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ABSTRACT

In modern logistics and delivery systems, mobile robot delivery systems have garnered significant attention due

to their efficiency and flexibility. However, existing robot delivery systems still face numerous challenges in complex

and dynamically changing environments. For instance, traditional algorithms exhibit low efficiency when processing

high-dimensional and unstructured data, making it difficult to adapt to real-time changing environments, which results

in reduced accuracy and efficiency in path planning and task execution. Additionally, the lack of effective perception

and decision-making mechanisms makes it challenging for robots to handle complex scenarios and variable delivery

demands. To address these issues, this paper proposes an optimization method for mobile robot delivery systems based

on deep learning. Firstly, this study introduces a spatial attention mechanism into the model. By focusing on key areas

in the environment and dynamically adjusting the attention points, robots can better recognize and avoid obstacles in

complex environments, thus improving the accuracy of navigation and path planning. Secondly, the Deep Deterministic

Policy Gradient (DDPG) algorithm is employed for policy optimization, facilitating efficient learning in high-dimensional

continuous spaces, enabling robots to learn effective delivery strategies in complex environments. Finally, through an

end-to-end optimization approach, the system can directly convert sensor data inputs into control command outputs,

reducing the complexity and error accumulation of intermediate steps and simplifying the system structure. Experimental

results demonstrate that the proposed method significantly enhances the overall performance of the delivery system. It

performs exceptionally well on several key indicators, including the accuracy of path planning, task execution efficiency,
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and system robustness. The effectiveness of combining the spatial attention mechanism with the deep policy gradient

algorithm has been fully validated, providing new insights and methods for future optimization of robot delivery systems.

Keywords: Delivery system; Deep learning; Spatial attention mechanism; DDPG algorithm; End-to-end optimization; Path

planning

1. Introduction

With the popularization of e-commerce and online shop-

ping, there has been a rapid increase in logistics demand,

driving the rapid development of delivery systems. These

systems not only need to efficiently manage and transport

goods but also ensure timely and accurate delivery to con-

sumers. Efficient logistics and delivery systems can not only

reduce operating costs but also enhance customer satisfac-

tion, thus improving the competitiveness of businesses [1].

As an innovative technology in the logistics industry, robot

mobile delivery systems demonstrate tremendous application

potential. Through automation and intelligence, robots can

efficiently execute delivery tasks, reduce manual interven-

tion, and improve work efficiency. At the same time, robots

possess flexible path planning and navigation capabilities,

enabling them to autonomously complete delivery tasks in

different environments, further enhancing the adaptability

and flexibility of the system. Based on this foundation, Li

et al. proposed the DDN-SLAM system, which provides

more detailed and reliable data support for robot naviga-

tion through real-time dense dynamic neural implicit SLAM

technology [2]. Especially in scenarios such as warehousing

and urban delivery, robot delivery systems can significantly

improve overall operational efficiency. Evaluating and im-

proving traffic system capacity has optimized transportation

efficiency in logistics, reducing congestion and delays, and

enhancing overall performance [3]. For example, in the field

of supply chain management, integrating robotic systems

into chemical industry clusters’ logistics can notably enhance

both supply chain efficiency and environmental benefits [4].

Despite the significant advantages of robot delivery systems,

they still face many challenges in complex and dynamic

environments [5]. Traditional path planning algorithms ex-

computation time, making it difficult to meet real-time re-

quirements [6]

hibit increased computational complexity when dealing with

high-dimensional and unstructured data. These algorithms

may need to process a large number of nodes and edges in

complex environments, resulting in significantly increased

. In contrast, Prototype Comparison Convolu-

tional Networks (PCCNs) demonstrate potential advantages

in highly dynamic environments. By learning from a limited

number of samples, PCCNs enhance the algorithm’s adapt-

ability to complex environments [7]. In dynamically changing

environments, it is difficult to adapt quickly to changes in the

environment. Each time the environment changes, the path

needs to be recalculated from scratch, leading to inefficien-

cies [8]. For example, when new obstacles or blocked paths

appear, it is necessary to recalculate from scratch, which

cannot efficiently update existing paths. Furthermore, tra-

ditional algorithms typically rely on static maps and preset

paths, lacking dynamic adjustment capabilities. Even if a

feasible path is found, it is difficult to guarantee that it is the

globally optimal path, especially in complex environments,

where the algorithm may only find a local optimal solution

and fail to discover a better global path [9]. Additionally, these

algorithms perform poorly in handling dynamic obstacles,

typically based on predefined static maps, lacking real-time

perception and processing capabilities for dynamic obstacles.

When robots encounter moving obstacles in complex environ-

ments, they may not be able to adjust the path in time, leading

to collisions or path planning failures [10]. To address these

challenges, recent research proposes using ultra-wideband

(UWB) sensors for real-time remote distance measurement.

This approach provides precise real-time data in complex

and dynamic environments, enhancing the robot’s ability to

sense and respond to dynamic obstacles [11]. Also, seman-

tic wireframe detection helps robots understand complex

geometries, improving path planning, navigation, and obsta-

cle avoidance [12]. Additionally, integrating extreme value

mixture modeling allows for more accurate assessment and

management of extreme risks in robotic systems, enhancing

stability and reliability [13]. By integrating image recommen-

dation algorithms with deep neural network-based social

network design, the robot’s autonomous decision-making in

logistics is enhanced, along with its ability to respond to user
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needs in a more personalized manner [14, 15].

