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ABSTRACT

Wind turbine blades are vital for energy generation, where defects can cause efficiency loss and costly maintenance.

This paper proposes an improved object detection algorithm based on YOLOv8 for detecting defects in wind turbine blades.

Enhancements include network architecture modifications and advanced attention mechanisms, which boost detection

accuracy while maintaining real-time processing. Our approach is tested on a custom dataset, showing better performance

than the standard YOLOv8 model. These improvements can enhance automated defect detection in wind turbines, reducing

downtime and operational costs, and contributing to more efficient renewable energy maintenance.
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1. Introduction

1.1 Research background

Wind energy, as a clean and renewable energy source,

has been widely applied globally. Wind turbines [1], being

the core equipment for wind energy conversion, play a cru-

cial role in the economic efficiency and operational stability

of wind farms. The blades of wind turbines are exposed to

harsh natural environments, making them prone to defects

such as cracks, wear, and corrosion. If these defects are not

detected and repaired promptly, they can lead to equipment
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failure and even severe safety accidents.

1.2 Current research status

Traditional methods for detecting blade defects mainly

rely on manual inspection and regular maintenance, which

are inefficient, costly, and susceptible to human error. With

the advancement of deep learning technology, automated

detection methods based on computer vision have gradually

become a research hotspot. The YOLO (You Only Look

Once) series of algorithms have been widely applied due to

their efficiency and accuracy in object detection. YOLOv8 [2],

as the latest version of this series, has shown significant im-

provements in detection performance.

1.3 Research problems

Although YOLOv8 performs excellently in many ap-

plications, directly applying it to wind turbine blade defect

detection still faces challenges. These challenges include

detecting small objects in complex backgrounds and distin-

guishing various types of defects. Therefore, it is necessary

to improve and optimize the YOLOv8 algorithm to enhance

its adaptability and performance in wind turbine blade defect

detection.

1.4 Research objectives

This study aims to improve the YOLOv8 algorithm to

enhance its effectiveness in detecting defects in wind tur-

bine blades. The specific objectives include optimizing the

algorithm structure, improving detection accuracy, increas-

ing detection speed, and validating the effectiveness of the

improved algorithm in practical applications.

1) Input Layer

The input image undergoes certain preprocessing steps,

such as resizing and normalization, to meet the model’s input

requirements. The input size is usually fixed, for example,

2. Materials and methods

2.1 YOLOv8

YOLOv8 (You Only Look Once version 8) is an ad-

vanced object detection algorithm primarily used for identi-

fying and locating objects within images, see Figure 1. It 

belongs to the YOLO series, characterized by its ability to 

simultaneously predict the positions and classes of multiple 

objects in a single forward pass, thereby offering efficient 

and real-time performance.

640x640.

2) Backbone

Purpose: Extract basic features from the image.

Structure:

• Conv Layer: Performs convolution operations with

common kernel sizes of 3x3, a stride of 2, and padding

of 1, to reduce the size of the feature map.

• C2f Module: A key feature extraction module in

YOLOv8. It includes multiple convolution layers and

Bottleneck modules, which help maintain efficient

feature extraction while reducing computational load.

• SPPF (Spatial Pyramid Pooling-Fast) Module: Fur-

ther extracts multi-scale features by applying max

pooling at different scales, then resizes the feature

maps to a fixed size before concatenating them.

3) Neck

Purpose: Further processes the multi-scale features

extracted by the Backbone and fuses features from different

scales to improve detection accuracy and robustness.

Structure:

• Concat Layer: Concatenates feature maps from dif-

ferent layers to fuse multi-scale features.

• Upsample Layer: Performs upsampling operations

to enlarge low-resolution feature maps to the same

size as high-resolution feature maps for easier feature

fusion.

• C2f Module: Further extracts and fuses features in

the Neck.

In the Neck, through upsampling and concatenation op-

erations, high-level semantic information is combined with

low-level detailed information to form richer feature repre-

sentations, enhancing the model’s ability to detect objects of

various scales.

4) Head

Purpose: Generate the final detection results, includ-

ing the locations and classes of objects.

Structure:

• Conv Layer: Performs convolution operations to fur-

ther process the fused feature map.

• Detect Module: Predicts object bounding boxes and
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Figure 1. Yolov8 Network Architecture Diagram.

classes, including anchor box prediction and non-

maximum suppression (NMS) operations.

