
Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

Journal of Computer Science Research

https://journals.bilpubgroup.com/index.php/jcsr

ARTICLE

Research and Model Library Construction in Teacher-Student Learning

Architectures for Knowledge Transfer

Jiaxiang Chen*, Yuhang Ouyang, Zheyu Li

College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China

ABSTRACT

This paper summarizes and replicates multiple classical and cutting-edge knowledge transfer methods, including

Factor Transfer (FT), Knowledge Distillation (KD), Deep Mutual Learning (DML), Contrastive Representation Distillation

(CRD), and Born-Again Self-Distillation (BSS). Additionally, we studied three advanced knowledge transfer methods:

Relational Knowledge Distillation (RKD), Similarity-Preserving (SP), and Attention-based Feature Distillation (AFD),

successfully replicating an optimized version of KD, namely RKD. Based on these methods, a flexible model library was

constructed in Pycharm, allowing the quick integration of multiple knowledge transfer strategies. The experimental results

are visualized through a user-friendly interface, enabling intuitive comparisons of model training speed and performance

across different methods. This research provides valuable insights into the challenge of building a reusable framework that

efficiently integrates various knowledge transfer strategies into deep neural networks.

Keywords: Knowledge transfer; Teacher-student architecture; Model library; Visualization; Educational frameworks

1. Introduction

With the rapid development of deep learning, knowl-

edge transfer has gained significant attention as a technique

to improve model generalization and training efficiency. By

transferring knowledge from a teacher model to a student

model, knowledge transfer methods can enhance the perfor-

mance of smaller models and improve training outcomes,

especially in data-limited scenarios. However, the challenge

*CORRESPONDINGAUTHOR:

Jiaxiang Chen, College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China; Email: 2530807552@qq.com

ARTICLE INFO

Received: 24 September 2024 | Revised: 15 October 2024 | Accepted: 18 October 2024 | Published Online: 30 October 2024

DOI: https://doi.org/10.30564/jcsr.v6i4.7344

CITATION

Chen, J., Ouyang, Y., Li, Z., 2024. Research and Model Library Construction in Teacher-Student Learning Architectures for Knowledge Transfer.

Journal of Computer Science Research. 6(4): 73–81. DOI: https://doi.org/10.30564/jcsr.v6i4.7344

COPYRIGHT

Copyright © 2024 by the author(s). Published by Bilingual Publishing Co. This is an open access article under the Creative Commons Attribution-

NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

73

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

of quickly integrating multiple knowledge transfer strate-

gies in real-world applications remains unresolved [1]. This

paper addresses this challenge by replicating classic and

advanced knowledge transfer methods and constructing a

flexible model library, providing novel insights into solving

this problem [2].

2. Methodology

A. Summary and Replication of Knowledge Transfer

Methods:

KD is relatively simple and transfers knowledge

through soft labels. It uses soft labels from a pre-trained

teacher model to guide the student model, making it suitable

for scenarios where simple and effective knowledge transfer

is required.

1) Training the Teacher Model (ResNet-110)

Goal: We need to train a high-performance teacher

model, ResNet-110. This model will be trained on a large

dataset (e.g., CIFAR-100) to learn rich features and patterns.

Steps:

Obtain the training dataset (e.g., CIFAR-100), includ-

ing images and their corresponding labels.

Use this data to train the ResNet-110 model, optimiz-

ing the model parameters to achieve the highest possible

accuracy.

After training is completed, save the trained ResNet-

110 model.

Simplified Explanation:

Imagine ResNet-110 as an experienced teacher who

has spent years studying and practicing, mastering a vast

amount of knowledge and skills.

2) Generating Soft Targets

Goal: Using the trained teacher model (ResNet-110),

generate soft targets for each training sample. Soft targets

are the predicted probability distributions produced by the

teacher model, rather than just the correct answers.

Steps:

Use the trained ResNet-110 model to make predictions

on the training data.

For each input sample, obtain the probability distri-

bution output by the model (i.e., soft targets). These dis-

tributions represent the model’s confidence levels for each

class.

Simplified Explanation:

This step is like asking the experienced teacher to give

detailed explanations for each question, rather than simply

providing the correct answer. For example, the teacher not

only tells you that the cat is a cat but also explains how

similar the cat is to dogs, rabbits, and other animals.

3) Training the Student Model (ResNet-20)

Goal: Train a smaller student model, ResNet-20, to

learn from the teacher model’s soft targets and achieve simi-

lar high performance.