Deep learning continues to evolve, and the application

of robot mobile delivery systems in modern logistics is be-

coming increasingly widespread. For example, research on

the coordinated operational planning of semi-autonomous

truck platooning demonstrates that optimizing vehicle routes

and scheduling can effectively reduce labor and energy

costs [16, 17]. Faced with the many challenges of existing

delivery systems in complex and dynamically changing envi-

ronments, researchers are constantly exploring new methods

and technologies. Using semi-supervised learning meth-

ods, researchers integrated labeled and unlabeled data in

image classification, addressing data scarcity in complex en-

vironments [18]. Additionally, multi-strategy improved dung

beetle optimization algorithms show potential in similar con-

texts [19]. Spatial attention mechanism, as an advanced tech-

nology, significantly enhances the perception ability of robots

by focusing on key areas in the environment [20]. This mech-

anism can dynamically adjust the focus, enabling robots to

better identify and avoid obstacles in complex environments,

thereby improving navigation and path planning accuracy.

However, the spatial attention mechanism also faces certain

challenges in the implementation process, including how to

efficiently calculate attention weights and its application in

high-dimensional data. Deep Deterministic Policy Gradi-

ent (DDPG) algorithm is a combination of policy gradient

methods and deep learning algorithms, suitable for reinforce-

ment learning tasks in continuous action spaces [21]. The

DDPG algorithm models policies through deep neural net-

works and optimizes them using policy gradient methods,

enabling efficient learning in high-dimensional continuous

spaces. Although DDPG performs well in policy optimiza-

tion in complex environments, it also has some limitations,

such as stability and convergence speed issues in high-noise

environments [22]. To address this, researchers have proposed

using active learning-based surrogate modeling for evolving

reliability assessment, which enhances the system’s reliabil-

ity and adaptability [23, 24]. Also, End-to-end optimization is

a holistic optimization solution from input to output, aimed

at reducing the complexity of intermediate links and error

accumulation. The design of end-to-end optimization allows

the system to directly input sensor data to output control

commands, not only simplifying the system structure but

also improving overall response speed and reliability. How-

ever, end-to-end optimization also faces some challenges,

such as the complexity of model training and the demand for

large-scale data [25]. To address these issues, this paper pro-

poses a robot mobile delivery system optimization method

combining spatial attention mechanism, Deep Determinis-

tic Policy Gradient algorithm, and end-to-end optimization,

aiming to solve the main problems faced by existing sys-

tems in complex and dynamic environments. By introducing

the spatial attention mechanism, we enhance the system’s

perception ability to dynamically changing environments;

using the DDPG algorithm for policy optimization improves

the efficiency and accuracy of path selection and task exe-

cution; through an end-to-end optimization solution, overall

performance improvement from input to output is achieved.

Additionally, fusion strategies based on machine learning

algorithms enhance the accuracy and robustness of malware

detection by combining the predictive results of multiple

models, thereby increasing system security [26, 27].

The structure of this paper is arranged as follows: Part

1 introduces the background, motivation, and objectives of

the research, emphasizing the importance of robot mobile

delivery systems in modern logistics and the main challenges

faced by existing systems in complex and dynamic environ-

ments. In the realm of path planning, employing machine

learning techniques for system reliability analysis offers new

insights into enhancing the stability of robotic path plan-

ning systems [28]. Part 2 introduces related work, including

existing methods for optimizing robot delivery systems. A

detailed review of path planning and navigation technology,

as well as the application of deep reinforcement learning

in robot control, is provided. The application of diverse at-

tention mechanisms significantly enhances the robot’s data

processing efficiency [29, 30]. Part 3 describes in detail the

proposed method, including the implementation of spatial

attention mechanism and DDPG algorithm. This section ex-

plains how to apply the spatial attention mechanism to robot

perception, enhancing its adaptability to complex environ-

ments, and optimize delivery strategies through the DDPG

algorithm to achieve efficient path planning and task execu-

tion. Part 4 describes the design process of the experiments,

the selection of datasets, the setting of evaluation metrics,

and the analysis of experimental results. The effectiveness of

the proposed method in improving the overall performance

of the delivery system is verified through experiments. Part
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5 is the conclusion and future work, summarizing the main

contributions and research results of this paper, and propos-

ing future research directions and improvement suggestions,

providing references for further optimization of robot mobile

delivery systems.

2. Relevant work

Path planning and navigation are core components of

robot mobile delivery systems. Traditional path planning

algorithms include the A* algorithm [31], Dijkstra’s algo-

rithm [32], and the Rapidly-exploring Random Tree (RRT)

algorithm [33]. These algorithms perform well in static envi-

ronments, capable of finding the shortest path from the start-

ing point to the target point. However, they have limitations

in complex and dynamic environments. For example,A* and

Dijkstra’s algorithms exhibit high computational complexity

when handling high-dimensional and unstructured data, mak-

ing real-time applications challenging. Additionally, these

algorithms typically rely on predefined static maps, lack-

ing adaptability to environmental changes. To overcome

these issues, researchers have proposed various improved

methods. For instance, the Real-Time A* (RTA*) algorithm

achieves real-time performance by limiting search depth and

computation time per decision, considering only a limited

number of future steps at each stage, making it suitable for

resource-constrained embedded systems and robot naviga-

tion [34]. Lifelong Planning A* (LPA*) can quickly update

the shortest path when the graph structure changes, updat-

ing only the affected parts when the environment changes,

thereby improving path update efficiency [35]. Focused D*,

a further optimization of the D* algorithm, enhances effi-

ciency and dynamic adaptability by concentrating the search

on regions most likely to affect the path during planning [36].