• Bbox, Cls, Obj Outputs: Represent bounding box

regression, class prediction, and object confidence

prediction, respectively.

5) Technical Details:

a) Anchor-Free:

The Anchor-Free [3] mechanism in object detection al-

gorithms does not use predefined anchor boxes to locate

and classify objects but directly predicts the center point

and size of the object. This method simplifies the detection

process and can often improve detection accuracy and effi-

ciency. Specifically, Anchor-Free directly predicts whether

each pixel in the image is the center point of an object and,

if so, further predicts the width and height of the object

without relying on predefined anchor boxes for adjustment.

Compared to traditional anchor-based methods, Anchor-Free

reduces the setup and tuning work of anchor box sizes and

ratios, offering greater flexibility. It can better adapt to ob-

jects of different scales and shapes, reducing the problem

of anchor box mismatches and improving detection accu-

racy. In YOLOv8, this mechanism is mainly reflected in

the output layer, where feature maps are processed through

multiple convolution operations to directly predict the object
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confidence, category, width, and height for each pixel point.

b) CIoU:

CIoU [4] (Complete Intersection over Union) is an im-

proved bounding box regression loss function that not only

considers the overlapping area between two bounding boxes

but also includes the distance between their center points,

the aspect ratio of the bounding boxes, and their relative

scale. This allows for better optimization of the bounding

box’s position and shape, enabling the predicted box to more

accurately fit the target object. CIoU is particularly effective

in cases where the aspect ratio and position of the objects

vary significantly.

CIoU = 1− IoU +
p2

(
b,bgt

)
c2 + av

1) IoU is Intersection over Union.

2) p2 (b, bgt) is the Euclidean distance between the cen-

ter points of the predicted box(b) and the ground truth

box(bgt).

3) c is the diagonal length of the enclosing box.

4) a is the adjustment parameter, defined as a =
v

(1−IoU)+v .

5) v is a parameter that measures the consis-

tency of the aspect ratio, defined as v =

4
Π2

(
arctanwgt

gt − arctanw
h

)2

c) DFL:

DFL (Distribution Focal Loss) is a loss function used

in classification tasks for object detection. By re-weighting

the class probability distribution, it assigns higher weights to

samples that are difficult to classify, thereby enhancing the

model’s ability to recognize hard-to-distinguish categories.

DFL effectively addresses the imbalance between positive

and negative samples, improving the model’s classification

accuracy across various scenarios.

d) BCE:

BCE (Binary Cross-Entropy) is a commonly used loss

function for binary classification problems. It measures the

difference between the model’s predicted results and the true

labels. The core idea is to evaluate the model’s prediction

performance by calculating the cross-entropy between the

predicted probabilities and the true labels.

a) InnerIoU:

InnerIoU [5]

2.2 Method

YOLOv8 algorithm improvement

1) Loss Function: Improving powerfuIou using the 

concept of InnerIoU

(Inner Intersection over Union) is an im-

proved IoU (Intersection over Union) metric designed to

better evaluate the performance of object detection models.

Traditional IoU only considers the overlapping area between

the predicted box and the ground truth box. In contrast, In-

nerIoU introduces more geometric information to enhance

this evaluation method.

The core idea of InnerIoU is to incorporate internal ge-

ometric information to more accurately assess the degree of

overlap between the predicted box and the ground truth box.

This method not only considers the overlapping area but also

takes into account the relative position and shape of the pre-

dicted box and the ground truth box. Specifically, InnerIoU

performs a fine-grained calculation within the overlapping

area to reflect more geometric characteristics between the

two.

Advantages of InnerIoU:

• Robustness: InnerIoU better reflects the degree of

overlap between the predicted box and the ground

truth box in cases of partial occlusion or significant

positional deviations.

• More reasonable measurement: Especially when de-

tecting small targets, InnerIoU can more accurately

evaluate the detection results.

Calculation Method for InnerIoU:

• Determine the Inner Box: The Inner Box is formed by

the minimum bounding rectangle of the overlapping

region between the predicted box and the ground truth

box. This involves taking the maximum coordinates

of the top-left corner and the minimum coordinates

of the bottom-right corner of the overlapping part of

the two boxes.

