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ABSTRACT

In response to the challenges of multimodal data integration, real-time information retrieval, model hallucination, and

lack of interpretability in financial stock analysis, this paper proposes an innovative financial analysis framework—FSframe.

It aims to address multiple challenges in stock analysis within the financial sector. The framework integrates various

technological modules to provide comprehensive and efficient solutions for stock trend prediction and financial question

answering tasks. First, FSframe optimizes large language models (LLMs), enhancing their adaptability to financial tasks,

and incorporates prompt engineering to mitigate potential hallucination issues during the generation process, thereby

improving the accuracy and reliability of the analysis. Secondly, the framework introduces Retrieval-Augmented Generation

(RAG) technology, creating a dynamically updated financial knowledge base that enables the model to retrieve and integrate

the latest market data, providing real-time external knowledge support for tasks. Furthermore, FSframe adopts a sparse

attention mechanism, optimizing the processing efficiency of time-series data by filtering irrelevant information and

focusing on key points, while also achieving efficient integration of time-series and textual data. Finally, through its

modular design, FSframe organically combines the aforementioned advanced technologies, forming an innovative solution

that blends multimodal data processing with real-time analysis, offering strong technical support for intelligent analysis in

the financial sector. Validation on large-scale financial datasets (including historical stock prices, financial news, and market
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announcements) shows that FSframe significantly improves prediction accuracy and real-time responsiveness in stock trend

forecasting and financial question answering tasks. Experimental results indicate that FSframe offers significant advantages

in multimodal data integration, real-time performance, and interpretability, demonstrating excellent task adaptability and

addressing the shortcomings of traditional methods. The FSframe framework not only provides an innovative solution for

stock analysis in the financial sector but also opens new pathways for the development of intelligent financial technologies.

Keywords: Financial Analysis; Financial Question Answering; Large Language Models; Retrieval-Augmented Generation;