However, these methods still face challenges in handling dy-

namic obstacles and high-dimensional data. In recent years,

deep learning-based path planning methods have emerged,

significantly improving the efficiency and accuracy of path

planning by learning strategies in complex environments.

For example, Deep Q-Network (DQN) and Deep Determin-

istic Policy Gradient (DDPG) reinforcement learning algo-

rithms have been successfully applied to robot navigation

tasks.

Deep Reinforcement Learning (DRL) combines the

advantages of deep learning and reinforcement learning,

suitable for control tasks in high-dimensional continuous

spaces. In the field of robot control, DRL has been widely

applied to path planning, navigation, and task execution.

DQN combines Q-learning with deep neural networks to

address high-dimensional state space problems by approxi-

mating the Q-value function with neural networks, enabling

effective learning in discrete action spaces. In warehouse

automation, mobile robots use the DQN algorithm to achieve

autonomous navigation, avoiding collisions and efficiently

completing tasks [37]. However, DQN performs poorly in

continuous action spaces, a limitation addressed by DDPG.

By introducing policy and value networks, DDPG can opti-

mize policies in high-dimensional continuous action spaces.

In the autonomous driving field, deep learning technologies

are widely applied in perception, decision-making, and con-

trol systems. Perception systems typically use Convolutional

Neural Networks (CNNs) to process sensor data from cam-

eras, LiDAR, and radar. Tesla’s autonomous driving system

uses deep learning models to recognize road signs, lane mark-

ings, and pedestrians, making driving decisions accordingly.

Waymo utilizes deep learning models for environmental per-

ception and dynamic obstacle detection, ensuring vehicle

safety [38]. Significant progress has also been made in con-

trolling humanoid robots with deep learning. Boston Dynam-

ics’Atlas robot uses deep reinforcement learning algorithms

to perform complex actions and behaviors such as running,

jumping, and balancing. By learning from sensor data, Atlas

can adjust its action strategies to cope with various terrains

and environmental changes [39].

Additionally, Recurrent Neural Networks (RNNs) and

Long Short-Term Memory (LSTM) networks have notable

advantages in handling time series data, making them suit-

able for path planning tasks in dynamic environments. By re-

membering and predicting environmental changes [40], RNNs

and LSTMs can help mobile robots control paths more effec-

tively in dynamic environments. LSTM networks are com-

monly used to predict the motion trajectories of dynamic ob-

stacles and adjust the robot’s path to avoid collisions. LSTM

is also employed in multi-robot systems for task scheduling

and path optimization, improving system coordination and

efficiency. Despite addressing the short-term memory issues

of RNNs to some extent, LSTM can still suffer from informa-

tion loss or forgetting over particularly long-time sequences.
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Additionally, the network’s complex structure with numer-

ous parameters can result in high computational overhead

during inference and prediction stages. For real-time path

planning tasks, excessive computational complexity can lead

to response delays, failing to meet real-time requirements.

Generative Adversarial Networks (GANs) can generate re-

alistic environmental simulation data through adversarial

training between the generator and the discriminator, assist-

ing in the training of path planning algorithms [41]. GANs

can be used to create virtual training environments, allow-

ing mobile robots to learn and optimize their path planning

strategies in simulated settings, thus reducing training costs

and risks in real environments. In the field of autonomous

driving, GANs are employed to generate various driving

scenarios, aiding the training and testing of autonomous driv-

ing systems in diverse complex situations. However, the

training process of GANs is often unstable and prone to

mode collapse, where the generator produces only a limited

variety of samples instead of covering the entire data dis-

tribution. This phenomenon can lead to a lack of diversity

in the generated data, affecting the model’s generalization

ability and practical application effectiveness. Spatial at-

tention mechanisms, which can dynamically adjust focus

areas, are widely used in computer vision and natural lan-

guage processing. In robot perception and control, spatial

attention mechanisms significantly enhance perception and

decision-making capabilities by focusing on key areas of the

environment. Models combining CNNs and attention mech-

anisms can better identify obstacles and navigation targets

in complex environments, improving path planning accu-

racy. Although spatial attention mechanisms can enhance

perception capabilities in static environments, their adapt-

ability and real-time performance may still be insufficient

in highly dynamic and rapidly changing environments, po-

tentially failing to respond in real time to quickly changing

obstacles and paths in practical applications. Therefore, this

paper proposes a novel robot mobile delivery system opti-

mization scheme combining spatial attention mechanisms,

Deep Deterministic Policy Gradient (DDPG) algorithms, and

end-to-end optimization methods. By introducing spatial at-

tention mechanisms, the perception capability and decision

accuracy of the robot are enhanced through dynamically ad-

justing the environmental focus areas. Additionally, Zhao

et al. proposed a novel method for generating key points

using Large Language Models (LLMs), which improves the

efficiency and accuracy of complex data analysis [42]. Ad-

ditionally, the DDPG algorithm is adopted for optimizing

delivery strategies. DDPG, combining policy gradient meth-

ods and deep learning techniques, achieves efficient learning

in high-dimensional continuous action spaces through the

mutual optimization of policy and value networks. Finally,

this paper implements an end-to-end optimization scheme,

directly inputting sensor data into control command output,

simplifying the system structure, reducing the complexity

and error accumulation of intermediate links, not only im-

proving the system’s response speed and reliability but also

enhancing overall performance.

3. Method

Figure 1 shows the overall algorithm architecture of

the robot delivery system used in this article.

Figure 1. Overall algorithm architecture.

