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ABSTRACT

Wind turbine blades are vital for energy generation, where defects can cause efficiency loss and costly maintenance.
This paper proposes an improved object detection algorithm based on YOLOVS for detecting defects in wind turbine blades.
Enhancements include network architecture modifications and advanced attention mechanisms, which boost detection
accuracy while maintaining real-time processing. Our approach is tested on a custom dataset, showing better performance
than the standard YOLOv8 model. These improvements can enhance automated defect detection in wind turbines, reducing
downtime and operational costs, and contributing to more efficient renewable energy maintenance.
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1. Introduction the core equipment for wind energy conversion, play a cru-
cial role in the economic efficiency and operational stability
1.1 Research background of wind farms. The blades of wind turbines are exposed to

harsh natural environments, making them prone to defects
Wind energy, as a clean and renewable energy source, such as cracks, wear, and corrosion. If these defects are not
has been widely applied globally. Wind turbines!!!, being detected and repaired promptly, they can lead to equipment
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failure and even severe safety accidents.

1.2 Current research status

Traditional methods for detecting blade defects mainly
rely on manual inspection and regular maintenance, which
are inefficient, costly, and susceptible to human error. With
the advancement of deep learning technology, automated
detection methods based on computer vision have gradually
become a research hotspot. The YOLO (You Only Look
Once) series of algorithms have been widely applied due to
their efficiency and accuracy in object detection. YOLOvS 2],
as the latest version of this series, has shown significant im-

provements in detection performance.

1.3 Research problems

Although YOLOVS performs excellently in many ap-
plications, directly applying it to wind turbine blade defect
detection still faces challenges. These challenges include
detecting small objects in complex backgrounds and distin-
guishing various types of defects. Therefore, it is necessary
to improve and optimize the YOLOVS algorithm to enhance
its adaptability and performance in wind turbine blade defect

detection.

1.4 Research objectives

This study aims to improve the YOLOVS algorithm to
enhance its effectiveness in detecting defects in wind tur-
bine blades. The specific objectives include optimizing the
algorithm structure, improving detection accuracy, increas-
ing detection speed, and validating the effectiveness of the

improved algorithm in practical applications.

2. Materials and methods

2.1 YOLOv8

YOLOVS8 (You Only Look Once version 8) is an ad-
vanced object detection algorithm primarily used for identi-
fying and locating objects within images, see Figure 1. It
belongs to the YOLO series, characterized by its ability to
simultaneously predict the positions and classes of multiple
objects in a single forward pass, thereby offering efficient

and real-time performance.

1) Input Layer

The input image undergoes certain preprocessing steps,
such as resizing and normalization, to meet the model’s input
requirements. The input size is usually fixed, for example,
640x640.

2) Backbone

Purpose: Extract basic features from the image.

Structure:

e Conv Layer: Performs convolution operations with
common kernel sizes of 3x3, a stride of 2, and padding
of 1, to reduce the size of the feature map.

e C2f Module: A key feature extraction module in
YOLOVS. It includes multiple convolution layers and
Bottleneck modules, which help maintain efficient
feature extraction while reducing computational load.

e SPPF (Spatial Pyramid Pooling-Fast) Module: Fur-
ther extracts multi-scale features by applying max
pooling at different scales, then resizes the feature
maps to a fixed size before concatenating them.

3) Neck

Purpose: Further processes the multi-scale features
extracted by the Backbone and fuses features from different
scales to improve detection accuracy and robustness.

Structure:

e Concat Layer: Concatenates feature maps from dif-
ferent layers to fuse multi-scale features.

e Upsample Layer: Performs upsampling operations
to enlarge low-resolution feature maps to the same
size as high-resolution feature maps for easier feature
fusion.

e C2f Module: Further extracts and fuses features in
the Neck.

In the Neck, through upsampling and concatenation op-
erations, high-level semantic information is combined with
low-level detailed information to form richer feature repre-
sentations, enhancing the model’s ability to detect objects of
various scales.

4) Head

Purpose: Generate the final detection results, includ-
ing the locations and classes of objects.