• Calculate the Area of the Inner Box: The calculation

steps are similar to those of traditional IoU, but here

the overlapping part is limited to the Inner Box.

• Compute InnerIoU: Calculate the InnerIoU based on

the area of the Inner Box

InnerBox(Area

InnerIoU =
)

PredictedBoxArea+GroundTrutBoxArea−InnerBox(Area)

b) PIoU:

PIoU [6] (Precise Intersection over Union) is an im-

provement over the traditional IoU, aiming to more accu-

rately evaluate the overlap between the predicted box and the
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ground truth box. Traditional IoU calculates the overlapping

area of two boxes divided by their union area, which, while

simple and effective, may not be precise enough in certain

situations, especially when there are significant differences

in the position and shape of the predicted box and the ground

truth box.

PIoU improves the accuracy of IoU calculation by in-

troducing the concepts of boundary offset and area offset. It

not only considers the overlapping area but also takes into

account the shape differences and boundary alignment of the

predicted box and the ground truth box.

PIoU Calculation Method:

• Boundary Offset: Calculate the boundary differences

between the predicted box and the ground truth box.

The boundary offset considers the offsets in four direc-

tions (top, bottom, left, right). These offsets provide

a more accurate reflection of the boundary alignment

between the two boxes.

• Area Offset: Besides the overlapping area, PIoU also

considers the area differences between the two boxes.

The area offset measures the area similarity between

the predicted box and the ground truth box.

• PIoU Calculation: After integrating the boundary off-

set and area offset, the PIoU formula is as follows:

PIoU = IoU −α ·BoundaryOffset−β ·AreaOffset

Among them, α and β are parameters used to adjust the

weights of the boundary offset and area offset.

Advantages:

• HigherAccuracy: PIoU introduces boundary and area

offsets, allowing for a more precise evaluation of the

matching degree between the predicted box and the

ground truth box.

• Improved Model Performance: When used as part of

the loss function in training object detection models,

PIoU can significantly enhance the detection accuracy

of the model, especially when handling targets with

complex shapes and significant positional differences.

• Robustness: PIoU demonstrates greater robustness

for targets of different scales and shapes, making it

better suited to adapt to the complex scenarios found

in practical applications.

2) Modifying the C2f Module Using the SPDMethod [7]

By transforming the spatial information of the input

feature map into depth information, the number of channels

is increased while retaining fine-grained spatial informa-

tion. Traditional strided convolution and pooling layers are

replaced to avoid the loss of fine-grained information. Non-

uniform strided convolution is used to perform convolution

operations pixel by pixel, preserving more detailed informa-

tion. This approach is particularly suitable for low-resolution

images and small object detection.

The design is simple and easy to integrate into various

CNN architectures, such as YOLOv5 and ResNet. It signif-

icantly enhances the performance of low-resolution image

and small object detection tasks while maintaining relatively

low computational complexity.

3) Enhancing Feature Extraction Using BiFPN (Bidi-

rectional Feature Pyramid Network)

BiFPN [8] adopts a bidirectional fusion path, combin-

ing both top-down and bottom-up feature fusion approaches.

This design allows for better integration of features from

different levels, capturing high-level semantic information

while retaining low-level detail information. To optimize

feature fusion, BiFPN uses a weighted mechanism on each

fusion path, adjusting weights through training to make the

feature fusion more efficient.

In terms of computational efficiency, BiFPN employs

repeated fusion layers and depthwise separable convolutions,

significantly reducing the computation and the number of pa-

rameters. As a result, BiFPN not only improves performance

but also maintains low computational overhead, making it

suitable for real-time object detection tasks.

The structure of BiFPN is highly flexible, capable of

handling any number and scale of feature maps. It can be

combined with various backbone networks, such as ResNet

and EfficientNet, adapting to different object detection tasks.

This flexibility ensures that BiFPN can perform well in a

variety of application scenarios.

By introducing BiFPN, the detection accuracy and effi-

ciency of YOLOv8 can be significantly improved, especially

when dealing with targets that have large scale variations

and complex backgrounds. The lightweight design of BiFPN

also ensures its applicability in real-time detection tasks.