3.1 Spatial attention mechanism

The application of spatial attention mechanism in robot 

mobile delivery systems aims to enhance the perception ca-

pabilities of robots, enabling them to navigate and plan paths 

more accurately in complex environments. Its core lies in 

assigning different attention weights to different regions of 

the input feature map, focusing on key areas in the environ-

ment to improve the precision of perception and decision-

making [43]. In this paper, the spatial attention mechanism 

is mainly divided into two steps: attention weight calcula-

tion and attention feature map generation. The architecture 

diagram of SAM is shown in Figure 2.

Firstly, for a given input feature map F ∈ RC×H×W ,

whereC,H , andW represent the number of channels, height,

and width of the feature map, respectively, we need to calcu-
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late the attention weights for each spatial position.

Figure 2. Structure diagram of SAM.

Representing the feature vector at each position of F

as fi,j ∈ RC , where i and j represent the indices of height

and width of the feature map, respectively, the calculation of

attention weights can be achieved through a simple feedfor-

ward neural network, formalized as:

αi,j = σ (Wαfi,j + bα)

Here, Wα ∈ R1×C and bα ∈ R represent the weight

matrix and bias term, respectively, and σ denotes the activa-

tion function (such as the sigmoid function). The computed

αi,j represents the attention weight at position (i, j).

α

To ensure that the sum of all attention weights equals

1, normalization can be applied:

αi,j =
i,j

H∑
m=1

W∑
n=1

αm,n

With normalized attention weights, we can generate the

attention feature map. The generation of the attention feature

map is achieved by weighted summation of each position of

the input feature map, formalized as:

H

i=1

W

j=1

3.2

 

 

 

 

 

 

 

 

 

Fatt =
∑∑

αi,jfi,j

DDPG architecture

Deep Deterministic Policy Gradient (DDPG) is a re-

inforcement learning algorithm that combines policy gradi-

ent methods with deep learning, suitable for tasks in high-

dimensional continuous action spaces. By using deep neural

networks to approximate the policy and value functions, the

DDPG algorithm achieves efficient learning in complex en-

vironments [44]. DDPG integrates the advantages of Deep

Q-Learning (DQN) and policy gradient methods, employing

two deep neural networks: the policy network (Actor) and

the value network (Critic) for decision making and evalua-

tion, respectively. These networks are optimized jointly to

continuously improve the policy in high-dimensional contin-

uous action spaces. The architecture diagram of DDPG is

shown in Figure 3.

Figure 3. Structure diagram of DDPG.

The policy network µ (s|θµ) takes the state s as input
and outputs the corresponding action a. The parameters θµ

of the policy network are optimized using policy gradients

to maximize the expected cumulative reward for the actions

chosen in a given state.

The value network Q
(
s, a|θQ

)
takes the state s and

action a as inputs and outputs the corresponding state-action

value (Q-value). The parameters θQ of the value network

are optimized by minimizing the Temporal Difference (TD)

error, which evaluates the effectiveness of the policy.

Initialization of Networks and Experience Replay

Buffer: Initialize the policy network µ (s|θµ) and the

value network Q
(
s, a|θQ

)
, as well as their target networks

µ’
(
s|θµ’

)
and Q’

(
s, a|θQ’

)
. The target networks are used

to stabilize the training process. Initialize the experience

replay buffer D to store the agent’s experiences.

Experience Collection: Execute actions in the environ-
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which  integrates  the  feature  representations  with  attention

weights.

   The  generated  attention  feature  map  Fatt  can  b  e  used

for  subsequent  p  ath  p  lanning  and  navigation  decisions.  In

robot  mobile  delivery  systems,  the  attention  feature  map

serves  as  input  to  guide  robots  in  making  real-time  decisions

in  complex  environments.  Specific  applications  include  ob-

stacle  recognition,  p  ath  selection,  and  adaptation  to  dynamic

environments.  The  spatial  attention  mechanism  significantly

enhances  the  p  erception  and  decision-making  capabilities  of

robots  in  complex  environments,  enabling  them  to  p  erform

mobile  delivery  tasks  more  efficiently.

Here,  Fatt  ∈  RC  represents  the  attention  feature  map,

∼
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ment based on the current policy network, selecting actions

at = µ (st|θµ) + Nt, where Nt is the exploration noise.

After executing an action, observe the next state st+1 and

reward rt, and store the experience (st, at, rt, st+1) in the

experience replay buffer D.

Experience Replay: Compute the expected cumulative

reward for the future state using the target value network

and target policy network. Randomly sample a minibatch

(si, ai, ri, si+1) from the experience replay buffer. Calculate

the target Q-value yi:

yi = ri + γQ′(si+1, µ
′(si+1

∣∣∣θµ′
)
∣∣∣ θQ′

)

where γ is the discount factor representing the decay rate of

future rewards.

Update the Value Network: Minimize the Temporal

Difference error to update the parameters θQ of the value

network:

L = 1
N

∑
i

(
yi −Q

(
si, ai | θQ

))2
whereN is the size of the minibatch. This loss function mea-

sures the error between the current value network’s predicted

Q-values and the target Q-values, guiding the parameter up-

dates of the value network.

Update the Policy Network: Using policy gradient

methods, the update direction of the policy network parame-

ters is determined by the gradient of the Q-values from the

value network and the gradient of the actions from the pol-

icy network. Update the policy network parameters θµ via

policy gradient:

∇θµJ ≈
1
N

∑
i

∇aQ
(
s, a | θQ

) ∣∣
s=si,a=µ(si)∇θµµ (s | θµ)

∣∣
s=si

Soft Update of Target Networks: Soft update the param-

eters of the target policy network and target value network:

θQ
′ ← τθQ + (1− τ) θQ

′

θµ
′ ← τθµ + (1− τ) θµ

′

where τ � 1 is the step size for the soft update.