Sparse Attention Mechanism

1. Introduction

With the accelerating digital transformation of the fi-

nancial industry, stock data analysis has gradually become

one of the core tasks in intelligent finance research [1]. The

stock market is a complex and dynamic system, with diverse

data sources and varying levels of structure, primarily con-

sisting of time-series data (such as historical prices, trading

volumes, volatility, etc.) and unstructured textual data (such

as financial news, analysis reports, market announcements,

policy interpretations, etc.) [2]. These data are highly dy-

namic in terms of time and are often interwoven, making

their integrated analysis crucial for investment decisions, risk

control, market forecasting, and other important financial

tasks. However, due to the complexity of these data and

the high noise characteristics of the financial market, stock

analysis has always been a challenging field [3]. Existing

analysis methods mainly rely on traditional machine learn-

ing and deep learning algorithms. Although these methods

have made some progress in stock trend prediction, they still

have significant limitations. First, these methods typically

lack interpretability. Their prediction results are often “black-

box” and fail to provide users with clear logical reasoning

and explanations [4]. This is particularly problematic in the

financial sector, where investors and financial institutions

need not only accurate predictions but also an understand-

ing of the reasoning behind the predictions to support the

credibility of their decisions. Second, traditional methods

show clear inadequacies in integrating real-time financial

data. The stock market is fast-moving, and real-time infor-

mation is critical for analysis, yet these methods often rely

on static historical data, making it difficult to capture dy-

namic changes in the market, leading to delayed or even

failed predictions [5]. Lastly, there is a large amount of false

or redundant information in the financial market, such as

noisy news and market rumors, which can interfere with

the model’s judgment, further reducing the reliability of the

predictions [6]. To address these issues, introducing large

language models (LLMs) is an effective direction. With their

powerful semantic understanding capabilities, LLMs can im-

prove interpretability and generate more transparent analysis

reports. Additionally, by integrating Retrieval-Augmented

Generation (RAG) technology, LLMs can retrieve and inte-

grate the latest market data in real-time, thereby enhancing

the model’s timeliness. When dealing with noisy data, LLMs

are also better at identifying and filtering out irrelevant infor-

mation, improving the accuracy of the analysis [7]. However,

directly applying LLMs to stock data analysis still faces nu-

merous challenges. The first is the hallucination problem,

where LLMs may generate content that is factually incorrect,

leading to erroneous predictions or analyses. This is particu-

larly problematic in finance, where accuracy and specialized

knowledge are essential [8]. Another challenge is the insuffi-

cient time-series data processing capability of LLMs. Since

LLMs are designed for natural language tasks, they struggle

withmodeling time-series data, such as historical stock prices

or trading volumes, and fail to capture dynamic patterns like

market fluctuations or sudden price impacts [9]. Additionally,

real-time knowledge integration remains a significant hur-

dle for LLMs. As they primarily rely on static data during

training, their knowledge base tends to be “frozen,” mak-

ing it difficult to incorporate the latest market information,

such as real-time news or policy changes. This results in

delayed or inaccurate predictions in fast-changing market

environments [10]. These factors test the robustness of LLMs,

making it harder for them to extract useful insights from the

noisy data.

Therefore, addressing these limitations in LLMs for

stock data analysis, while fully leveraging their natural lan-

guage processing advantages and compensating for their
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shortcomings in hallucination, processing time-series mod-

eling, and real-time knowledge integration„ has become a

key research direction. These issues are not only techni-

cal challenges but also critical drivers for advancing finan-

cial intelligence. Solving these challenges will help build

more efficient, accurate, and interpretable financial analysis

frameworks, providing strong technical support for investors

and financial institutions. To address these issues, this pa-

per proposes an innovative financial analysis framework

FSframe designed to integrate the language generation ca-

pabilities of LLMs, dynamic knowledge support through

Retrieval-Augmented Generation (RAG), and efficient fea-

ture extraction using sparse attention mechanisms to provide

a comprehensive solution for stock data analysis and finan-

cial question answering tasks. The design motivations for

this framework are as follows: First, by fine-tuning LLMs on

domain-specific financial datasets to enhance their adaptabil-

ity to financial terminology and task requirements, and com-

bining prompt engineering techniques to guide the model’s

output, we effectively alleviate hallucination problems and

extend the adaptability and interpretability of LLMs. Second,

by introducing RAG technology to construct a dynamically

updated financial knowledge base, the model can retrieve and

integrate the latest market data in real-time. Finally, sparse

attention mechanisms optimize the processing efficiency of

time-series data while enabling the efficient integration of

time-series and textual data, enhancing the model’s adaptabil-

ity for complex financial tasks. The goal of this paper is to

design a modular framework that combines LLMs, RAG, and

sparse attention to solve key challenges in stock analysis, in-

cluding time-series modeling, lack of real-time updates, and

hallucination issues. Through the introduction of FSframe,

we aim to provide an accurate, efficient, and interpretable

technical solution for stock trend prediction and financial

question answering, while offering new research directions

and application demonstrations for the development of intel-

ligent financial technologies.

Contributions:

1. The introduction of large language models (LLMs)

addresses the shortcomings of traditional financial analysis

methods, such as poor interpretability, lack of real-time adapt-

ability, and susceptibility to noise. By fine-tuning LLMs on

domain-specific datasets and employing prompt engineering,

the framework significantly enhances the model’s adaptabil-

ity to financial terminology and tasks. Additionally, the

semantic understanding capabilities of LLMs enable more

intuitive and interpretable analysis results, providing robust

support for financial decision-making.

2. The integration of Retrieval-Augmented Genera-

tion (RAG) technology overcomes the limitations of LLMs

in terms of real-time adaptability and hallucination issues.

LLMs typically rely on static knowledge bases, making it

difficult to reflect rapidly changing market information, and

their outputs may lack accuracy due to the absence of real-

time support. RAG constructs a dynamically updated fi-

nancial knowledge base, allowing the model to retrieve and

integrate the latest market information, such as stock history,

financial news, and market announcements, during the gen-

eration process. This dynamic integration mechanism not

only compensates for the lack of real-time adaptability in

LLMs but also significantly reduces hallucination risks by

filtering irrelevant information.

