correlated to the 
measurements. The number of PCs depends on the 
number of variables or dimensions of the measure-

ments. The PCs computation can be divided into six 
steps:

First, compute the row-wise mean  which is giv-
en by

(10)

and then create an average matrix which is:

(11)

Secondly, subtract the average matrix  from 
the original data matrix X , which results in the 
mean-subtracted matrix B.

(12)

The covariance matrix of the rows of B is given by:

(13)

Compute the eigenvalues and eigenvectors of the 
covariance matrix C:

(14)

(15)

Where D is the eigenvalues and V is eigenvec-
tors. Finally, the PCs can be computed by:

(16)

Here, the matrix containing eigenvectors V is 
identical to the matrix V obtained from the SVD. 
Therefore, an alternative for PCs computation can be 
derived by carrying out SVD on the mean-subtracted 
matrix B, which can be written in the form of:

(17)

(18)

The entire research is based on programming 
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in MATLAB and Python, hence the SVD and PCA 
computations should be completed by a series of 
commands. The SVD and PCA can be completed 
by using the commands  and 

 in MATLAB, where S 
is the diagonal matrix ∑, the vector s2 contains 
eigenvalues of the covariance of x, the variable 
score contains the coordinates of each row of the 
mean-subtracted matrix B in the principal component 
directions [5]. Although the computation is done by 
simply using a single command, it is necessary and 
important to understand the computation processes 
of SVD and PCA otherwise the outcomes would be 
academically meaningless.

However, PCA suffers from the fact that each 
principal component is a linear combination of all the 
original variables, making it fragile with respect to 
outliers in measurements, hence the results are often 
difficult to interpret. A new method using the lasso to 
produce modified principal components with sparse 
loadings is introduced, which is called sparse princi-
pal component analysis (SPCA). PCA can be written 
in the form of a regression-type optimisation problem 
and SPCA is built on this with a quadratic penalty. 
The goal of using SPCA is to carry out a sparse ap-
proximation of the leading principal component.

For each i, denoted by Zi = UiDii the ith principal 
component and the coefficient λ is positive. The 
ridge estimates βTidge is given by the following:

（19）

However, the ridge estimation is not a general 
case to handle all kinds of data as parts of the data 
set have corrupted measurements that will spoil the 
estimation. Therefore, it is extended to a more gener-
al case by adding the L1 penalty to the equation (19).

（20）

Where  is the l1 -norm of β . Ap-
proximation to Vi can be expressed as = || ||. Approx-
imation to itℎ principal component is Xvi. A large 
enough value ̂of λ1 yields a sparse β and then a sparse 
vi. Thus, given a fixed λ is sufficient for solving all 

values of λ1 by using the lasso-elastic net (LARS-
EN) algorithm from Zou and Hastie [6]. The sparse 
approximation to any PC can be flexibly achieved [7].

Once a dominant balance regime is identified in 
a cluster, it has to be well-described by its direction 
of maximum variance. Additionally, the leading 
principal component of a cluster should have many 
non-zero entries and near-zero entries. Therefore, the 
SPCA is applied to the set of points in GMM clus-
ters, taking the active terms and neglecting the inac-
tive terms which represent the non-zero and near-ze-
ro entries, respectively. This process is a sparse 
approximation to the leading principal component.

2.6 Dominant balance models

The dominant balance model consists of domi-
nant terms in the governing equation which balances 
each other. Dominant terms are identified by active 
and inactive terms (non-zero and near-zero entries) 
in the SPCA vector in the corresponding cluster. Af-
ter applying l1 regularisation, each GMM cluster has 
a sparse approximation to its leading principal com-
ponent. Different clusters may have the same sparsi-
ty pattern, which is considered to be part of the same 
dominant balance regime [3]. Points from all clusters 
with the same sparsity patterns are combined into the 
same dominant balance model. Once the dominant 
balance models are determined, the original domain 
can be divided into parts depending on the dominant 
physical processes in each local region.