Structure:

e Conv Layer: Performs convolution operations to fur-
ther process the fused feature map.

e Detect Module: Predicts object bounding boxes and
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Figure 1. Yolov8 Network Architecture Diagram.

classes, including anchor box prediction and non-
maximum suppression (NMS) operations.

e Bbox, Cls, Obj Outputs: Represent bounding box
regression, class prediction, and object confidence
prediction, respectively.

5) Technical Details:

a) Anchor-Free:

The Anchor-Free®] mechanism in object detection al-
gorithms does not use predefined anchor boxes to locate
and classify objects but directly predicts the center point
and size of the object. This method simplifies the detection

process and can often improve detection accuracy and effi-
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ciency. Specifically, Anchor-Free directly predicts whether
each pixel in the image is the center point of an object and,
if so, further predicts the width and height of the object
without relying on predefined anchor boxes for adjustment.
Compared to traditional anchor-based methods, Anchor-Free
reduces the setup and tuning work of anchor box sizes and
ratios, offering greater flexibility. It can better adapt to ob-
jects of different scales and shapes, reducing the problem
of anchor box mismatches and improving detection accu-
racy. In YOLOVS, this mechanism is mainly reflected in
the output layer, where feature maps are processed through

multiple convolution operations to directly predict the object
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confidence, category, width, and height for each pixel point.

b) CloU:

CloU ™ (Complete Intersection over Union) is an im-
proved bounding box regression loss function that not only
considers the overlapping area between two bounding boxes
but also includes the distance between their center points,
the aspect ratio of the bounding boxes, and their relative
scale. This allows for better optimization of the bounding
box’s position and shape, enabling the predicted box to more
accurately fit the target object. CloU is particularly effective
in cases where the aspect ratio and position of the objects
vary significantly.

CIOUZI—IOU+M+QU

p

1) IoU is Intersection over Union.

2) p? (b, b9") is the Euclidean distance between the cen-
ter points of the predicted box(b) and the ground truth
box(b9?).

3) cis the diagonal length of the enclosing box.

4) a is the adjustment parameter, defined as a =

5) v is a parameter that measures the consis-

tency of the aspect ratio, defined as v =

IT
¢) DFL:

DFL (Distribution Focal Loss) is a loss function used

2
gt
4 (arct(mwg—t - arctan%)

in classification tasks for object detection. By re-weighting
the class probability distribution, it assigns higher weights to
samples that are difficult to classify, thereby enhancing the
model’s ability to recognize hard-to-distinguish categories.
DFL effectively addresses the imbalance between positive
and negative samples, improving the model’s classification
accuracy across various scenarios.

d) BCE:

BCE (Binary Cross-Entropy) is a commonly used loss
function for binary classification problems. It measures the
difference between the model’s predicted results and the true
labels. The core idea is to evaluate the model’s prediction
performance by calculating the cross-entropy between the

predicted probabilities and the true labels.

2.2 Method
YOLOvS8 algorithm improvement

1) Loss Function: Improving powerfulou using the

concept of InnerloU

a) InnerloU:

InnerloUP! (Inner Intersection over Union) is an im-
proved IoU (Intersection over Union) metric designed to
better evaluate the performance of object detection models.
Traditional IoU only considers the overlapping area between
the predicted box and the ground truth box. In contrast, In-
nerloU introduces more geometric information to enhance
this evaluation method.

The core idea of InnerloU is to incorporate internal ge-
ometric information to more accurately assess the degree of
overlap between the predicted box and the ground truth box.
This method not only considers the overlapping area but also
takes into account the relative position and shape of the pre-
dicted box and the ground truth box. Specifically, InnerloU
performs a fine-grained calculation within the overlapping
area to reflect more geometric characteristics between the
two.

Advantages of InnerloU:

e Robustness: InnerloU better reflects the degree of
overlap between the predicted box and the ground
truth box in cases of partial occlusion or significant
positional deviations.

e More reasonable measurement: Especially when de-
tecting small targets, InnerloU can more accurately
evaluate the detection results.