4) Using GAM [9] Global Attention Mechanism

By leveraging global context information to compute

attention weights, the feature extraction capabilities of con-

volutional neural networks are enhanced. Specifically, GAM

first performs global pooling on the input feature map to
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generate a global feature vector. Then, a series of fully con-

nected layers and activation functions are used to calculate

the attention weights for each channel. Finally, these weights

are multiplied element-wise with the original feature map,

enhancing important features and suppressing less important

ones.

• Global Pooling: Perform global average pooling on

the input feature map X, resulting in a global feature

vector.

Zc =
1

H×W

∑H
i=1

∑W
j=1 Xc,i,j

• Attention Weight Calculation:

Using fully connected layers and an activation func-

tion (usually sigmoid), generate the attention weights.

s = sigmoid (Wz + b)

• Weighted Feature Map:

Multiply the attention weights s element-wise with

the input feature map X to obtain the output feature

map Y.

Yc,i,j = sc ·Xc,i,j

GAM’s Design Balances Efficiency and Effectiveness

GAM is designed to balance computational effi-

ciency and effectiveness. By utilizing global pooling and

lightweight fully connected layers, GAM introduces global

information calculation while maintaining low computa-

tional overhead. Compared to other complex attention mech-

anisms, GAM has a lower computational complexity yet can

still significantly enhance model performance.

GAM can be seamlessly integrated into various con-

volutional neural network architectures, providing effective

feature enhancement for both classification and detection

tasks, thereby improving model performance. Its simple

structure and good compatibility make it widely applicable

across different scenarios.

The GAM attention mechanism enhances feature rep-

resentation by calculating attention weights using global

feature information. It is computationally efficient and easy

to integrate, significantly boosting the performance of con-

volutional neural networks. Introducing GAM can improve

the detection accuracy and robustness of YOLOv8, particu-

larly excelling in tasks involving complex backgrounds and

multi-object detection.

2.3 Experimental Setup and Model Training

Dataset

a) Using the Wind Turbine Blade Defect Dataset

The defect categories are:

• Burning

• Crack

• Deformity

• Dirt

• Oil

• Peeling

• Rusty

Number of training images: 3,422 images (resolution

640x640), as shown in Figure 2 and Figure 3.

Number of validation images: 856 images (resolution

640x640), as shown in Figure 4 and Figure 5.

b) Data Preprocessing

YOLOv8 provides built-in image preprocessing fea-

tures, including image scaling, normalization, and data aug-

mentation. The specific preprocessing steps are as follows:

• Image Scaling: Scale all images to the required input

size of the model.

• Normalization: Normalize the pixel values of the

images to the [0, 1] range.

• Data Augmentation: Use data augmentation tech-

niques such as random cropping, flipping, rotation,

and color jitter to increase data diversity and prevent

model overfitting.

By utilizingYOLOv8’s preprocessing features, the data

preprocessing steps can be simplified, ensuring consistency

in the dataset and the effectiveness of model training.

Experimental environment

• Operating System: Linux

• Hardware Configuration: NVIDIA RTX 4090D

• Software Configuration: Python 3, PyTorch 2.0,

CUDA 11.8, YOLOv8

• Input Size

Model configuration

: 640x640 pixels

• Batch Size: 64

• Learning Rate: 0.001

• Optimizer: Adam optimizer

• Loss Function: A combination of the original

YOLOv8 loss and the improved PIoU regression loss

based on the innerIoU concept.
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Figure 2. Training images.

Figure 3. Training labels.

Training process

• Data Loading: Use YOLOv8’s DataLoader to load

training and validation data.

• Model Initialization: Initialize the model with pre-

trained weights.

• Training Process:

1. Number of Iterations: Train for 100 epochs,

with each epoch representing one complete it-

eration over the entire training set.

2. Learning Rate Adjustment: Use a cosine an-

nealing learning rate scheduler to dynamically

adjust the learning rate during training.

3. Data Augmentation: During training, use

YOLOv8’s built-in data augmentation features

such as random cropping, flipping, and color jitter.

Model Validation: At the end of each epoch, evalu-

ate the model performance using the validation set,

recording loss values and accuracy metrics.

Performance evaluation

• Precision: The proportion of true positive samples

among all detected positive samples.

• Recall: The proportion of actual positive samples that

are correctly detected.

• F1 Score: The harmonic mean of precision and recall.

• Mean Average Precision (mAP): The average preci-

sion across all classes.
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Figure 4. Validation images.