Steps:

Initialize a ResNet-20 model.

Train the ResNet-20model using the training data along

with the soft targets generated by the teacher model.

During training, the student model attempts to mimic

the probability distribution output of the teachermodel, rather

than just matching the hard labels of the training data.

Optimize the student model’s parameters so that its

outputs closely match the soft targets of the teacher model,

while also considering the hard labels of the training data.

Simplified Explanation:

This step is like a novice student (ResNet-20) not just

memorizing the answers, but also understanding the essence

of the problem and the solution process through the teacher’s

(ResNet-110) detailed explanations. This way, the student

learns more comprehensive and in-depth knowledge.

FT has a slightly higher complexity, requiring the ex-

traction and transfer of intermediate layer features. Knowl-

edge is transferred directly through the feature representa-

tions of intermediate layers, making it suitable for scenarios

where the student model needs to learn rich feature represen-

tations.

1) Training the Teacher Model (ResNet-110)

Goal: We need to train a high-performance teacher

model, ResNet-110. This model will be trained on a large

dataset (e.g., CIFAR-100) to learn rich features and patterns.

Steps:

Obtain the training dataset (e.g., CIFAR-100), includ-

ing images and their corresponding labels.

Train the ResNet-110 model using this data, optimiz-

ing the model parameters to achieve the highest possible

accuracy.

After training, save the trained ResNet-110 model.

Simplified Explanation:

74

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

This step is like training an experienced teacher

(ResNet-110) by letting them study a vast collection of books

and exercises, mastering a large amount of knowledge and

skills.

2) Extracting Intermediate Representations (Fac-

tors)

Goal: Extract feature representations (factors) from the

intermediate layers of the trained teacher model, ResNet-110.

These factors contain rich semantic information that is more

detailed than the final classification output.

Steps:

Select one or more intermediate layers of the teacher

model ResNet-110 (e.g., a certain convolutional layer).

Input the training data into the teacher model and ex-

tract the feature representations from the intermediate layers.

These feature representations (factors) will serve as

guiding signals for the student model.

Simplified Explanation:

This step is like asking the teacher to share their study

notes (intermediate layer feature representations). These

notes contain detailed explanations and examples, which are

more valuable for learning than just the final answers.

3) Training the Student Model (ResNet-20)

Goal: Train a smaller student model, ResNet-20, by

learning and imitating the intermediate feature representa-

tions from the teacher model to improve its own performance.

Steps:

Initialize a ResNet-20 model.

Input the training data into the student model, while

also providing the teacher model’s intermediate feature rep-

resentations as guiding signals.

During training, optimize the student model to ensure

that its intermediate layer outputs are as close as possible to

the teacher model’s intermediate layer outputs.

Simultaneously, the student model also learns the labels

of the training data (hard labels) in a standard supervised

learning fashion.

Simplified Explanation:

This step is like a beginner student (ResNet-20) learn-

ing by not only listening to the teacher’s lectures (learning

from the labels of the training data), but also by referring to

the teacher’s detailed notes (intermediate feature representa-

tions). This helps the student better understand key concepts

and master problem-solving techniques.

DML has a higher complexity and involves collabo-

rative training of multiple student models without the need

for a pre-trained teacher model. It is suitable for resource-

constrained scenarios where no pre-trained teacher model

is available, and performance is improved through mutual

learning among multiple student models [3].

1) Initializing Multiple Student Models (ResNet-20)

Goal: First, we need to initialize multiple student mod-

els (let’s assume two ResNet-20 models). These models are

independent at the start of training, with no prior knowledge.

Steps:

Initialize two ResNet-20 models, naming them Student

Model A and Student Model B.

Prepare the training dataset (e.g., CIFAR-100).

Simplified Explanation:

This step is like starting a new semester, where there

are two students (Student A and Student B) in the class, both

beginners, ready to learn together.

2) Mutual Learning

Goal: During training, the two student models learn

from each other. Each model learns not only from its own

loss but also from the outputs of the other model. This helps

each model gain more information and better guidance.

Steps:

Feed the training data into both Student Model A and

Student Model B.

Student Model A computes its own loss function and

predicts the output.

Student Model B computes its own loss function and

predicts the output.

The loss function of Student Model A includes two

parts: its own prediction error and the difference from the

output of Student Model B.

Similarly, Student Model B’s loss function includes its

own prediction error and the difference from the output of

Student Model A.