Calculation Method for InnerloU:

e Determine the Inner Box: The Inner Box is formed by
the minimum bounding rectangle of the overlapping
region between the predicted box and the ground truth
box. This involves taking the maximum coordinates
of the top-left corner and the minimum coordinates
of the bottom-right corner of the overlapping part of
the two boxes.

e Calculate the Area of the Inner Box: The calculation
steps are similar to those of traditional IoU, but here
the overlapping part is limited to the Inner Box.

o Compute InnerloU: Calculate the InnerloU based on
the area of the Inner Box

InnerloU =

InnerBox(Area)
PredictedBoz Area+GroundTrutBorArea—Inner Box(Area)

b) PloU:

PIoU!®! (Precise Intersection over Union) is an im-

provement over the traditional IoU, aiming to more accu-

rately evaluate the overlap between the predicted box and the
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ground truth box. Traditional IoU calculates the overlapping
area of two boxes divided by their union area, which, while
simple and effective, may not be precise enough in certain
situations, especially when there are significant differences
in the position and shape of the predicted box and the ground
truth box.

PIoU improves the accuracy of IoU calculation by in-
troducing the concepts of boundary offset and area offset. It
not only considers the overlapping area but also takes into
account the shape differences and boundary alignment of the
predicted box and the ground truth box.

PIoU Calculation Method:

e Boundary Offset: Calculate the boundary differences
between the predicted box and the ground truth box.
The boundary offset considers the offsets in four direc-
tions (top, bottom, left, right). These offsets provide
a more accurate reflection of the boundary alignment
between the two boxes.

e Area Offset: Besides the overlapping area, PIoU also
considers the area differences between the two boxes.
The area offset measures the area similarity between
the predicted box and the ground truth box.

e PloU Calculation: After integrating the boundary off-
set and area offset, the PIoU formula is as follows:

PIoU = IoU — a- BoundaryO f fset — 3 - AreaO f f set

Among them, a and f are parameters used to adjust the
weights of the boundary offset and area offset.

Advantages:

e Higher Accuracy: PloU introduces boundary and area
offsets, allowing for a more precise evaluation of the
matching degree between the predicted box and the
ground truth box.

e Improved Model Performance: When used as part of
the loss function in training object detection models,
PIoU can significantly enhance the detection accuracy
of the model, especially when handling targets with
complex shapes and significant positional differences.

e Robustness: PloU demonstrates greater robustness
for targets of different scales and shapes, making it
better suited to adapt to the complex scenarios found
in practical applications.

2) Modifying the C2f Module Using the SPD Method!”!

By transforming the spatial information of the input
feature map into depth information, the number of channels

is increased while retaining fine-grained spatial informa-
tion. Traditional strided convolution and pooling layers are
replaced to avoid the loss of fine-grained information. Non-
uniform strided convolution is used to perform convolution
operations pixel by pixel, preserving more detailed informa-
tion. This approach is particularly suitable for low-resolution
images and small object detection.

The design is simple and easy to integrate into various
CNN architectures, such as YOLOvVS5 and ResNet. It signif-
icantly enhances the performance of low-resolution image
and small object detection tasks while maintaining relatively
low computational complexity.

3) Enhancing Feature Extraction Using BiFPN (Bidi-
rectional Feature Pyramid Network)

BiFPN I adopts a bidirectional fusion path, combin-
ing both top-down and bottom-up feature fusion approaches.
This design allows for better integration of features from
different levels, capturing high-level semantic information
while retaining low-level detail information. To optimize
feature fusion, BiFPN uses a weighted mechanism on each
fusion path, adjusting weights through training to make the
feature fusion more efficient.

In terms of computational efficiency, BiFPN employs
repeated fusion layers and depthwise separable convolutions,
significantly reducing the computation and the number of pa-
rameters. As a result, BIFPN not only improves performance
but also maintains low computational overhead, making it
suitable for real-time object detection tasks.

The structure of BiFPN is highly flexible, capable of
handling any number and scale of feature maps. It can be
combined with various backbone networks, such as ResNet
and EfficientNet, adapting to different object detection tasks.
This flexibility ensures that BiFPN can perform well in a
variety of application scenarios.