3.3 End-to-end optimization

End-to-end optimization reduces the complexity and er-

ror accumulation in intermediate stages. By directly learning

the mapping from raw sensor inputs to final control com-

mands, end-to-end optimization significantly improves re-

sponse speed and reliability in robotic systems. This ap-

proach uses a unified neural network model to directly map

sensor inputs to control commands, simplifying the system

structure and enhancing overall performance [45]. The ar-

chitecture diagram of end-to-end optimization is shown in

Figure 4.

Figure 4. Structure diagram of end-to-end optimization.

In end-to-end optimization, neural network models typ-

ically include convolutional layers (for processing image

data), recurrent layers (for handling time-series data), and

fully connected layers (for generating control commands).

The input layer receives data from sensors such as camera

images and LiDAR point clouds. Convolutional layers ex-

tract high-level features from the input data, capturing key

information from the environment. Recurrent layers handle

time-series data, capturing changes in the dynamic environ-

ment. Fully connected layers map the extracted features to

specific control commands, such as the robot’s speed and

direction.

The training process for end-to-end optimization is con-

ducted through either reinforcement learning or supervised

learning. The state st is defined as the robot’s sensory in-

formation at time step t, such as camera images or LiDAR

point clouds. The action at is the control command at time

step t. The reward rt is the reward obtained after the robot

executes the action at time step t, such as the reduction in

distance to the target point.

The loss function measures the discrepancy between

the predicted control commands and the actual desired com-

mands. Common loss functions include Mean Squared Error

(MSE) and Policy Gradient Loss. The MSE loss function is

given by:

LMSE = 1
N

N∑
i=1

(ai − âi)
2

where N is the number of samples, ai is the actual control

command, and âi is the predicted control command.

The policy gradient loss is given by:

LPG = −E [Rtlogπ (at | st)]
whereRt is the cumulative reward and π (at|st) is the policy

57



Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

for selecting action at in state st.

Gradient descent is used to optimize the neural network

parameters by minimizing the loss function. The gradient

descent update rule is:

θ ← θ − α∇θL

where θ represents the network parameters, α is the learning

rate, and ∇θL is the gradient of the loss function.

End-to-end optimization enables overall optimization

from input to output, significantly improving the response

speed and reliability of robotic systems. By directly generat-

ing control commands from sensor inputs, neural networks

simplify the system structure, reducing the complexity and

error accumulation in intermediate stages.

4. Experiment

The experimental flow chart of this paper is shown in

Figure 5.

Figure 5. Experimental flowchart.

4.1 Experimental environment

In terms of hardware environment, our computing plat-

form is configured with an Intel Core i9-10900K CPU, suit-

able for parallel computing and handling complex tasks. The

GPU is an NVIDIAGeForce RTX 3090, supporting acceler-

ated training and inference of deep learning models. Addi-

tionally, it has 256GB of memory, supporting large-scale data

processing and model training. As for the robot platform, we

utilize the TurtleBot 3, an open-source platform designed for

robot research and education, with support for ROS (Robot

Operating System). Sensor configurations include the In-

tel RealSense D435i depth camera and Hokuyo URG-04LX

laser rangefinder, which are high-precision sensors used for

environment perception and navigation. This experiment

is conducted on the Ubuntu 20.04 LTS operating system,

known for its stability and wide range of applications, mak-

ing it particularly suitable for machine learning and robotics

development. Python 3.8 is chosen as the programming

language, which is a mainstream language in the fields of

machine learning and deep learning, with rich library and

tool support.

4.2 Experimental data

• KITTI Dataset

The KITTI dataset is a benchmark dataset widely used

in autonomous driving and robotics research. It was jointly

created by the Karlsruhe Institute of Technology and the

Toyota Technological Institute at Chicago, containing high-

quality images and LiDAR data from real driving environ-

ments. The dataset is collected by mounting cameras and Li-

DAR sensors on the top of cars, covering various urban, rural,

and highway scenes. Content of the KITTI dataset includes

color and grayscale images, 3D point cloud data, GPS infor-

mation, and IMU readings. Its diversity and richness make it

an essential resource for evaluating the performance of visual

deep learning and path planning algorithms. Researchers can

utilize the KITTI dataset for tasks such as object detection,

semantic segmentation, 3D reconstruction, path planning,

and autonomous driving. By testing in complex and dynamic

environments, the KITTI dataset provides a solid foundation

for validating the robustness and effectiveness of algorithms.

• COCO Dataset
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  The  COCO  (Common  Objects  in  Context)  dataset  is  a

widely  used  benchmark  dataset  for  computer  vision  research,

created  by  Microsoft.  It  consists  of  over  200,000  high-quality

images,  annotated  with  more  than  2.5  million  instance  ob-

jects  spanning  80  common  object  categories.  Each  image  is

annotated  not  only  with  bounding  boxes  for  objects  but  also

detailed  segmentation  masks,  keypoints,  and  image-level

labels.  These  annotations  make  the  COCO  dataset  widely

applicable  in  tasks  such  as  object  detection,  semantic  seg-

mentation,  instance  segmentation,  human  pose  estimation,

and  image  captioning.  The  images  in  the  COCO  dataset

are  collected  from  various  real-life  scenarios,  including  in-

door  and  outdoor  environments,  featuring  rich  background

information  and  complex  object  layouts,  providing  an  ideal

resource  for  training  and  testing  algorithms  in  diverse  and
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complex scenes. Its diversity and high-quality annotations

make the COCO dataset an important tool for evaluating and

driving the development of computer vision algorithms.