3. The introduction of sparse attention mechanisms

optimizes the efficiency of processing time-series data. Tra-

ditional methods often face high computational complexity

and struggle to capture key patterns in large-scale time-series

data. Sparse attention reduces computational costs by fil-

tering irrelevant information and focusing on critical time

points while effectively capturing both short-term trends and

long-term dependencies. Furthermore, cross-modal atten-

tion mechanisms enable the efficient fusion of time-series

data with textual data, enhancing the model’s ability to un-

derstand the relationship between market events and stock

price fluctuations, thereby improving prediction accuracy

and interpretability.

2. Related Work

In the field of financial data analysis, traditional ma-

chine learning and deep learning methods have been widely

applied to tasks such as stock trend prediction and sentiment

analysis. These approaches primarily focus on time series

modeling and text data processing, and they have advanced

financial intelligent analysis to a certain extent [11]. However,

they still exhibit significant limitations in terms of accuracy,

multimodal integration, and the ability to understand com-

plex contexts.

Firstly, regression-based models and time series ap-
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proaches, exemplified by theAutoregressive Integrated Mov-

ingAverage (ARIMA) model and Long Short-Term Memory

(LSTM) networks, have shown strong capabilities in captur-

ing stock price dynamics and trends. The ARIMAmodel [12]

excels in handling stationary time series data and can ef-

fectively predict short-term trends. Its advantages lie in its

simplicity, ease of parameter interpretation, and high pre-

diction accuracy in low-volatility markets. However, the

ARIMAmodel has poor fitting ability for nonlinear data and

struggles to capture the complex nonlinear features in the

stock market, which are often the primary sources of price

fluctuations in financial markets.

In contrast, LSTM [13] as a deep learning model, can

leverage its memory cells to capture long-term dependencies

and exhibit stronger fitting capabilities for nonlinear data.

This enables LSTM to better capture both long-term trends

and short-term fluctuations in financial time series data (such

as stock prices and trading volumes). Nevertheless, LSTM

has significant drawbacks: its training process typically re-

quires large amounts of high-quality data, and it is prone to

overfitting when faced with high noise or unstable market

environments. Additionally, traditional time series methods

generally overlook the impact of external factors like market

sentiment and are unable to effectively integrate key infor-

mation from unstructured text data (such as financial news

and market announcements), leading to a one-sidedness in

prediction results.

On the other hand, in the realm of text data process-

ing, traditional Natural Language Processing (NLP) methods

have also been widely used in financial sentiment analy-

sis and other tasks [14]. For example, techniques based on

word embeddings and text classification, such as TF-IDF

and Word2Vec, have been employed to analyze sentiment

information in financial news to capture the potential im-

pact of market sentiment on stock prices. TF-IDF (Term

Frequency-Inverse Document Frequency) [15] is a classic text

feature extraction method that excels in its ability to measure

the importance of words in a document quickly and simply,

thereby providing a foundational feature representation for

sentiment analysis.

However, TF-IDF cannot capture the contextual rela-

tionships between words and relies solely on word frequency

statistics. This “isolated” feature representation makes it dif-

ficult to handle complex semantic information. In contrast,

Word2Vec [16] maps words to high-dimensional vector spaces,

capturing semantic similarities between words. This seman-

tic embedding method significantly enhances the model’s

ability to understand text and performs better in sentiment

analysis. Nevertheless, Word2Vec is fundamentally based

on static word vectors and cannot dynamically adjust the

meanings of words based on different contexts. For example,

in the financial domain, the word “growth” might represent

different meanings depending on the context (e.g., referring

to stock price growth or economic growth), whichWord2Vec

cannot comprehend. Furthermore, these traditional methods

often face challenges in retaining semantic information when

analyzing long texts, making it difficult to comprehensively

capture important hidden information within the text.