By introducing BiFPN, the detection accuracy and effi-
ciency of YOLOVS can be significantly improved, especially
when dealing with targets that have large scale variations
and complex backgrounds. The lightweight design of BiFPN
also ensures its applicability in real-time detection tasks.

4) Using GAM °! Global Attention Mechanism

By leveraging global context information to compute
attention weights, the feature extraction capabilities of con-
volutional neural networks are enhanced. Specifically, GAM
first performs global pooling on the input feature map to
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generate a global feature vector. Then, a series of fully con-
nected layers and activation functions are used to calculate
the attention weights for each channel. Finally, these weights
are multiplied element-wise with the original feature map,
enhancing important features and suppressing less important
ones.

e Global Pooling: Perform global average pooling on
the input feature map X, resulting in a global feature
vector.

Ze = g Soimy Yoy Xei g

e Attention Weight Calculation:

Using fully connected layers and an activation func-
tion (usually sigmoid), generate the attention weights.
s = sigmoid (W, + b)
e Weighted Feature Map:
Multiply the attention weights s element-wise with
the input feature map X to obtain the output feature
map Y.
Yeij=5sc Xeij
GAM’s Design Balances Efficiency and Effectiveness

GAM is designed to balance computational effi-
ciency and effectiveness. By utilizing global pooling and
lightweight fully connected layers, GAM introduces global
information calculation while maintaining low computa-
tional overhead. Compared to other complex attention mech-
anisms, GAM has a lower computational complexity yet can
still significantly enhance model performance.

GAM can be seamlessly integrated into various con-
volutional neural network architectures, providing effective
feature enhancement for both classification and detection
tasks, thereby improving model performance. Its simple
structure and good compatibility make it widely applicable
across different scenarios.

The GAM attention mechanism enhances feature rep-
resentation by calculating attention weights using global
feature information. It is computationally efficient and easy
to integrate, significantly boosting the performance of con-
volutional neural networks. Introducing GAM can improve
the detection accuracy and robustness of YOLOVS, particu-
larly excelling in tasks involving complex backgrounds and
multi-object detection.

2.3 Experimental Setup and Model Training

Dataset

a) Using the Wind Turbine Blade Defect Dataset
The defect categories are:

e Burning

e Crack

e Deformity

e Dirt

e Oil

e Peeling

e Rusty

Number of training images: 3,422 images (resolution
640x640), as shown in Figure 2 and Figure 3.

Number of validation images: 856 images (resolution
640x640), as shown in Figure 4 and Figure 5.

b) Data Preprocessing

YOLOV8 provides built-in image preprocessing fea-
tures, including image scaling, normalization, and data aug-
mentation. The specific preprocessing steps are as follows:

e Image Scaling: Scale all images to the required input
size of the model.

e Normalization: Normalize the pixel values of the
images to the [0, 1] range.

e Data Augmentation: Use data augmentation tech-
niques such as random cropping, flipping, rotation,
and color jitter to increase data diversity and prevent
model overfitting.

By utilizing YOLOVS8’s preprocessing features, the data
preprocessing steps can be simplified, ensuring consistency

in the dataset and the effectiveness of model training.

Experimental environment
e Operating System: Linux
e Hardware Configuration: NVIDIA RTX 4090D
o Software Configuration: Python 3, PyTorch 2.0,
CUDA 11.8, YOLOVS

Model configuration
o Input Size: 640x640 pixels
o Batch Size: 64
e Learning Rate: 0.001
e Optimizer: Adam optimizer
e Loss Function: A combination of the original
YOLOVS loss and the improved PIoU regression loss

based on the innerloU concept.
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Figure 3. Training labels..

Training images.

Training process

e Data Loading: Use YOLOvS8’s Dataloader to load
training and validation data.

e Model Initialization: Initialize the model with pre-
trained weights.

o Training Process:

1. Number of Iterations: Train for 100 epochs,
with each epoch representing one complete it-
eration over the entire training set.

Learning Rate Adjustment: Use a cosine an-
nealing learning rate scheduler to dynamically
adjust the learning rate during training.