• RobotCar Dataset

The RobotCar dataset is a benchmark dataset for au-

tonomous driving and robotics research created by the Mo-

bile Robotics Group at the University of Oxford. This

dataset comprises rich data collected under various time,

weather, and seasonal conditions in the city of Oxford, cov-

ering diverse urban driving environments. Data collection

in the RobotCar dataset is facilitated through multiple sen-

sors mounted on vehicles, including stereo cameras, LiDAR,

GPS, and Inertial Measurement Units (IMU). These sensors

provide high-resolution images, 3D point cloud data, precise

location information, and vehicle motion data. The diversity

and detailed annotations of the RobotCar dataset make it a

crucial resource for evaluating and developing tasks such as

autonomous driving systems, 3D reconstruction, path plan-

ning, and environment perception. Researchers can utilize

this dataset for robustness testing across different weather

and seasonal variations, validating algorithms’ adaptability

and stability under various environmental conditions.

• NuScenes Dataset

The NuScenes dataset, created by Motional, is an ad-

vanced benchmark dataset for autonomous driving research.

It collects real-world data from complex urban environments

in Boston and Singapore, covering various weather and light-

ing conditions. The NuScenes dataset comprises data from

multiple sensors, including panoramic images from six cam-

eras, point cloud data from five LiDARs, millimeter-wave

radar, GPS, and Inertial Measurement Units (IMU). These

sensors provide comprehensive environmental perception

information, aiding researchers in studying tasks such as

multimodal perception, 3D object detection, tracking, se-

mantic segmentation, and scene understanding. In addi-

tion to high-resolution sensor data, the NuScenes dataset

also includes detailed annotation information such as object

bounding boxes, category labels, and trajectories. These

rich annotations make NuScenes an essential resource for

evaluating the robustness and performance of autonomous

driving algorithms.

4.3 Evaluation metrics

• Accuracy:

Accuracy represents the proportion of correct predic-

tions made by a model out of all predictions. It is an intuitive

metric for assessing the overall correctness of a model, par-

ticularly useful for evaluating the performance of tasks such

as robot perception and environmental understanding. The

formula for accuracy is:

Accuracy = TP+TN
TP+FP+FN+TN

where TP is the number of instances in path planning where

real obstacles are correctly detected. TN is the number of

instances where non-existing obstacles are correctly recog-

nized as non-existing. FP is the number of instances where

non-existing obstacles are incorrectly detected as existing.

FN is the number of instances where real obstacles are not

detected.

• Precision:

Precision represents the proportion of samples pre-

dicted as positive that are actually positive. Precision reflects

the accuracy of a model, and particularly in dealing with im-

balanced datasets, precision is a crucial performance metric.

The mathematical definition of precision is as follows:

Precision = TP
TP+FP

• Recall:

Recall represents the proportion of all actual positive

samples that are correctly predicted as positive. Recall re-

flects the detection capability of a model, particularly in cases

where there are many missed detections. Recall evaluates

the completeness of obstacle detection in the environment

during robot path planning. High recall indicates that the

robot can detect most of the actual obstacles, reducing missed

detections and improving the safety of path planning. The

mathematical definition of recall is as follows:

Recall = TP
TP+FN

• F1-Score:

The F1 score is a comprehensive metric for evaluating

the performance of classification models, combining both

precision and recall. It provides a more complete assess-

ment of classification problems in imbalanced datasets. In

dynamic environments, the F1 score evaluates the robot’s

overall capability to handle real-time changes in environ-

mental information. A high F1 score indicates that the robot

can accurately identify newly appearing obstacles while min-

imizing missed detections, thereby improving navigation

efficiency and safety. The formula is as follows:

F1 = 2 · Precision·Recall
Precision+Recall
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4.4 Experimental comparison and analysis

In this section, we conduct a comprehensive compari-

son between six different path optimization algorithms and

our proposed method. This evaluation utilizes four datasets:

KITTI, COCO, RobotCar, and NuScenes. These datasets

encompass various complex environments, including urban

streets, indoor scenes, and challenging driving conditions.

To thoroughly assess the performance of each algorithm, we

employ four key metrics: Accuracy, Precision, Recall, and

F1 Score. We will comparatively analyze the strengths and

weaknesses of each algorithm and discuss their applicability

in different environments and tasks.

Table 1 presents the comparison results of six different

path optimization algorithms and our proposed method on

four key metrics (accuracy, precision, recall, and F1 score)

across the KITTI and COCO datasets. It can be observed

from the table that our proposed method performs excel-

lently on both datasets, outperforming other methods across

all metrics. Specifically, on the KITTI dataset, our method

achieves an accuracy of 93.46%, precision of 92.54%, re-

call of 94.43%, and an F1 score of 93.48%; while on the

COCO dataset, the accuracy is 92.73%, precision is 94.61%,

recall is 92.43%, and F1 score is 93.51%. In comparison,

other methods show varied performance across different met-

rics, but overall, none surpasses our method, particularly in

the comprehensive metric of F1 score. This result indicates

that our proposed method holds significant performance ad-

vantages in path planning tasks across diverse and complex

environments, particularly in enhancing the accuracy and

completeness of detection. At the same time, we show the

visualization of various indicator comparisons in Figure 6.