3. Results and discussion
In this section, the results based on the meth-

odology introduced in the previous section will be 
illustrated. Figures, interpretations, as well as the 
corresponding discussions based on the computation 
results, are covered. Both the plane view and side 
view of the urban area are included as this simulation 
is done in a 3-D domain. This section is divided into 
4 subsections: the simulation results of the neutral 
atmosphere case, the clustering by Gaussian mixture 
models, SPCA reduction (sparse approximation) and 
the final dominant balance models.
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3.1 Neutral atmosphere case

Before heading to the clustering and machine 
learning section, it is important to plot the outcomes 
from the simulation to examine the data set. If the 
data set is not reasonable, the final dominant balance 
model would be meaningless.

The simulation result is based on the governing 
equation of the Reynolds-averaged Navier-Stokes 

equation, hence the variables in the data set are all 
time-averaged and in 3-D. Due to the simulation 
settings, all variables apart from the mean velocities 
are defined at the centre of the cells in a mesh grid. 
Hence the velocities should be centred before plot-
ting any graphs based on them. Figure 4 consists of 
the graphs for six sections of the RANS equation. 
The graphs are plotted as a side view of the urban 
area at the domain width of 322.5m.

The entire urban area is  long, but the model is 
segmented to 0 – 1200m because the building that we 
are interested in is the skyscraper. All small buildings 
are identical to each other. The colour bar is fixed in a 
range of ±0.02 to observe the magnitude difference of 
each term.

The horizontal advection terms have negative 
values in the front of the high-rise building because 
the building is impermeable and the flow will reflect 
when it reaches the building surface. In the wake 
region, the magnitude becomes positive but not 
large. This is because there has been a flow separa-
tion at the front edge of the tall building, the flow 
separation at the back edge of the tall building will 
not be as significant as the front edge. It is necessary 
to mention that there is a high velocity point at the 
top of the building near the edge. This is not only 
the result of the incoming horizontal flow but also 
the high-speed flow at the surface of the building 
after it reaches the stagnation point. A high-speed 
flow separation is then formed, so the horizontal 
advection terms at that point have a relatively large 
positive value. The vertical advection term shows a 
similar pattern, where the value at the top of the high 

building is large. Its magnitude in the wake regions 
is relatively larger than in other regions due to the 
turbulence.

The pressure gradient term shows a high-pressure 
region on the building front where the stagnation 
point is caused by horizontal incoming flow. The 
flow separation area at the top edge of the skyscraper 
shows a negative value of the pressure gradient, with 
respect to x. In the wake region at the back of the 
building, it is obvious that the pressure gradient is 
positive but much smaller than the stagnation point.

The viscosity term is near zero in the domain 
segment because the viscosity dominant area is 
small and near the surface. In comparison with the 
graph plotted, the region is too small to be shown in 
the graph. In other words, the grid Nx × Ny ×Nz = 
640 × 128× 192 is too coarse to show the viscosity 
dominant region in this large-scale simulation. The 
horizontal Reynolds stresses have negative values in 
the wake region at the back of the high building and 
in the front of the first short building after the high 
building because the flow in the wake region is high-
ly turbulent. The reason for the negative value is that 
the graph plotted is for (u’u’ + u’v’) whilst there is 

Figure 4. RANS terms at the side view of the urban area.
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an additional negative sign in front of the Reynolds 
stress terms in the RANS equation.

The vertical Reynolds stress term u’w’ is having 
a similar pattern as horizontal Reynolds stress terms 
but its magnitude is nearer to zero. It is unusual 
that the vertical Reynolds stress has a much smaller 
value than the horizontal Reynolds stresses. A dou-
ble-check of the simulation settings may be required 
but the details in running the simulation are beyond 
the scope of this paper.

The visualisation process also contains the plane 
view of the urban area. In Figure 5, the height of 
the domain is chosen as 98.75m, so that only the tall 
building itself is included in the slices.