3. Data Augmentation: During training, use
YOLOVS8’s built-in data augmentation features
such as random cropping, flipping, and color jitter.

Model Validation: At the end of each epoch, evalu-
ate the model performance using the validation set,

recording loss values and accuracy metrics.
Performance evaluation

e Precision: The proportion of true positive samples
among all detected positive samples.

e Recall: The proportion of actual positive samples that
are correctly detected.

e F1 Score: The harmonic mean of precision and recall.

e Mean Average Precision (mAP): The average preci-

sion across all classes.

45



Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

AENYN SEPJdAESER

1-2- pgri0792 1 3 jpgrtdied 15 jpgrhadsd 1 9- jpg.rf.aB75 g.rff2d g.rtfo7 1 jpg.ri9cd 1-24-jpgrf929  1-31-jpgrfSae  1-41-jpg.ri.86h
f2de32917870
2ccafb1925dc6 bd b29695217b83
0.jpg 48cipg %jpg 50jrg 27jpg 3919jpg d060jpg de4bsjpg 2cljpg 4d1jpg 8cjpg 65pg 747 jpg

o

o (NE

1-41-jpgrf394  1-54-jpgril6a  1-60- jpg.rfsaf |—50—Jpgrf75t T4 jpgrizss  16tjpgriiic 165-jpgrisss 170-Jpgrifis 176 jporiSdf 13- pari6fs 186-jpgrisdh 187-jpgrilcl 1-50-jpori0sd

ﬁ

bbaa5e55297b  3c2c2d4dOdee6  1f0728eaad548 190f: 1 12 d586465f b defb 2eda591994b6
6f38eleedaB74 eea56baB3c681 a2a4617126d09 Qe"d%ﬁ?bsﬂs 13
bf02jpg accipg 55d‘pg 31cjpg f00jpg 7328jpg 64jpg 1e1jpg 23jpg 9es.jpg 6dfipg
E o | % .
‘ ‘ i J ]
L 4 \

TS0 jpgrisTs 1-85-jpgriosd 195 jeg rft7§ 1-105- jpgrfb0  1-106- jpgridl  1- lDBJpgr'ad 1114 jpgrile  1-114- jpgf71  1-117-jpgrfb0  1-117-jpgurid
fcfa077460e834  6785104cce633 0863877206
b53152ce0eebf Beaf8bde27847  b8b67d9B1cld  d300dDecebda2 22798b5d7d28  €3771cBbABI6T  flda362073e53

3ec9jpg 7966jpg 4dbjpg fesdjpg e69bjpg Oectjpg 8fbajpg 3f8jpg 402c2jpg 8265,jpg acccjpg <01.jpg 70jpg

"LV 11 AT

1138 jpgrfd7 1-130-jpg.i55  1-144-jpgrf78  1-144-jpgric 1148 jpgrief 1-151-jpg.ri2a 1-153-jpg.rfle 1-153-jpgri17 1-154-jpgri78 1-161-jpgrf62 1-163-jpgrf0l  1-165- jpg.rfss
18710391610 443ddbeBd0e6f  e3f31330ab456

1122- jpgri74  1-129- jpgrf2c  1-131- jpgrf80

1-147-jpgrife

bB0073f5dfe41 1 66c592fdledd2  3191d71¢75053  b0fdcadc0e028 z73z5d8‘§bbz3

728bejpg 0562fjpg 473jpg 8730jpg 812jpg QMDBJpQ ZBberg 2daljpg ec736jpg baStjpg 00jpg 98325,jpg 2jpg
-— . “l - , -
b b D § ' h h ‘i
> N - = -~

1-166-_jpg.rf77  1-166- jpg.rf44 1-170-jpg.rf7c 1-175-jpgrfae  1-177-jpgri3c  1-180- jpg.rfi7  1-182-_jpg.rfbl  1-184- jpg.rf7f 1-188-jpgrf01  1-189-jpg.rfOc  1-189-jpgrf.2f  1-190- jpg.rfcd  1-191-jpg.rf73