Using backpropagation, update the parameters of both

Student Model A and Student Model B simultaneously.

Simplified Explanation:

This step is like having Student A and Student B both

work on the same exercises. Not only do they solve problems

on their own, but they also compare answers with each other.

If their answers differ, they discuss and compare to find the

correct solution, improving their understanding.

75

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

3) Joint Optimization

Goal: Through joint optimization, both student models

continuously improve during training and ultimately achieve

high performance.

Steps:

In each training step, compute the joint loss for both

Student Model A and Student Model B.

The joint loss formula is as follows

LossA = LossA,self + a • LossA,mutual

LossB = LossB,self + a • LossB,mutual

By optimizing the joint loss function, update the pa-

rameters of both Student Model A and Student Model B,

gradually improving their performance.

Simplified Explanation:

This step is like Student A and Student B constantly

discussing and comparing answers, correcting mistakes and

misunderstandings together, eventually becoming smarter

and more capable.

CRD has a high computational complexity and, similar

to FT, transfers knowledge through feature representations

in intermediate layers. It involves contrastive learning and

contrastive loss, optimizing feature representations through

contrastive learning. It is suitable for scenarios where the

student model needs to learn rich feature representations [4].

1) Train the Teacher Model

Goal: First, train a high-performance teacher model

(e.g., ResNet-110). This model is trained on a large dataset

(such as CIFAR-100) to learn rich features and patterns.

Steps:

Obtain the training dataset (e.g., CIFAR-100), includ-

ing images and corresponding labels.

Use this data to train the ResNet-110 model, optimizing

its parameters to achieve the highest possible accuracy.

Once training is complete, save the trained ResNet-110

model.

Simplified Explanation:

Imagine you are an experienced teacher who, after

years of study and practice, has mastered a large amount

of knowledge and skills. Now, you store all this knowledge

in a notebook (ResNet-110).

2) Extract Feature Representations

Goal: Extract feature representations from the interme-

diate layers of the trained ResNet-110 teacher model.

Steps:

Select one or more intermediate layers of the teacher

model (e.g., a specific convolutional layer).

Feed the training data into the teacher model and extract

the feature representations from the intermediate layers.

Simplified Explanation:

This step is like opening the teacher’s notebook and

finding some key notes (intermediate feature representations).

These notes contain detailed explanations and examples.

3) Initialize the Student Model

Goal: Initialize a student model (e.g., ResNet-20),

which is smaller and suitable for faster training and deploy-

ment.

Steps:

Initialize the ResNet-20 model and prepare the training

dataset.

Simplified Explanation:

Now, a beginner student (ResNet-20) is ready to start

learning this knowledge.

4) Contrastive Learning

Goal: Optimize the feature representations of the stu-

dent model through contrastive learning, so that they become

close to the teacher model’s feature representations in the

embedding space, while being distant from the feature repre-

sentations of unrelated samples.

Steps:

Feed the training data into the student model and simul-

taneously input the feature representations from the teacher

model.

For each sample, the student model outputs a feature

representation (student feature), while the teacher model out-

puts a corresponding feature representation (teacher feature).

Compute the similarity between the student and teacher

feature representations (typically using cosine similarity).

Use a contrastive loss function (such as InfoNCE loss)

to optimize the student model’s feature representations, mak-

ing them as close as possible to the teacher model’s feature

representations while pushing away the feature representa-

tions of unrelated samples.

Simplified Explanation:

This step is like a novice student (ResNet-20) not only

understanding the teacher’s notes (teacher feature represen-

tations) but also comparing their learning with other class-

mates (unrelated samples) to ensure their understanding is

both correct and unique. The process of contrastive learning

76

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

is similar to a classroom setting, where you not only need

to understand the teacher’s explanations but also engage in

discussions and comparisons to ensure you’ve truly mastered

the right knowledge.

BSS requires multiple rounds of iterative training,

which results in longer training times. Similar to KD, it

transfers knowledge through soft labels, but instead of using

a pre-trained teacher model, it uses its own iterative pro-

cess. It is suitable for scenarios where a simple and effective

knowledge transfer method is needed [5].

1) Train the Initial Model

Goal: First, train an initial model, which will serve as

both the teacher model and the student model in subsequent

steps.

Steps:

Obtain the training dataset (e.g., CIFAR-100), includ-

ing images and corresponding labels.

Use this data to train an initial model (e.g., ResNet-20

or ResNet-110).