Similar to Figure 4, six parts of the RANS equa-
tion are plotted in the plane view. The colour bars 
are fixed in the range of ±0.02 as well. For all graphs 

in Figure 5, the backgrounds are dot-like because of 
the existence of small buildings at the lower level. 
Flow separations are clearly demonstrated in these 
graphs. The general trend of magnitude of each term 
is the same as the side view. The viscous term and 
vertical Reynolds stress term are near zero. Another 
issue is observed by plotting the graphs in the plane 
view. Technically, the pressure gradient is supposed 
to be the same from the initial point to the end of the 
domain because the plane view is a slice of the z-axis. 

However, the x graph in Figure 5 indicates an 
increasing trend of the pressure gradient along the 
x-domain, which is against expectations. This prob-
lem may be caused by the initial setting of the sim-
ulation domain boundaries. If the boundary is set as 
not allowing fluid outflows, the increasing pressure 
gradient will become reasonable.

Figure 5. RANS terms at the plane view of the urban area.
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Overall, most of the data is reasonable apart from 
the increasing trend of pressure gradients. Re-run-
ning the time-consuming simulation is impossible, 
not only because the simulation requires a long time 
but also because running the simulation is not part 
of this research. Settings for the simulation domain 
should be checked by the supervisor.

3.2 Gaussian mixture models

GMM are trained on 10% randomly subsampled 
points for a better clustering speed. The number of 
clusters for GMM is pre-set as 6 because the govern-
ing equation has been divided into 6 sub-parts based 
on their physical meanings in section 2.1. Setting 
the cluster number as 6 is reasonable as there will 

be clusters indicating the same information in the 
outcomes if the cluster number 6 is larger than the 
practically required number.

After the model training process, GMM has been 
applied to the simulation data sets for both side-
view and plane-view cases. The covariance matrices 
are plotted for each identified cluster, as shown in 
Figure 6. The Python configuration is different from 
MATLAB’s, starting the graph from 0 rather than 1; 
consequently, the cluster numbers in Figure 6 are 
from 0 to 5. All matrices are in the form of RANS 
terms against each other.

Covariance matrices show the correlations of one 
term to another. Some colours in matrices are shal-
low while some are not. This is due to the different 
weights of each term in the momentum balance.

From Figure 6, it is obvious that the covariance 
matrices of cluster 3 and cluster 5 exhibit the same 
pattern, which only shows the pressure gradient vs. 
pressure gradient relation; thus, these are trivial re-

sults as they do not demonstrate any correlations. 
Cluster 0 and Cluster 1 are similar but different. In 
cluster 0, the horizontal advection terms balance the 
pressure gradient term whilst both horizontal and 

Figure 6. Covariance matrices for 6 GMM clusters of side-view case.



11

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

vertical advection terms balance the pressure gra-
dient term in cluster 1. Both clusters are reasonable 
because in the area where the air does not interact 
with buildings there will only be horizontal advec-
tion. Vertical advection exists when flow separation 
and turbulence occur in the simulation. It is worth-
while to mention that the colour of advection terms 
in cluster 1 is shallower than that in cluster 0. When 
the vertical advection term is included for the mo-
mentum balance, the weight of horizontal advection 
terms will be smaller.

In the covariance matrix of cluster 2, horizontal and 
vertical Reynolds stresses are included in the balance, 
balancing the horizontal advection with the pressure 
gradient. The covariance matrix of cluster 4 includes 
both horizontal and vertical advection, balancing the 
pressure gradient and horizontal Reynolds stresses.

The same algorithms are applied to the plane-
view case. The covariance matrices are also plotted 
as shown in Figure 7. Moreover, the correlations 
between each term in the plane-view are more com-
plicated than the side-view. The cluster 0 covariance 
matrix shows correlations between the horizontal 