)d798b2db 7 6fa84b87185f8

33d63703a0d3f  9a816f675bc24 badbbf4d5c676 b753bd: D|d§a7|b7339 bdeﬂd4ab|4ra‘ 2b77|7‘5427‘6 4bf§8789283r0 80f903a2a99c6
Sbdajpg be737jpg do6b.jpg a7243.jpg 7c42jpg 80b0jpg 696e7jpg f0b76jpg 2c93jpg

‘I TP LABEI-LLEFE

Figure 4. Validation images.

|Z| 1-2-_jpg.rf.0792589e79900caf52ccdfb..,
El 1-3- jpg.rf.dced91dbag29786135308..
|Z| 1-6-_jpg.rf.adad45ce59838ba330226...
=] 1-6-_jpg.rf.cfc3bcBadi7aBade4b43230..
=] 1-9-_jpg.rf.a875967b10fedecbbfBedc...
=] 1-11-_jpg.rf.53adac3681a10e2192589...
[E] 1-11- jpg.rff2d82482a15035bbc27Hd..
£l 1-13-_jpg.rffb7beace81d4508bb2969...
|£] 1-21-_jpg.rf.9c958eedbeatzedaef5le...
E| 1-22- jpg.rf.842a022f2e3e4d00bibad...
|£| 1-24-_jpg.rf.929%a7de1abdcOcef1ffbb...
|Z] 1-31-_jpg.rf.52e60fd200a8babcb882c..
E| 1-41- jpg.rf.86bf2ede3a917870a0704...
[E] 1-41- jpg.rf.304bbaa5e55207b6f38e1...
|=] 1-54-_jpg.rf.16a3c2c2d4d0deebeeas...
|=| 1-80-_jpg.rf.5af1f0728eaad548a2a46...
E| 1-60- jpg.rf.78¢1836b7300d79f9e11d...
|=| 1-84-_jpg.rf.2aa2ece3dac3fiT7ddéfba..
|=] 1-68-_jpg.rf.3fcd7e874b949ba4430c3...
2] 1-69-_jpg.rf.95509eb7dfebb73b69e0.
E| 170 jpg.rf.f4919056c78c221e5{225F...
[2] 1-76- jpg.rfodfbs2bd3f0e3742cd493...
E| 1-83_jpg.rf.6f4e6e79d586465f38222...
E| 1-86- jpg.rf.62bbd50dd39f56597 abc...
|Z] 1-87-_jpg.ri1c1defb990c755932300a..,
|=] 1-90-_jpg.rf.050aeda531394b661eaa...
|Z| 1-90-_jpg.rf.5768b033f7cabf034bee3...
=] 1-95-_jpg.rf.060{53a2ceB4425a88826...
[E] 1-95- jpg.rf.c792a582c47617d114c8a...
E| 1-105- jpg.rfb0646261dae5f3557d81...
[E] 1-106- jpg.rf.d120fechb8ced0shs3ls..
E| 1-108- jpg.rf.ad05389b5980080ea8...
|E] 1-114-_jpg.rf.0ec015752c134a7cd0a3...
£l 1-114-_jpg.rf.71{cfa97746228348caf8...
[E] 1-117-_jpg.rfb06785104cce633b8b6...
[E] 1-117- jpg.rf.d1082d63877206d3004...
E| 1-122- jpg.rf.7428141bf07cbce2279...
=] 1-129-_jpg.rf.2cdf951268eacBf1c3771...
E| 1-131- jpg.rf.8005246cf628b8f4f1 da3..
=] 1-138-_jpg.rf.d714ecb2bd1e7abs007...
E| 1-139- jpg.rf.55¢b0b5a2bc567893F8...
=] 1-144-_jpg.rf.7827cf6be727f28e7ea3...
[E] 1-144- pg.rf.c70adf01d0265618975... ;

Figure 5. Validation labels. Figure 6. Yolov8 hyperparameters.
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3. Experiment Results and Analysis

3.1 Ablation study

In this experiment, we conducted ablation studies with
several different algorithms. The results on the validation
set are shown in the Table 1 below:

a) Analysis of Experimental Results

In this experiment, we conducted multiple sets of com-
parative experiments on YOLOVS and its improved methods.
The results are shown in the table:

1. YOLOVS: a. Precision and Recall are both 1 and
0.95, respectively, with an F1 score of 0.83 and a
mean Average Precision (mAP) of 0.876. b. This is
the baseline model, which shows high precision but
relatively low F1 score, indicating a trade-off between
precision and recall.