Figure 6. Comparative visualization of each model indicator under

the KITTI Dataset and COCO Dataset.

Table 2 presents the comparison results of algorithms

on the RobotCar and NuScenes datasets. From the table, it

is evident that our method significantly outperforms others

in terms of accuracy (91.43%), precision (93.43%), recall

(92.43%), and F1 score (92.93%) on the RobotCar dataset.

Similarly, on the NuScenes dataset, our method demon-

strates excellent performance in accuracy (94.24%), preci-

sion (93.76%), recall (95.63%), and F1 score (94.69%). In

comparison, while somemethods show better performance in

certain metrics, such as Aslan MF et al.’s precision (89.32%)

on the RobotCar dataset and Chen L et al.’s recall (91.85%)

on the NuScenes dataset, none surpasses our method overall.

This indicates that our proposed method holds significant

performance advantages in path planning tasks across var-

ious complex driving environments. At the same time, we

show the visualization of various indicator comparisons in

Figure 7.

Figure 7. Comparative visualization of each model indicator under

the RobotCar Dataset and NuScenes Dataset.

Table 3 presents a comparative analysis of the number

of model parameters (Parameters), inference time (Inference

Time), and training time (Training Time) for various path

optimization algorithms across four datasets. In terms of

the number of model parameters, our method consistently

exhibits the lowest parameter count across all datasets (e.g.,

367.24 M for the KITTI dataset and 374.73 M for the COCO

dataset). This indicates that our method achieves efficient

path optimization while maintaining a minimal parameter

count. Regarding inference time, our method consistently

demonstrates the fastest inference speed across all datasets

(e.g., 264.34 ms for the KITTI dataset and 257.94 ms for

the COCO dataset). This suggests that our method has a sig-

nificant speed advantage in real-time applications, enabling

faster path planning and decision-making. In terms of train-

ing time, our method shows the shortest training time across

all datasets (e.g., 161.45 s for the KITTI dataset and 182.43

s for the COCO dataset). This indicates that our method is

more efficient during model training, achieving faster con-

vergence to the optimal state. On the other hand, Aslan MF

et al. have longer inference and training times on certain
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Table 1. Comparison of indicators of various models under KITTI Dataset and COCO Dataset.

Model
KITTI dataset COCO dataset

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Zhang L et al. [46] 85.89 86.09 88.82 87.43 82.81 92.54 89.65 91.07

Aslan MF et al. [47] 88.10 86.28 87.74 87.00 84.41 85.01 87.09 86.04

Lee DH et al. [48] 91.00 84.81 86.59 85.69 87.19 85.59 88.39 86.97

Gu Y et al. [49] 87.32 87.85 84.36 86.07 88.86 90.32 85.45 87.82

Huang R et al. [50] 90.60 85.38 85.39 85.38 87.12 88.26 87.89 88.07

Chen L et al. [51] 84.99 83.52 86.42 84.95 88.05 92.67 90.68 91.66

Ours 93.46 92.54 94.43 93.48 92.73 94.61 92.43 93.51

Table 2. Comparison of indicators of various models under the RobotCar Dataset and NuScenes Dataset.

Model
RobotCar dataset NuScenes dataset

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score

Zhang L et al. [46] 83.39 81.20 82.47 81.83 87.58 85.42 90.98 88.11

Aslan MF et al. [47] 84.07 89.32 86.25 87.76 88.40 90.31 88.66 89.48

Lee DH et al. [48] 83.87 81.91 89.41 85.50 90.53 91.18 91.53 91.35

Gu Y et al. [49] 87.74 80.22 88.57 84.19 87.30 83.65 87.77 85.66

Huang R et al. [50] 88.89 81.35 82.15 81.75 90.17 82.41 88.76 85.47

Chen L et al. [51] 88.35 90.19 83.66 86.80 86.48 89.26 91.85 90.54

Ours 91.43 93.43 92.43 92.93 94.24 93.76 95.63 94.69

datasets (e.g., 323.36 ms inference time and 265.15 s train-

ing time on the NuScenes dataset), while Gu Y et al. have

a larger number of model parameters (e.g., 492.10 M on

the KITTI dataset) [46]. Overall, our proposed method per-

forms excellently on all key metrics across the four datasets,

indicating significant performance advantages in path opti-

mization tasks, particularly in model simplicity, inference

speed, and training efficiency. At the same time, we show the

visualization of various indicator comparisons in Figure 8.

Figure 8. Visual comparison of indicators of multiple models on

four datasets.

Table 4 presents the results of ablation experiments

conducted on the KITTI dataset and COCO dataset. For the

KITTI dataset, the baseline model achieves a precision of

78.64%, recall of 79.24%, and an F1-score of 78.94%. Intro-

ducing the SAMmodule significantly improves performance,

with precision reaching 83.03%, recall at 84.73%, and an

F1-score of 83.87%. Subsequently, incorporating the DDPG

module on top of SAM further enhances performance, with

precision, recall, and F1-score reaching 89.38%, 90.93%, and

90.15%, respectively. Finally, combining SAM and DDPG

results in the best performance, with precision at 92.54%,

recall at 94.43%, and an F1-score of 93.48%. Similar trends

are observed for the COCO dataset: as modules are intro-

duced, performance steadily improves, with the SAM-DDPG

combination achieving the best performance, with precision,

recall, and F1-score at 94.61%, 92.43%, and 93.51%, respec-

tively. These results show that the introduction of the spatial

attention mechanism and the deep deterministic policy gra-

dient algorithm significantly enhances the performance of

the model. At the same time, we show the visualization of

various indicator comparisons in Figure 9.