Once training is complete, save the trained initial

model.

Simplified Explanation:

Imagine you are a freshman learning knowledge for the

first time and completing your studies. This initial model is

like your grades for the first semester.

2) Self-Distillation

Goal: Use the trained initial model as a new teacher

model and train a student model again. This process can be

repeated multiple times, with each model iteration referred

to as ”Born-Again”.

Steps:

Use the initial model as the teacher model to generate

soft targets.

Initialize a new student model (it can be the samemodel

architecture, such as ResNet-20).

Train the student model using the soft targets generated

by the teacher model along with the original training data.

Once the student model is trained, it becomes a ”Born-

Again” model.

Use the new student model as the new teacher model,

and repeat steps 2-4 for multiple iterations.

Simplified Explanation:

This is like using your notes from the first semester

(teacher model) to study again in the second semester. Each

time you study, your understanding improves, and your

grades get better and better. At the end of each semester,

your notes become more detailed (the new student model

becomes the new teacher model), providing better guidance

for the next semester.

B.Model Library Construction:

The results of the model library have been packaged

into a software package and are planned to be released on

PyPI soon. Below is a demonstration of how to use the

library for simple model training.

First, use pip to install the package “SRTP-0.1.tar.gz”

in the installation directory. (Once the package is published

on PyPI, you can directly install it in the virtual environment

with the command pip install SRTP).

Next, create a file named test.py and import SRTP to

call the six training functions provided in the package.(eg:

import SRTP SRTP.train_base())

When using these functions, certain parameters need

to be specified (Figures 1–6):

Usage of train_kd():

Figure 1. kd parameters.

Usage of train_base():

Figure 2. base parameters.

Usage of train_bss():

Figure 3. bss parameters.

77

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

Usage of train_crd():

Figure 4. crd parameters.

Usage of train_dml():

Figure 5. dml parameters

Usage of train_ft():

Figure 6. ft parameters.

Usage notes:

When using the library for the first time or when you

need to verify a specific knowledge transfer method, users

must first train a base model using train_base(). This base

model will then serve as the teacher model for applying other

knowledge transfer methods.

The datasets we used for testing are CIFAR-10 and

CIFAR-100, and we do not guarantee that the code will work

successfully with other datasets. To ensure the best per-

formance, we recommend that users download CIFAR-10

and CIFAR-100 and input the dataset directory name as the

IMG_ROOT parameter.

The model library is built on PyTorch, so users must

ensure that all necessary dependencies are installed in their

environment.

C. Visualization of Results:

A visualization tool was developed to intuitively dis-

play the training process and results of different models. This

tool allows users to compare key metrics such as training

speed, accuracy, and loss across various knowledge transfer

methods, making it easier to evaluate model performance.

We use the third-party library bar_chart_race_cn to

visualize the training results in GIF format. The code is

included in the attachment.

3. Experiments and results

It can be observed that after training for 10 epochs,

the student networks trained using all methods reached the

accuracy level of the teacher network on the test set. Some

methods, such as BSS, FT, and KD, produced student net-

works that performed even better than the teacher network

(Figure 7). This also confirms the goal of knowledge transfer

in the teacher-student architecture, where the student model,

with fewer parameters, can achieve performance comparable

to the teacher model.

Figure 7. The accuracy of the test set varies with training epochs

visual display.

Impact of Networks

Taking the CIFAR-10 dataset as an example with FT,

we found that the performance of Teacher ResNet-110 and

Student ResNet-110 (92.98%) is greater than that of Teacher

ResNet-110 and Student ResNet-20 (93.01%), which in turn

is greater than that of Teacher ResNet-20 and Student ResNet-

20 (94.30%).

DML shows a similar trend overall (Figure 8).

Figure 8. Overall results of DML.

This indicates that deeper networks can learn more

78

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

complex and abstract feature representations, making them

suitable for handling complex tasks and large-scale datasets.

As a result, the performance is more accurate.

Influence of Datasets

CIFAR-10: With fewer categories, the task is relatively

simple, making it suitable for beginners and experiments

with simpler models.

CIFAR-100: With more categories, the task complex-

ity is higher, making it suitable for studying more complex

models and methods.

For all five algorithms, we find that as the dataset be-

comes more complex, the final accuracy decreases. In other

words, the performance on the CIFAR-10 dataset is better

than that on the CIFAR-100 dataset.