Although the aforementioned methods each have their

strengths, they share common limitations in multimodal data

integration and complex context understanding. Time se-

ries models (such as ARIMA and LSTM) primarily focus on

structured data (like stock prices and trading volumes) and

have weak capabilities in handling unstructured text data,

making it difficult to incorporate external information such

as market sentiment into the analytical framework [17]. Con-

versely, traditional NLP techniques (such as TF-IDF and

Word2Vec) can extract sentiment information from text but

lack the ability to model time series features, thereby failing

to capture the direct impact of textual information on price

dynamics [18]. For instance, significant events in financial

news can cause short-term shocks to stock prices, but ex-

isting text processing methods cannot effectively integrate

with time series modeling, resulting in predictions that lack

dynamism.

In summary, regression-based and time series models

perform relatively well in capturing dynamic price changes,

while word embedding-based text processing techniques

have certain advantages in sentiment analysis. However,

these methods fall short when dealing with the complex mul-

timodal data present in financial markets (where time series

and text data coexist), especially in scenarios that require

consideration of market sentiment, event-driven factors, and

price dynamics simultaneously, making it difficult to provide

comprehensive and accurate analysis results. These limita-

tions provide directions for future research, namely designing

a unified analytical framework capable of efficiently integrat-

ing time series and text data, dynamically capturing market
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changes, and possessing deep contextual understanding to

overcome the bottlenecks of existing methods.

In recent years, with the rapid development of deep

learning technologies, pre-trained language models (such as

BERT and GPT) andmultimodal learningmethods have grad-

ually been introduced into the financial domain, bringing new

breakthroughs to tasks like stock analysis, sentiment analysis,

and market prediction [19]. Particularly, pre-trained language

models like BERT have demonstrated powerful contextual

feature capturing capabilities in natural language process-

ing tasks, achieving significant improvements in sentiment

analysis and text classification tasks. Specifically, BERT [20]

employs a bidirectional Transformer architecture to perform

deep semantic modeling of text, effectively capturing the

contextual relationships between words. For example, when

analyzing financial news, BERT can understand the spe-

cific meanings of words within their contexts, thereby more

accurately extracting market sentiment information or event-

driven factors. This ability significantly surpasses traditional

static word embedding methods (such as Word2Vec), en-

abling the model to better adapt to high-semantic-complexity

text analysis tasks in the financial domain [21].

However, the limitations of pre-trained language mod-

els like BERT are also evident, especially in handling dy-

namic time series data. These models are primarily designed

for static text data and, although they excel in unstructured

text modeling, they lack the capability to model time se-

ries features. For example, in stock market analysis, finan-

cial news and historical price data often need to be mod-

eled jointly, but BERT cannot directly capture the dynamic

changes in historical prices or the time-lagged effects of

news events on stock prices. This deficiency in handling

dynamic features restricts the performance of these models

in multimodal financial analysis.

Meanwhile, the introduction of the Transformer archi-

tecture has opened new possibilities for time series modeling.

Transformers, with their efficient feature capturing capabili-

ties based on attention mechanisms, overcome the limitations

of traditional recurrent neural networks (such as LSTM) in

modeling long-term dependencies [22]. Particularly in finan-

cial data analysis, Transformers can model key points in time

series through their global attention mechanisms without re-

lying on sequential input, thereby better capturing long-term

dependencies. For example, stock price fluctuations may be

influenced by events that occurred several days prior, and

Transformers can directly model such long-term dependen-

cies by allocating attention weights accordingly. Addition-

ally, to further enhance the comprehensive capability of time

series modeling, numerous studies have begun to combine

Transformers with LSTM, utilizing LSTM to capture short-

term fluctuation characteristics and Transformers to model

long-term trends [23]. This hybrid approach can accommodate

both local dynamic features and global dependencies, pro-

viding a powerful tool for modeling the complex dynamics

of the stock market.