2. YOLOVS + SPD: a. After adding the SPD (Spatial
Pyramid Dilated) module, precision remains the same,
but the F1 score slightly decreases to 0.82, and the
mAP also slightly drops to 0.874. b. This may indi-
cate that the SPD module has limited effectiveness in
improving precision under the current settings.

3. YOLOVS + PloU (Inner): a. By replacing the stan-
dard IoU loss function with PloU (Position Loss un-
der Uncertainty), both precision and recall improve to
0.96, with an F1 score of 0.83, and the mAP increases
to 0.888. b. This indicates that the PloU loss func-
tion has a significant effect on improving the overall
performance of the model.

4. YOLOVS + SPD + PloU (Inner): a. Combining SPD
and PloU (Inner) methods, precision remains at 1, re-
call increases to 0.96, the F1 score rises to 0.84, and
the mAP significantly improves to 0.894. b. This
suggests that the combination of these two methods
further enhances model performance.

5. YOLOVS8 + SPD + PloU (Inner) + GAM: a. After
incorporating GAM (Global Attention Mechanism),
precision remains at 1, while recall and the F1 score
both increase to 0.96 and 0.87, respectively, and the
mARP rises to 0.914. b. This improvement signifi-
cantly enhances the recall rate and F1 score, indicating
the effectiveness of GAM in focusing on important
features.

6. YOLOVS + SPD + PloU (Inner) + BiFPN + GAM:

a. The final model, which combines BiFPN (Bidirec-
tional Feature Pyramid Network) and GAM, main-
tains precision at 1, further increases recall to 0.98,
achieves an F1 score of 0.87, and reaches the highest
mAP of 0.916. b. This combination demonstrates
the best overall performance, significantly improving
recall and mAP, indicating the effective synergistic
effect of various improvements in feature extraction
and attention mechanisms.

b) Conclusion

Through the above experiments, we found that:

e Adding the SPD module alone does not significantly
improve the model’s performance and may even re-
sult in a decrease in the F1 score and mean Average
Precision (mAP).

e Adding the PloU (Inner) module alone can signifi-
cantly improve the model’s recall rate and mAP.

e Combining the SPD and PloU (Inner) modules can
comprehensively improve the model’s recall rate, F1
score, and mAP to a certain extent.

These experimental results provide valuable references
for model improvement, indicating that adding appropriate
improvement modules to the YOLOvS model can effectively
enhance its detection performance. This offers theoretical
support and practical guidance for further optimization and

application.

3.2 Testing results

All testing results are in Figure 7 below:

(A)

Figure 7. Cont.
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Table 1. Comparison of evaluation metrics for yolov8 ablation experiments.

Algorithm Precision Recall F1 Score mAP
YOLOV8 1 0.95 0.83 0.876
YOLOv8+SPD 1 0.95 0.82 0.874
YOLOv8+PIoU(Inner) 1 0.96 0.83 0.888
YOLOV8+SPD+PloU(Inner) 1 0.96 0.84 0.89
YOLOvV8+SPD+PloU(Inner)+ GAM 1 0.96 0.87 0.914
YOLOvV8+SPD+PloU(Inner)+BiFPN+GAM 1 0.95 0.87 0.916
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Figure 7. Inference images from the validation set during training.

4. Discussion

The main objective of this experiment is to improve
the YOLOV8 model to enhance the accuracy and efficiency
of wind turbine blade defect detection. Through a series of

comparative experiments, we have derived some important

4.1 Performance of the baseline model
YOLOVS

The baseline model YOLOvV8 performs excellently in
wind turbine blade defect detection, with a precision of 1,
a recall of 0.95, an F1 score of 0.83, and a mean Average
Precision (mAP) of 0.876.