Comparison of Results from Different Methods

We found that the final performance of student models

learned through different knowledge distillation methods is

relatively similar. However, DML performs better on both

CIFAR-10 and CIFAR-100 compared to other algorithms.

This may be because DML effectively leverages the collabo-

ration between models, enhancing their learning ability and

generalization performance.

4. Notes

Networks:

In the study of knowledge distillation algorithms, net-

works play multiple important roles, specifically including

the teacher model and the student model. The roles of each

network are as follows:

Teacher Model:

Knowledge Provider: The teacher model is typically a

large and high-performance model that has been thoroughly

trained on a large dataset, capable of providing accurate

predictions and rich feature representations.

Generating Soft Targets: In standard knowledge distil-

lation, the soft targets generated by the teacher model contain

information about the class probability distribution, which

offers more insights into the data distribution than hard labels

(one-hot labels).

Feature Extraction: In some knowledge distillation

methods (such as Factor Transfer), the intermediate layer

feature representations of the teacher model are used to guide

the training of the student model.

Student Model:

Knowledge Receiver: The student model is a smaller

and lightweight model designed to retain the knowledge of

the teacher model while reducing model complexity and the

number of parameters.

Model Compression: By learning from the teacher

model, the student model can significantly reduce its size

without a substantial decrease in performance, making it suit-

able for deployment in resource-constrained environments.

Faster Inference: Since the student model is smaller,

it requires less computation and has lower latency during

inference, making it suitable for real-time applications.

The difference between ResNet-20 and ResNet-110:

ResNet (Residual Network) is a deep neural network

architecture that addresses the vanishing gradient problem in

deep networks by introducing residual connections. ResNet-

20 and ResNet-110 are two different variants within the

ResNet family, and their primary difference lies in the depth

of the network, specifically the number of layers.

ResNet-110 is often used as a teacher model because its

depth and high performance can provide richer knowledge

and feature representations for the student model to learn

from.

ResNet-20 is commonly used as a student model due

to its smaller architecture, making it more suitable for learn-

ing from the teacher model during the distillation process,

achieving a balance between performance and complexity.

Differences between the CIFAR-10 and CIFAR-100

Datasets:

CIFAR-10 and CIFAR-100 are two commonly used

image classification datasets created by Alex Krizhevsky

and Geoffrey Hinton at the University of Toronto. The main

differences between them lie in the number of classes and

the level of granularity.

Number of Classes:

CIFAR-10: Contains 10 classes, which are airplane,

automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

CIFAR-100: Contains 100 classes, with fewer samples

per class compared to CIFAR-10.

Class Hierarchy:

CIFAR-10: Each class is standalone with no hierarchi-

cal structure.

CIFAR-100: Each class belongs to a superclass, and

there are 20 superclasses in total. Each superclass contains 5

79

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

fine-grained classes.

Data Volume:

CIFAR-10 and CIFAR-100: Both datasets contain the

same amount of data, with 50,000 images in the training set

and 10,000 images in the test set. Each image is a 32x32

color image.

Sample Complexity:

CIFAR-10: Due to the fewer number of classes, the

tasks are relatively simple, making it suitable for beginners

and simple model experiments.

CIFAR-100: The larger number of classes increases

task complexity, making it more suitable for studying more

complex models and methods.

Specific Use Cases:

Model Training:

CIFAR-10: Used for rapid prototyping and testing of

simple image classification models. Due to the fewer classes

and larger number of samples per class, it allows faster train-

ing and quicker experiment iterations.

CIFAR-100: Used for testing and validating the perfor-

mance of complex models. It is very useful for research on

fine-grained classification tasks.

Model Evaluation:

Test Sets: Both CIFAR-10 and CIFAR-100 can be used

to evaluate the final performance of models. Testing on

unseen data helps assess the model’s generalization ability.

5. Advanced methods introduction

RKD (Relational Knowledge Distillation)

RKD emphasizes the preservation of relationships be-

tween the student model and the teacher model. It guides the

training of the student model by maintaining the relationships

between input samples. RKD is a method of knowledge dis-

tillation that focuses on preserving the relationships between

samples. Compared to traditional knowledge distillation,

which directly distills the output results, RKD pays more

attention to the geometric relationships between samples,

using these relationships to guide the training of the student

model [6].

SP (Similarity-Preserving Knowledge Distillation)

SP performs knowledge distillation by preserving the

similarity between samples, ensuring that the student model

can learn the structural information from the teacher model.