advection term, pressure gradient and Reynolds 
stresses. Horizontal advections are balanced by the 
pressure gradient and Reynolds stresses. The hori-
zontal Reynolds stress shows strong correlations 
to horizontal advection term and vertical Reynolds 
stresses whilst the pressure gradient has a smaller 
correlation to them. In cluster 1, the relation turns 
out to exclude the vertical Reynolds stress, instead 
having a stronger correlation between the pressure 
gradient and horizontal advection. The pattern of the 
covariance matrix for cluster 2 is not useful for anal-
ysis as it only shows that each term is correlated to 
itself. Cluster 3 is very similar to cluster 1; the only 
difference is that the vertical advection is slightly 
correlated to the pressure gradient in the cluster 3 
matrix. The covariance matrix for cluster 4 demon-
strates the relationship between advection terms, 
pressure gradients and horizontal Reynolds stresses. 
The matrix of cluster 5 is slightly similar to cluster 0 
and cluster 3 but with a smaller correlation between 
Reynolds stresses. In cluster 5, the relation between 
the horizontal advection term and the pressure gradi-
ent is stronger than clusters 0 and 3.

Figure 7. Covariance matrices for 6 GMM clusters of plane-view case.
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Overall, the covariance matrices of the side-view 
case for clusters 0, 1, 2 and 4 are reasonable, which 
illustrates four kinds of dominant balance regimes. 
Apart from cluster 2, the matrices of the plane-view 
case are all useful whilst clusters 0 and 3 are very 
similar to each other. Five kinds of dominant balance 
regimes are demonstrated in the plane-view case, 
with results as discussed in section 3.1. The viscosity 
term does not contribute to any covariance matrix 
of both side-view and plane-view cases, because the 
viscous sub-layer is too tiny in comparison with this 
macro-scale urban model. Besides, both cases yield 
results that show trivial clusters exist. To solve this 
trivial-cluster problem, SPCA is applied, which will 
be discussed in detail in section 3.3.

Apart from covariance matrices, the scatter dia-
grams are plotted to visualise GMM clustering with 
a 2-D view of the equation space. Figure 8 and Fig-
ure 9 illustrate the 2-D views of equation space for 
side-view and plane-view cases, respectively.

Figure 8. 2-D views of equation space for side-view case.

Six terms in RANS will yield a six-dimension-
al diagram which is impossible to plot. Therefore, 
terms are pre-selected based on their correlations in 
covariance matrices and 2-D scatter diagrams are 
then generated. In Figure 8, four graphs of pressure 
gradient against horizontal advections, horizontal 
Reynolds stresses against horizontal advections, 
pressure gradient against vertical advection and the 
vertical Reynolds stress against vertical advection 
are plotted. The graphs are supposed to show differ-

ent clusters with different colours in terms of scat-
tered points but the diagrams in Figure 8 can hardly 
read any clusters apart from the blue cluster which 
is the first cluster from GMM. As for the top left and 
bottom left diagrams, there are many points that are 
far away from the main data points (centred at the 
origin point (0, 0)). Their corresponding pressure 
gradient has values of negative hundreds or thou-
sands. The value of Figure 8 for interpretation and 
analysis is little whilst Figure 9 shows a lot more 
information regarding plane-view data points.

Figure 9. 2-D views of equation space for plane-view case.

Based on the plane-view covariance matrices, 
scatter graphs containing the relationships between 
dominant terms are plotted. From left to right, top to 
bottom, the graphs are of vertical advection against 
horizontal advections, pressure gradient against verti-
cal advection, vertical Reynolds stress against vertical 
advection and vertical Reynolds stress against hori-
zontal Reynolds stresses, respectively. Comparing 
Figure 9 with Figure 8, scatter diagrams in Figure 9 
clearly demonstrate the clusters that each data point 
belongs to. Most of the points lie in the first, second, 
fourth and sixth clusters, which is consistent with the 
results from the covariance matrices in Figure 7.

The same GMM algorithms work perfectly on the 
plane-view urban model, indicating that the monoto-
nous results in the side-view case are not caused by any 
flaws in the algorithms. There is an enormous range of 
pressure gradient in Figure 8 because the variables in 
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the side-view case are analysed in x and z-directions 
and the pressure gradient certainly varies with different 
heights. This also explains the small range in pressure 
gradient in the plane-view scatter diagrams.

The 2-dimensional GMM clustering results of 
the entire domain of these two cases are generated.  
Figure 10 and Figure 11 illustrate the side-view case 
and the plane-view case, respectively.