Nevertheless, the application of Transformers in time

series modeling also faces some challenges. Firstly, although

the global attention mechanism of Transformers is effective,

their computational cost grows exponentially with the length

of the sequence, which is particularly prominent when deal-

ing with long-term financial time series (such as multi-year

stock price data). Furthermore, Transformer model training

often requires large-scale high-quality labeled data, and in

the financial domain, data labeling is costly and publicly

available datasets are scarce, which may limit the perfor-

mance of Transformers. Secondly, due to the high volatility

and noisy characteristics of the stock market, Transform-

ers may be susceptible to interference from anomalous data

points, leading to unstable prediction results. On the other

hand, Retrieval-Augmented Generation (RAG) technology,

which has gained attention in recent years, offers a novel

solution for dynamic knowledge integration and real-time

task adaptability. RAG technology combines retrieval mod-

ules with generation modules, enabling models to dynami-

cally acquire external knowledge and thereby compensate

for the “frozen” knowledge base limitations of pre-trained

language models [24]. In conclusion, recent deep learning

technologies (such as BERT, GPT, and Transformers) and

Retrieval-Augmented Generation (RAG) technologies have

demonstrated tremendous potential in the field of financial

data analysis. Pre-trained language models like BERT have

significantly enhanced the semantic understanding capabil-

ities of text sentiment analysis but fall short in time series

modeling and dynamic data integration. Transformers have

compensated for the deficiencies of traditional time series

models in long-term dependency modeling, but their compu-

tational costs and sensitivity to noisy data limit their appli-

cation scope. RAG technology provides powerful tools for
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real-time knowledge integration but remains constrained by

its reliance on the quality of knowledge bases and retrieval

efficiency. Future research needs to combine the strengths

of these technologies while overcoming their limitations to

build a more efficient, accurate, and dynamically adaptable

financial data analysis framework.

3. Method

Figure 1 illustrates the overall architecture of the FS-

frame framework, which integrates Sparse Attention (SA),

Retrieval-Augmented Generation (RAG), and Large Lan-

guage Models (LLMs) to deliver an efficient and accurate

solution for financial data analysis. Stage 1 focuses on pre-

dicting stock trends based on historical financial data and

contextual reports, while Stage 2 utilizes the outputs from

Stage 1 to dynamically retrieve and integrate relevant finan-

cial information (e.g., market news and financial reports)

to generate interpretable textual explanations. This inter-

connected design ensures that FSframe not only predicts

stock trends with high accuracy but also provides real-time,

context-aware explanations, addressing core challenges such

as real-time adaptability and explainability.

Figure 1. Overall algorithm architecture.

3.1. Large Language Model

To enhance the adaptability of large language models

(LLMs) [25] in the financial domain, this paper addresses chal-

lenges they face in stock analysis tasks (such as hallucination

issues, insufficient domain adaptability, and lack of dynamic

knowledge integration). A set of optimization methods is de-

signed, combining prompt engineering, domain fine-tuning,

and dynamic knowledge injection to build a high-precision

generative model for stock trend prediction and financial

question answering. The architecture diagram of LLMs is

shown in Figure 2. The method is outlined in detail be-

low, and the core steps are described through formalized

equations.

Figure 2. Structure diagram of LLMs.

The generation process of an LLM can be represented

as a conditional probability optimization problem, where the

goal is to generate the optimal output text y (such as stock

predictions or financial analysis reports) based on input con-

ditions x (e.g., financial news, historical prices, etc.):

P (y | x) =
T∏

t=1

P (yt | y<t, x; θ) (1)

Where P (y|x) represents the probability of generating the
output y given the input conditions x, yt is the t-th word

in the generated sequence, y<t denotes the sequence of all

words generated before yt, x refers to the input conditions,

which may include various external factors such as textual

data, timestamps, or user data, and θ represents the model

parameters of the large language model (LLM).

To optimize P (y|x), this paper introduces improve-
ments in several areas. Firstly, prompt engineering is em-

ployed, which involves constructing optimized input tem-

plates to embed the specific requirements of financial tasks

into the input, thereby enhancing the accuracy and profes-

sionalism of the generated results. The design of prompts

includes task descriptions, few-shot examples, and knowl-

edge constraints.