Figure 5. Validation labels. Figure 6. Yolov8 hyperparameters.
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3. Experiment Results and Analysis

3.1 Ablation study

In this experiment, we conducted ablation studies with

several different algorithms. The results on the validation

set are shown in the Table 1 below:

a) Analysis of Experimental Results

In this experiment, we conducted multiple sets of com-

parative experiments on YOLOv8 and its improved methods.

The results are shown in the table:

1. YOLOv8: a. Precision and Recall are both 1 and

0.95, respectively, with an F1 score of 0.83 and a

mean Average Precision (mAP) of 0.876. b. This is

the baseline model, which shows high precision but

relatively low F1 score, indicating a trade-off between

precision and recall.

2. YOLOv8 + SPD: a. After adding the SPD (Spatial

Pyramid Dilated) module, precision remains the same,

but the F1 score slightly decreases to 0.82, and the

mAP also slightly drops to 0.874. b. This may indi-

cate that the SPD module has limited effectiveness in

improving precision under the current settings.

3. YOLOv8 + PloU (Inner): a. By replacing the stan-

dard IoU loss function with PloU (Position Loss un-

der Uncertainty), both precision and recall improve to

0.96, with an F1 score of 0.83, and the mAP increases

to 0.888. b. This indicates that the PloU loss func-

tion has a significant effect on improving the overall

performance of the model.

4. YOLOv8 + SPD + PloU (Inner): a. Combining SPD

and PloU (Inner) methods, precision remains at 1, re-

call increases to 0.96, the F1 score rises to 0.84, and

the mAP significantly improves to 0.894. b. This

suggests that the combination of these two methods

further enhances model performance.

5. YOLOv8 + SPD + PloU (Inner) + GAM: a. After

incorporating GAM (Global Attention Mechanism),

precision remains at 1, while recall and the F1 score

both increase to 0.96 and 0.87, respectively, and the

mAP rises to 0.914. b. This improvement signifi-

cantly enhances the recall rate and F1 score, indicating

the effectiveness of GAM in focusing on important

features.

6. YOLOv8 + SPD + PloU (Inner) + BiFPN + GAM:

a. The final model, which combines BiFPN (Bidirec-

tional Feature Pyramid Network) and GAM, main-

tains precision at 1, further increases recall to 0.98,

achieves an F1 score of 0.87, and reaches the highest

mAP of 0.916. b. This combination demonstrates

the best overall performance, significantly improving

recall and mAP, indicating the effective synergistic

effect of various improvements in feature extraction

and attention mechanisms.

b) Conclusion

Through the above experiments, we found that:

• Adding the SPD module alone does not significantly

improve the model’s performance and may even re-

sult in a decrease in the F1 score and mean Average

Precision (mAP).

• Adding the PloU (Inner) module alone can signifi-

cantly improve the model’s recall rate and mAP.

• Combining the SPD and PloU (Inner) modules can

comprehensively improve the model’s recall rate, F1

score, and mAP to a certain extent.

These experimental results provide valuable references

for model improvement, indicating that adding appropriate

improvement modules to the YOLOv8 model can effectively

enhance its detection performance. This offers theoretical

support and practical guidance for further optimization and

application.

3.2 Testing results

All testing results are in Figure 7 below:

(A)
Figure 7. Cont.
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Table 1. Comparison of evaluation metrics for yolov8 ablation experiments.

Algorithm Precision Recall F1 Score mAP

YOLOv8 1 0.95 0.83 0.876

YOLOv8+SPD 1 0.95 0.82 0.874

YOLOv8+PIoU(Inner) 1 0.96 0.83 0.888

YOLOv8+SPD+PIoU(Inner) 1 0.96 0.84 0.89

YOLOv8+SPD+PIoU(Inner)+ GAM 1 0.96 0.87 0.914

YOLOv8+SPD+PIoU(Inner)+BiFPN+GAM 1 0.95 0.87 0.916

(B)

(C)
Figure 7. Inference images from the validation set during training.

4. Discussion

The main objective of this experiment is to improve

the YOLOv8 model to enhance the accuracy and efficiency

of wind turbine blade defect detection. Through a series of

comparative experiments, we have derived some important

conclusions.