The clustering results show that most of the re-
gions are in the first and third clusters. The first clus-
ter (blue region) demonstrates the turbulence region. 
Flow separations and wakes can be clearly identi-
fied. Other regions are clustered into the third cluster 
(green region) where there is no turbulence or very 
small turbulence. The shape of buildings is clearly 
shown in the result, apart from the first several small 
buildings and the skyscraper. The turbulence around 
the first several buildings would be stronger because 

the air flows directly to the first building surface and 
creates a large turbulence area, as shown in the first 
500“ in Figure 10. Then the air flow meets the sky-
scraper, which has a much larger interacting surface 
to the flow than small buildings. Consequently, a 
much larger wake is formed at the back of the sky-
scraper. Due to the existence of the skyscraper, the 
small buildings behind would experience smaller air 
flows. The shape of the buildings in the clustering 
result is then clearer than the buildings in the front 
of the urban area. However, a question may arise: 
where are the other 4 clusters in Figure 10 ? The an-
swer is at the front surface of the skyscraper. Having 
these tiny clusters all lie in the same area is unrea-
sonable. This phenomenon may be caused by the 
coarse mesh grid of the simulation domain, or by the 
number of clusters being set larger than was practi-
cally required.

Figure 10. GMM clusters of side-view case.

Figure 11. GMM clusters of plane-view case.
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The clustering result of the plane-view case in 
Figure 11 is more diverse than the side-view case. 
It is obvious that cluster 2 (yellow region) demon-
strates the flow patterns around the skyscraper and 
most of the region is in cluster 4 (red region). Ac-
cording to Figure 7, the first cluster (blue region) 
has a similar covariance matrix as the fourth cluster 
(red region) but the first cluster has a larger weight 
on horizontal advection terms and no weight on 
vertical advection terms. This indicates that the first 
cluster focuses on the non-turbulence area whilst the 
fourth cluster is for the area with some turbulence, 
which is consistent with the behaviour of these two 
clusters in Figure 11 (the blue region mainly on the 
LHS and the red region mainly on the RHS). Moreo-
ver, cluster 6 shows the same pattern as the layout of 
the urban buildings as shown in Figure 1 although 
the small buildings themselves are not included in 
this slice. Hence cluster 6 contains the region that is 
under the influence of buildings. Cluster 3 and 5 are 
located within the region of cluster 2, which is not 
obvious in Figure 11. As discussed in the covariance 
matrices section, the third cluster is trivial. The fifth 
cluster seems located around the surface of the sky-
scraper in Figure 11.

The GMM clustering results are justified as rea-
sonable outcomes but there are still excessive trivial 
clusters existing in both cases. To solve this problem, 
the SPCA reduction is applied.

3.3 SPCA reduction

The objective of using SPCA is to use l1 regular-
isation to extract a sparse approximation to the lead-
ing principal component and reconstruct the GMM 
clusters. As a result, near-zero entries of the leading 
principal component will be eliminated and active 
non-zero entries are taken for reconstruction. This 
process is named SPCA reduction. The model for 
l1 regularisation is selected from 10 −4 to 105 and 
the residual of inactive terms against regularisation 
graphs are plotted as shown in Figure 10 and Figure 
11. In principle, the range of λ can be 0 to positive 
infinity.

Figure 12. Residual of inactive terms vs. l1 regularisation for 
side-view case.

Figure 13. Residual of inactive terms vs. l1 regularisation for 
plane-view case.

Figure 12 and Figure 13 have the same gen-
eral trend of the residual of inactive terms against 
the values of λ in l1 regularisation. The residuals 
are small before the λ reaches 101 , and it increas-
es significantly when the λ value rises further and 
reaches its maxima at the values of 104 and 105 . 
This behaviour matches the expectation of the lasso 
regression which yields the same answer as the least-
square approach when λ is zero and yields a sparse 
approximation when λ is large enough. Although 
the patterns are very similar, there is a difference 
between these two cases. The value of the residuals 
of inactive terms for the plane-view case is much 
smaller than for the side-view case. This might be 
caused by the difference in the GMM inactive term 
identification. A larger residual indicates that more 
information in inactive terms is eliminated.