Given an original input xraw (such as financial news

text), the optimized prompt xprompt can be represented as:

xprompt = fprompt (xraw, c, e) (2)

Where fprompt represents the prompt generation function, c

denotes additional task information (e.g., “predict the trend

of stock prices”), and e represents few-shot examples (e.g.,

“Given the historical data: stock X rose by 5%, and stock Y

fell by 3%. Predict the movement of stock Z.”).

By introducing this optimization, the model adjusts the

conditional probability P (y|xraw) to P (y|xprompt), thereby
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improving the relevance and accuracy of the outputs. Fur-

thermore, to adapt LLMs to specific domains (e.g., finance),

this paper fine-tunes the model on domain-specific datasets

Dfinance, enabling LLMs to learn domain-specific patterns

while retaining generalization capabilities. The optimization

objective can be represented as:

Ldomain =  −
∑

(x,y)∈Dfinance

logP (y | x; θ) (3)

Where, Dfinance represents the financial domain dataset, in-

cluding financial news, analysis reports, stock announce-

ments, etc. P (y|x; θ) denotes the probability of the model
generating output y given input x. θ represents the model

parameters, optimized through gradient descent.

LLMs, due to their static knowledge base, struggle to

meet the demands of real-time changes in financial markets.

To address this, this paper designs a dynamic knowledge in-

jection mechanism that supplements real-time financial infor-

mation (such as the latest market trends and policy changes)

through external knowledge modules. The process of dy-

namic knowledge injection can be modeled in the following

two steps:

Retrieve external knowledge k related to the input x

from the dynamic knowledge baseKdynamic:

k = arg maxk′∈Kdynamic
Sim (x, k′) (4)

Where Sim
(
x, k’

)
measures the relevance between the input

x and the knowledge k’ (e.g., semantic similarity).

The model integrates the dynamic knowledge item k

into the generation process, optimizing the conditional prob-

ability distribution:

P (y | x, k) =
T∏

t=1

P (yt | y<t, x, k; θ) (5)

The objective of knowledge injection is to minimize

the following loss function:

Lknowledge = −
∑

(x,k,y)∈Dfinance

logP (y|x, k; θ) (6)

Dynamic knowledge injection not only increases the

temporal adaptability of the model but also enhances its in-

terpretability, improving the reliability and accuracy of the

outputs.

Finally, the overall optimization objective of the model

is to minimize the weighted sum of the two loss functions:

L = αLdomain + βLknowledge (7)

Where Ldomain represents the domain fine-tuning loss, im-

proving the model’s adaptability to financial tasks, Lknowledge

represents the dynamic knowledge injection loss, enhanc-

ing the model’s ability to process real-time information, and

α, β represent loss weighting hyperparameters, used to bal-

ance the priority between domain adaptation and knowledge

injection.

By leveraging prompt engineering to optimize input lan-

guage, domain fine-tuning to enhance task adaptability, and

dynamic knowledge injection to improve real-time respon-

siveness, this paper proposes a highly efficient optimization

method tailored for stock analysis tasks in LLMs. The overall

approach not only significantly improves the accuracy and

professionalism of generated results but also effectively miti-

gates hallucination issues, providing comprehensive support

for the intelligent analysis of financial tasks.

3.2. Retrieval-Augmented Generation

To address the complexity of real-time dynamic data

and unstructured textual information in the financial domain,

this paper introduces the Retrieval-Augmented Generation

(RAG) [26] technique. RAG dynamically integrates real-time

knowledge from the financial market (such as financial news,

policy announcements, and the latest financial reports) to

enhance the model’s performance in stock trend prediction

and financial question answering tasks. The architecture

diagram of RAG is shown in Figure 3. By combining the

retrieval capabilities of an external knowledge base with

the language generation capabilities of the model, RAG sig-

nificantly improves the model’s real-time adaptability and

accuracy. Below is the description and formal modeling of

the RAG-based method proposed in this paper.