SP emphasizes that during the learning process, the student

model should retain the sample similarities in the feature

space as much as possible. This way, the student model not

only learns the classification capabilities of the teacher model

but also captures the teacher model’s deeper understanding

of the data.

AFD (Attention-based Feature Distillation)

AFD utilizes an attention mechanism to select impor-

tant features for distillation, enhancing the distillation effec-

tiveness through the introduction of attention modules. AFD

is a method of knowledge distillation that leverages attention

mechanisms to choose significant features for distillation,

thereby improving the performance of the student model [7].

6. Discussion

The model library constructed in this study simplifies

the implementation of knowledge transfer methods while

the visualization tool enhances the efficiency of result analy-

sis. By comparing the effectiveness of different strategies,

it is evident that each knowledge transfer method has its

strengths depending on the specific task. Future work could

involve expanding the model library to support more transfer

strategies and custom parameter tuning, further increasing

its applicability.

1. Difference in Knowledge Source and Transfer

Method:

KD (Knowledge Distillation) and BSS (Born-Again

Self-Distillation): Knowledge is transferred through soft la-

bels. KD uses a pre-trained teacher model, while BSS iterates

using its own progressively trained models.

FT (Feature Transfer) and CRD (Contrastive Repre-

sentation Distillation): Knowledge is transferred through

intermediate feature representations. FT directly uses fea-

ture representations, while CRD optimizes them through

contrastive learning.

DML (Deep Mutual Learning): Multiple student mod-

els learn from each other without the need for a pre-trained

teacher model.

2. Difference in Training Complexity and Implemen-

tation Difficulty:

KD: Relatively simple, with the teacher model’s soft

labels guiding the student model.

FT: Requires extracting and transferring intermediate

80

Journal of Computer Science Research | Volume 06 | Issue 04 | October 2024

feature representations, which increases complexity.

DML: Involves collaborative training of multiple stu-

dent models, making it more complex.

CRD: Involves contrastive learning and contrastive

loss, leading to higher computational complexity.

BSS: Requires multiple rounds of iterative training,

resulting in longer training times.

KD and BSS: Suitable for scenarios requiring a simple

3. Difference in Applicable Scenarios:

and effective knowledge transfer method.

FT and CRD: Suitable for scenarios where the student

model needs to learn rich feature representations.

DML: Suitable for resource-constrained scenarios

where no pre-trained teacher model is available, and perfor-

mance is improved through mutual learning among student

models.

7. Conclusion

This paper provides a detailed summary and replica-

tion of five classical knowledge transfer methods and three

cutting-edge techniques, culminating in the successful con-

struction of a flexible model library. Through extensive

experimentation, this research offers new insights into knowl-

edge transfer and provides a valuable framework for future

developments. The model library supports the rapid integra-

tion of multiple strategies and facilitates result visualization,

offering significant convenience for researchers and devel-

opers.

References

[1] Hinton, G., Vinyals, O., Dean, J., 2015. Distilling the

knowledge in a neural network. Advances in Neural

Information Processing Systems. 28, 1–9.

[2] Yosinski, J., 2014. Transfer learning via sparse fine-

tuning. Proceedings of the 31st International Confer-

ence on Machine Learning (ICML); Beijing, China;

22–24 June 2014. pp. 370–378.

[3] Zhang, Y., Xiang, T., Hospedales, T. M., et al., 2018.

Deep mutual learning. Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition

(CVPR); Salt Lake City, UT, USA; 18–22 June 2018.

pp. 1–9.

[4] Tian, Y., Krishnan, D., Isola, P., 2020. Contrastive rep-

resentation distillation. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recogni-

tion (CVPR); Seattle, WA, USA; 14–19 June 2020. pp.

1–10.

[5] Furlanello, T., Lipton, Z., Tschannen, M., et al., 2018.

Born-again neural networks. Proceedings of the 35th In-

ternational Conference on Machine Learning (ICML);

Stockholm, Sweden; 10–15 July 2018. pp. 1603–1612.

[6] Park,W., Kim, D., Lu,Y., et al., 2019. Relational knowl-

edge distillation. Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR);

Long Beach, CA, USA; 16–20 June 2019. pp. 1–10.

[7] Wang, Q., 2021. Attention-based feature distillation

for image classification. IEEE Transactions on Neural

Networks and Learning Systems. 32(5), 2040–2050.

81

	Introduction
	Methodology
	Experiments and results
	Notes
	Advanced methods introduction
	Discussion
	Conclusion