After carrying out the sparse approximation, the 
graphs of clusters are generated as shown in Figure 
14 and Figure 15. The colours for each cluster may 
have changed but the patterns are the same. Two 
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tables are generated for dominant term visualisation 
and the colours used are in the same set of colours as 
the SPCA reduction graphs. For better interpretation 
and discussion, two SPCA reduction graphs are put 
together with the tables in the next section.

3.4 Final dominant balance models

Final dominant balance models can be obtained 
when the inactive terms are all eliminated during the 
l1 regularisation and sparse approximation. Tables 
showing dominant terms are labelled as Figure 15 
and Figure 17 accompanied by the SPCA reduction 
graphs (Figure 14 and Figure 16).

In general, the layout of the clusters is unchanged, 
but the number of clusters is reduced to 3 rather 
than 6 from the GMM results. All excessive clusters 
discussed in section 3.2 are combined into a single 

cluster (blue) after sparse approximation. However, 
it is also unreasonable to have a large pressure gra-
dient at the front surface of the skyscraper; no other 
dominant terms are identified in the blue cluster to 
balance this pressure gradient. The other two clusters 
have reasonable dominant balance relations. The 
green cluster shows a balanced relation of advection 
terms, pressure gradient and horizontal Reynolds 
stresses. The orange cluster shows the same relation-
ship but without the vertical advection term because 
the green region represents the turbulence area whilst 
the orange region shows laminar or a very small tur-
bulence region. Turbulence generates vortices which 
leads to a certain value of vertical advection. In the 
final dominant balance model of the side-view case, 
the viscous term and vertical Reynolds stresses are 
not encountered.

Figure 14. Clusters after SPCA reduction (side-view case).

Figure 15. Final dominant balance model for side-view case.
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Comparing Figure 16 with the previous GMM 
results (Figure 9), a lot of regions at the back of the 
urban area are approximated into the same orange 
cluster after SPCA reduction. In this case, the final 
dominant balance model consists of four clusters 
with different active terms for balance. Excessive 
clusters are erased during the cluster reconstruc-
tion. The vertical advection and viscous terms are 
not identified as dominant terms for any clusters, so 
they are excluded from Figure 17. The violet clus-
ter shows the relationship of horizontal advection 
balancing pressure gradient, horizontal and vertical 
Reynolds stresses. From Figure 16, this cluster is 
widely evident across the first several buildings and 
around the skyscraper, showing the high turbulence 
regions. The red cluster indicates the same balance 
relation but without the contribution of vertical 
Reynolds stress. From the graph, the red region is 

mainly located around the skyscraper because there 
is no such high building behind it and no vertical 
vortices can form. Hence the horizontal advection 
can only cause horizontal vortices which is consist-
ent with the result from Figure 17. It should be no-
ticed that there are some regular red clusters on the 
LHS of the domain. This may be caused by the re-
flection of the horizontal air flow from the buildings 
in the first row of the urban model. The green cluster 
shows a simple relationship between horizontal ad-
vection and the pressure gradient at the surface of the 
skyscraper. The orange cluster shows the dominant 
balance relation between the horizontal advection 
and the Reynolds stresses.

The scatter diagrams have been re-plotted after 
applying the sparse approximation to two cases, 
which are shown in Figure 18 and Figure 19.

Figure 16. Clusters after SPCA reduction (plane-view case).

Figure 17. Final dominant balance model for plane-view case.
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Figure 18. 2-D views of equation space for the side-view case 
after SPCA reduction.

Figure 19. 2-D views of equation space for the plane-view case 
after SPCA reduction.