Figure 3. Structure diagram of RAG.
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The core idea of RAG is to combine the retrieval mod-

ule (Retriever) with the generation module (Generator), en-

abling the generative model to dynamically retrieve relevant

information from external knowledge bases and use it as

conditional input to optimize the generated results. The gen-

eration probability formula is as follows:

P (y | x) =
∑
k∈K

P (y | x, k; θg)P (k | x; θr) (8)

Here, x represents the input question or task description (e.g.,

“Analyze Tesla’s stock trend over the next week”), y repre-

sents the generated answer or prediction result (e.g., “Tesla’s

stock is likely to rise, benefiting from increased EV sales”),

K denotes the set of all candidate knowledge items in the

external knowledge base (e.g., a financial news database,

company financial reports, etc.), and k refers to the specific

knowledge item retrieved (e.g., a news article: ”Tesla re-

leases new financial report, exceeding expectations”). θr

represents the parameters of the retrieval module (Retriever),

and θg represents the parameters of the generation module

(Generator). The model first uses the retrieval module to find

knowledge items k related to the input x from the knowl-

edge baseK. Then, based on these knowledge items and the

input conditions x, the generation module generates the final

output y.

The retrieval module retrieves knowledge items k that

are most relevant to the input query x. The relevance is

calculated as:

P (k | x; θr) =
exp (sin (x, k; θr))∑

k′∈K

exp (sin (x, k′; θr))
(9)

Where, Sim (x, k; θr) represents the similarity between the

input x and the knowledge item k, typically computed using

dense embeddings (e.g., BERT embeddings).

The parameters θr of the retrieval module are trained

using contrastive learning, which maximizes the similarity

between the input and the correct knowledge item while min-

imizing the similarity with irrelevant items. The retrieval

loss function is defined as:

Lretrieval = −logP (k∗ | x; θr) (10)

Where k∗ represents the correct knowledge item associated

with the input x.

The generation module generates responses based on

the retrieved knowledge item k. The probability distribution

of the generated response y is:

P (y | x, k; θg) =
T∏

t=1

P (yt | y<t, x, k; θg) (11)

Where, yt represents the t-th token in the generated response.

y<t represents the sequence of all tokens generated before

yt. θg represents the parameters of the generation module,

typically based on Transformer-based language models.

The generation module minimizes the following loss

function:

Lgeneration = −
∑

(x,k,y)∈D

logP (y | x, k; θg) (12)

Where D represents the dataset containing input queries,

knowledge items, and their corresponding target responses.

In RAG, since different knowledge items may have

varying degrees of relevance, a weighted aggregation of

multiple knowledge items is introduced. The aggregated

generation probability is:

P (y | x) =
∑
k∈K

wkP (y | x, k; θg) , wk = P (k | x; θr)

(13)

Where, wk represents the weight of each knowledge

item k, determined by the retrieval module’s distribution

P (k|x; θr).
Finally, the optimization objective of the RAG frame-

work combines the retrieval module loss and the generation

module loss:

L = αLretrieval + βLgeneration (14)

Where: Lretrieval represents the retrieval loss, used to opti-

mize the relevance of knowledge items. Lgeneration represents

the generation loss, used to optimize the fluency and accuracy

of the generated response. α,  β represent weighting factors

that balance the optimization of the retrieval and generation

modules.

Through joint optimization, the model can simultane-

ously enhance the knowledge matching capability of the re-

trieval module and the language generation capability of the

generation module. The dynamic knowledge enhancement

method based on RAG designed in this paper significantly

improves the model’s real-time performance and adaptability

in financial tasks by combining the retrieval and generation

modules. The retrieval module dynamically acquires the

8
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latest information from the financial market, while the gen-

eration module produces high-quality text outputs through

knowledge-weighted integration. The joint design of the fi-

nal optimization objective ensures the collaborative optimiza-

tion of retrieval and generation, providing comprehensive

support for solving complex tasks in the financial market.