Figure 9. Comparative visualization of ablation experiments on

KITTI Dataset and COCO Dataset.

Table 5 illustrates the results of ablation experiments

conducted on the RobotCar dataset and NuScenes dataset.

For the RobotCar dataset, the baseline model achieves a

precision of 79.24%, recall of 80.61%, and an F1-score of
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Table 3. Metrics of multiple models on four datasets.

KITTI dataset COCO dataset

Model Parameters Inference Time (ms) Trainning Time (s) Parameters Inference Time (ms) Trainning Time (s)

Zhang L et al. [46] 441.09 391.13 214.57 426.47 283.61 260.81

Aslan MF et al. [47] 525.52 339.68 260.42 497.47 385.35 278.70

Lee DH et al. [48] 388.58 346.01 234.46 433.20 312.43 280.25

Gu Y et al. [49] 492.10 398.87 229.25 397.64 274.91 211.57

Huang R et al. [50] 405.60 314.69 241.51 472.63 290.25 242.96

Chen L et al. [51] 422.81 295.16 220.05 442.68 324.70 204.36

Ours 367.24 264.34 161.45 374.73 257.94 182.43

RobotCar dataset NuScenes dataset

Model Parameters Inference Time (ms) Trainning Time (s) Parameters Inference Time (ms) Trainning Time (s)

Zhang L et al. [46] 477.26 379.27 213.06 465.14 342.26 229.57

Aslan MF et al. [47] 396.20 385.73 202.88 384.25 323.36 265.15

Lee DH et al. [48] 387.62 315.08 195.18 471.66 297.13 249.15

Gu Y et al. [49] 458.96 397.01 270.96 452.13 300.50 298.61

Huang R et al. [50] 504.18 385.52 268.73 378.21 307.37 228.53

Chen L et al. [51] 475.99 301.89 266.20 415.66 316.34 236.99

Ours 362.94 261.84 178.02 356.64 279.71 193.41

Table 4. Ablation experiments of this model on the KITTI Dataset and COCO Dataset.

Model

Dataset

KITTI dataset COCO dataset

Precision Recall F1-score Precision Recall F1-score

baseline 78.64 79.24 78.94 81.73 79.37 80.53

+SAM 83.03 84.73 83.87 86.27 86.24 86.25

+DDPG 89.38 90.93 90.15 91.06 88.41 89.72

+SAM-DDPG 92.54 94.43 93.48 94.61 92.43 93.51

79.92%. Introduction of the SAMmodule leads to significant

performance enhancement, with precision reaching 87.71%,

recall at 86.04%, and an F1-score of 86.87%. Further in-

corporation of the DDPG module on top of SAM results in

improved performance, with precision, recall, and F1-score

reaching 89.79%, 88.57%, and 89.18%, respectively. Finally,

combining SAM and DDPG yields the highest performance,

with precision at 93.43%, recall at 92.43%, and an F1-score

of 92.93%. Similar trends are observed for the NuScenes

dataset. At the same time, we show the visualization of

various indicator comparisons in Figure 10.

5.

Figure 10. Comparative visualization of ablation experiments on 

RobotCar Dataset and NuScenes Dataset.

Conclusions

This article proposes a path optimization method that 

combines spatial attention mechanism with deep determin-

istic policy gradient algorithm. Its superior performance is 

validated through experiments on multiple complex datasets.

In this path optimization model, a spatial attention mecha-

nism is introduced to enhance the model’s perception ability 

by dynamically adjusting the focus area. Experimental re-

sults show that after adding SAM, the precision, recall, and 

F1 score of the model significantly improve on KITTI and 

COCO datasets, verifying its effectiveness in complex envi-

ronments. By integrating the DDPG algorithm to optimize 

the path planning strategy, the model can efficiently learn 

in high-dimensional continuous action spaces. The experi-

ments demonstrate that adding DDPG leads to significant 

improvements in various metrics, particularly in real-time 

dynamic environments. Combining SAM and DDPG, a new 

path optimization method is proposed, which outperforms
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Table 5. Ablation experiments of this model on the RobotCar Dataset and NuScenes Dataset.

Model

Dataset

RobotCar dataset NuScenes dataset

Precision Recall F1-score Precision Recall F1-score

baseline 79.24 80.61 79.92 81.68 82.46 82.07

+FPN 87.71 86.04 86.87 85.72 88.62 87.15

+ViT 89.79 88.57 89.18 88.73 90.04 89.38

+FPN-ViT 93.43 92.43 92.93 93.76 95.63 94.69

existing path optimization algorithms in key metrics such

as accuracy, precision, recall, and F1 score, showcasing its

significant performance advantages in various complex en-

vironments. Finally, our method not only excels in accuracy

and recall but also demonstrates significant advantages in

terms of model parameter count, inference time, and training

time. Experimental results show that our method achieves

efficient path optimization while maintaining fewer parame-

ters, which is crucial for real-time performance and resource

efficiency in practical applications. Although the proposed

method demonstrates significant performance advantages in

multiple complex environments, there are still many direc-

tions worth further exploration and improvement. Future

research could focus on enhancing the model’s generaliza-

tion ability, optimizing computational efficiency, integrating

multimodal perception, exploring adaptive strategies, and

human-machine cooperative optimization. Through further

research in these areas, we aim to enhance the performance

and application value of path optimization methods, pro-

viding more solid technical support for the development of

intelligent robots.
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