In general, the changes in scatter diagrams for 
both cases after applying SPCA reduction are not 
obvious, especially for the side-view case. After the 
sparse approximation, the clusters for the side-view 
case have been reduced into two normal clusters and 
one small cluster (pressure gradient). Apart from 
some blue outliers, all scattered points in Figure 18 
are in green. This pattern is similar to the outcomes 
in Figure 8 before SPCA reduction. However, in 
Figure 19, there is an obvious change in the bottom 

two scatter diagrams. The region of the orange clus-
ter, which was a red cluster in the GMM results, has 
become larger after the sparse approximation. Some 
of the noises are eliminated during the reconstruction 
and forming a larger cluster. The change other than 
this is tiny, which is hard to observe. More scatter 
graphs may be worthwhile to be plotted for analysis 
in further research.

4. Conclusions
In conclusion, Gaussian mixture models (GMM) 

are efficient in clustering as the model can be trained 
by only using 10% random samples in a process that 
takes mere seconds to yield a clustering result of 
a 640 × 128 or 640 × 192 data set. Taking random 
numbers for model training is reasonable for GMM 
because Gaussian distribution is the default setting 
for random number generation commands. However, 
there is a drawback to obtaining overlapping or triv-
ial clustering groups because the number of clusters 
should be pre-defined before applying this to a sim-
ulation data set. The solution to these trivial clusters 
is SPCA reduction, which is covered in this research; 
this shows a good performance in cluster reconstruc-
tion. Moreover, the results from GMM are sensitive 
to the resolution of the data set. A coarse resolution 
would lead to inaccurate pattern recognition and 
clustering. There is a way of dealing with the coarse 
data set, which is to increase the number of random-
ly subsampled points for GMM training but the time 
taken for running the entire script would increase.

Overall, learning dominant urban flows with da-
ta-driven models yields reasonable results. Applying 
machine learning to fluid mechanics can not only 
shrink the time for post-processing but also presents 
a brand-new approach to visualising and analysing 
the physical processes. The essence of the RANS 
equation is the momentum equation with one term 
balancing another. Using the dominant balance 
model can help with understanding the different 
flow regimes and the dominant terms describing the 
regime. It is a faster and more efficient way to learn 
fluid behaviours than the traditional method. This 
is a general approach that would bring huge con-
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tributions to understanding fluid mechanics in any 
kind of situation, not only for urban fluid mechanics. 
From the article written by Callaham et al. (2021), 
the data-driven dominant balance model has been 
successfully applied to a variety of different physical 
processes such as the nonlinear optical pulse prop-
agation, geostrophic balance in the Gulf of Mexico 
and a generalised Hodgkin-Huxley model. There-
fore, this method also has great compatibility with 
important physical processes. It is obvious that the 
further application of this method in the perspective 
of fluid mechanics is highly worthwhile and merits 
further development.

5. Further work recommendations
Due to the limited time for this research, the da-

ta-driven dominant balance approach is only applied 
to the field of urban fluid mechanics. The application 
in other fields of fluid mechanics is necessary to be 
carried out to test the approach compatibility in other 
perspectives.

For this research project, there are some aspects 
which require further improvement: 

• � The simulations of the urban model for the neu- 
tral case should be re-run with a finer mesh grid 
to ensure the data set resolution. The resolution 
of the data set directly affects the quality of the 
GMM clustering results. For instance, the unrea-
sonable large pressure gradient at the front surface 
of the high-rise building and the extraordinary 
turbulence re- gion at the beginning of the domain 
around 250m could be evitable if a finer mesh 
grid is applied. Moreover, all graphs showing 
cluster- ing outcomes suffer from the same res-
olution problem. This can be observed from the 
sharp edges between each region in these graphs.

• � Running a simulation with a longer time span 
will improve the clustering results because a 
longer time span yields more general time-av-
eraged results of the flow field.

• � The backward step finite difference method is 
used for approximating the first-order deriv-
atives in the RANS equation. In comparison 

to the central difference method, backward 
step performs a less accurate approximation of 
the derivatives. Therefore, the backward step 
method should be replaced by the central dif-
ference method to achieve greater accuracy in 
processing the simulation data sets in further 
works.

• � The Gaussian mixture model (GMM) should 
be trained by a larger number of random sub-
sampled points for better clustering accuracy 
although it may take more time for model 
training and be more demanding of the perfor-
mance of the computer.
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