This indicates that YOLOvVS effectively balances pre-
cision and recall when handling wind turbine blade defect
detection. However, the F1 score and mAP suggest that there
is still room for improvement, particularly in further enhanc-

ing the recall rate to improve overall detection effectiveness.

4.2 Introduction of the spatial pyramid dilated
(SPD) module

After introducing the SPD module, although precision
remains unchanged, the F1 score slightly decreases to 0.82,
and the mAP also slightly drops to 0.874.

This indicates that the SPD module does not signifi-
cantly improve model performance under the current con-
figuration. One possible reason for the limited performance
enhancement is that the SPD module may not capture the
details of blade defects adequately during feature extraction.
Future research can further optimize SPD’s parameter set-
tings or combine it with other feature extraction methods to

improve its performance in defect detection.

4.3 Application of the PloU (Inner) loss func-
tion

By replacing the standard IoU loss function with the
PloU (Inner) loss function, both precision and recall improve
to 0.96, the F1 score increases to 0.83, and the mAP rises to
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0.888.

This demonstrates that PloU (Inner) has an advantage
in handling uncertainty and subtle defects. PloU (Inner) bet-
ter optimizes the model’s detection capabilities, particularly
in detecting defects in large, complex structures like wind

turbine blades, where it is especially effective.

4.4 Effect of combining SPD and PloU (inner)

Combining the SPD and PloU (Inner) methods signifi-
cantly enhances model performance, with precision remain-
ingat 1, recall improving to 0.96,the F1 score rising to 0.84,

and the mAP significantly increasing to 0.894.

This indicates that the combination of these two meth-
ods can complement each other in feature extraction and loss
optimization, significantly improving the model’s detection

performance.

4.5 Introduction of global attention mechanism
(GAM) and bidirectional feature pyramid
network (BiFPN)

Further introducing GAM and BiFPN leads to a signif-
icant improvement in recall and F1 scores, with the mAP

reaching its highest value.

This suggests that combining multiple improvement
methods enhances model performance at different levels.
The synergy between modules significantly improves feature
extraction and attention mechanisms, thereby enhancing de-
tection accuracy. In particular, the addition of GAM greatly

enhances the model’s adaptability to complex backgrounds.

4.6 Comprehensive performance of the optimal
model

Ultimately, the improved model combining BiFPN and
GAM demonstrates the best overall performance, with preci-
sion remaining at 1, recall increasing to 0.98,the F1 score
reaching 0.87, and the mAP achieving the highest value of
0.916.

This multi-module combination method not only cap-
tures the details of wind turbine blade defects but also en-
hances the model’s adaptability to complex backgrounds,

thereby improving overall detection effectiveness.

5. Conclusions

This study significantly improved the accuracy and ef-
ficiency of wind turbine blade defect detection by enhancing
the YOLOvV8 model. The experimental results show that the
baseline YOLOv8 model already has high detection perfor-
mance, but the introduction of the PloU (Inner) loss func-
tion, Global Attention Mechanism (GAM),and Bidirectional
Feature Pyramid Network (BiFPN) further significantly im-
proved the model’s recall rate and mean Average Precision
(mAP). These improvement methods excel in handling com-
plex backgrounds and subtle defects, demonstrating their
synergistic effects in feature extraction and attention mecha-
nisms.

These technological innovations not only enhance de-
tection performance but also show great potential for prac-
tical industrial applications. By detecting and identifying
minor defects in real-time, potential failures can be effec-
tively prevented, reducing downtime and maintenance costs,
thus improving the overall efficiency and safety of wind

power generation systems.

6. Future work

Future research will focus on further optimizing the
parameter settings of each module and exploring new deep
learning techniques such as self-supervised learning ['”l and
transfer learning to enhance the model’s generalization abil-
ity. Additionally, we will conduct validations in more prac-
tical wind power scenarios to ensure the model’s efficient
and stable operation in different environments. We will also
develop efficient industrial deployment solutions to promote
the application and popularization of the improved model in
actual production environments. Through these efforts, we
aim to further improve the accuracy and efficiency of wind
turbine blade defect detection, providing a solid guarantee

for the stable operation of wind power generation systems.
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