4.1 Performance of the baseline model

YOLOv8

The baseline model YOLOv8 performs excellently in

wind turbine blade defect detection, with a precision of 1,

a recall of 0.95, an F1 score of 0.83, and a mean Average

Precision (mAP) of 0.876.

This indicates that YOLOv8 effectively balances pre-

cision and recall when handling wind turbine blade defect

detection. However, the F1 score and mAP suggest that there

is still room for improvement, particularly in further enhanc-

ing the recall rate to improve overall detection effectiveness.

4.2 Introduction of the spatial pyramid dilated

(SPD) module

After introducing the SPD module, although precision

remains unchanged, the F1 score slightly decreases to 0.82,

and the mAP also slightly drops to 0.874.

This indicates that the SPD module does not signifi-

cantly improve model performance under the current con-

figuration. One possible reason for the limited performance

enhancement is that the SPD module may not capture the

details of blade defects adequately during feature extraction.

Future research can further optimize SPD’s parameter set-

tings or combine it with other feature extraction methods to

improve its performance in defect detection.

4.3 Application of the PloU (Inner) loss func-

tion

By replacing the standard IoU loss function with the

PloU (Inner) loss function, both precision and recall improve

to 0.96, the F1 score increases to 0.83, and the mAP rises to
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0.888.

This demonstrates that PloU (Inner) has an advantage
in handling uncertainty and subtle defects. PloU (Inner) bet-
ter optimizes the model’s detection capabilities, particularly
in detecting defects in large, complex structures like wind
turbine blades, where it is especially effective.

4.4 Effect of combining SPD and PloU (inner)

Combining the SPD and PloU (Inner) methods signifi-
cantly enhances model performance, with precision remain-
ingat 1, recall improving to 0.96,the F1 score rising to 0.84,
and the mAP significantly increasing to 0.894.

This indicates that the combination of these two meth-
ods can complement each other in feature extraction and loss
optimization, significantly improving the model’s detection
performance.

4.5 Introduction of global attention mechanism
(GAM) and bidirectional feature pyramid
network (BiFPN)

Further introducing GAM and BiFPN leads to a signif-
icant improvement in recall and F1 scores, with the mAP
reaching its highest value.

This suggests that combining multiple improvement
methods enhances model performance at different levels.
The synergy between modules significantly improves feature
extraction and attention mechanisms, thereby enhancing de-
tection accuracy. In particular, the addition of GAM greatly
enhances the model’s adaptability to complex backgrounds.

4.6 Comprehensive performance of the optimal
model

Ultimately, the improved model combining BiFPN and
GAM demonstrates the best overall performance, with preci-
sion remaining at 1, recall increasing to 0.98,the F1 score
reaching 0.87, and the mAP achieving the highest value of
0.916.

This multi-module combination method not only cap-
tures the details of wind turbine blade defects but also en-
hances the model’s adaptability to complex backgrounds,
thereby improving overall detection effectiveness.

5. Conclusions

This study significantly improved the accuracy and ef-
ficiency of wind turbine blade defect detection by enhancing
the YOLOv8 model. The experimental results show that the
baseline YOLOv8 model already has high detection perfor-
mance, but the introduction of the PloU (Inner) loss func-
tion, Global Attention Mechanism (GAM),and Bidirectional
Feature Pyramid Network (BiFPN) further significantly im-
proved the model’s recall rate and mean Average Precision
(mAP). These improvement methods excel in handling com-
plex backgrounds and subtle defects, demonstrating their
synergistic effects in feature extraction and attention mecha-
nisms.

These technological innovations not only enhance de-
tection performance but also show great potential for prac-
tical industrial applications. By detecting and identifying
minor defects in real-time, potential failures can be effec-
tively prevented, reducing downtime and maintenance costs,
thus improving the overall efficiency and safety of wind
power generation systems.

6. Future work

Future research will focus on further optimizing the
parameter settings of each module and exploring new deep
learning techniques such as self-supervised learning [10] and
transfer learning to enhance the model’s generalization abil-
ity. Additionally, we will conduct validations in more prac-
tical wind power scenarios to ensure the model’s efficient
and stable operation in different environments. We will also
develop efficient industrial deployment solutions to promote
the application and popularization of the improved model in
actual production environments. Through these efforts, we
aim to further improve the accuracy and efficiency of wind
turbine blade defect detection, providing a solid guarantee
for the stable operation of wind power generation systems.
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