3.3. Sparse Attention Mechanism

To address the computational bottlenecks and noise

interference in financial data analysis involving long-term

sequence modeling and high-dimensional data integration,

sparse attention reduces computational complexity by se-

lecting key positions in the attention matrix for computa-

tion, while retaining the ability to capture important infor-

mation [27]. This method is particularly suitable for han-

dling long-term sequences in financial scenarios (e.g., stock

price trends) and multimodal inputs (e.g., joint analysis of

time-series data and textual data), significantly improving

the model’s computational efficiency and predictive perfor-

mance. The architecture diagram is shown in Figure 4. Be-

low is a detailed description and formal modeling of the

sparse attention mechanism.

Figure 4. Sparse Attention Mechanism architecture diagram.

The standard attention mechanism in Transformer mod-

els can be formulated as:

Attention (Q,K, V ) = softmax

(
QK>
√
dk

)
V (15)

Where Q represents the query matrix, which contains the

query vectors of the target sequence,K represents the keyma-

trix, which contains the key vectors of the input sequence, V

represents the value matrix, which contains the value vectors

of the input sequence, and dk represents the dimensionality

of the key vectors.

The computational complexity of the standard attention

mechanism isO
(
n2

)
, where n is the sequence length, due to

the need to compute the full QK> matrix. This complexity

makes it challenging to apply to long sequences, such as

financial time series. To mitigate this issue, sparse attention

mechanisms are introduced. Sparse attention selectively fo-

cuses on specific positions in the attention matrix, using a

binary maskM to indicate which positions are considered.

The sparse attention formula is:

Sparse Attention(Q,K, V,M) = softmax

(
QK>
√
dk

�M

)
(16)

Where M is a binary mask matrix that determines which

positions in the attention matrix are included in the computa-

tion (M [i, j] = 1 indicates inclusion,M [i, j] = 0 indicates

exclusion), and � represents element-wise multiplication.

The design of the sparse mask matrix is typically based

on the following strategies:

Local Attention: Focuses on a fixed window of posi-

tions around each token for attention computation, capturing

short-term dependencies. The mask is defined as:

M [i, j] =

{
1, if  | i− j |≤ w

0, otherwise
(17)

Where w is the window size.

Global Key Attention: Focuses on a subset of key posi-

tions across the entire sequence, capturing long-term depen-

dencies. The mask is defined as:

M [i, j] =

{
1, if j ∈ G

0, otherwise
(18)

Where G is the set of global key indices (e.g., key positions

corresponding to significant events like stock price spikes or

news releases).

Hybrid Attention: Combines local and global atten-

tion to simultaneously capture both short-term and long-term

dependencies.

Cross-Modal Attention: Extends attention to cross-

modal data (e.g., aligning financial time series with text

data). The formula for cross-modal sparse attention is:

Cross Sparse Attention(Qt,Km, Vm,Mtm) =

softmax
(

QtK
>
m√

dk
�Mtm

)
Vm

(19)

Where Qt represents the query matrix for the time series

data, Km and Vm represent the key and value matrices for

the text data, andMtm is the cross-modal sparse mask ma-

trix, which controls which positions in the time series and

text data interact. Sparse attention reduces the complexity of

attention computation from O
(
n2

)
to O (n · dk · s), where

s is the sparsity factor (i.e., the average number of positions

9
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included in the attention computation). This makes sparse

attention more suitable for long sequences in financial ap-

plications while maintaining the ability to capture important

dependencies.

4. Experiment

4.1. Experimental Environment

The experiments were conducted on a high-

performance computing platform, with hardware config-

urations including multiple servers equipped with NVIDIA

Tesla A100 GPUs. Each server has 256 GB of RAM and

is connected to a distributed storage system with up to 40

TB capacity, enabling efficient processing of large-scale

datasets and deep learning model training. All systems run

on Ubuntu 18.04 to ensure stability and compatibility. In

terms of software, the experiments utilized deep learning

frameworks such as TensorFlow and PyTorch for model

training, Hugging Face Transformers and spaCy for natu-

ral language processing, and Apache Kafka for real-time

data stream processing. Apache Spark was employed for

large-scale data processing and analysis. Additionally, Ku-

bernetes was used for container orchestration, ensuring

efficient deployment and management of FSframe, with high

availability and scalability. This combination of hardware

and software provides the necessary computational power

and flexibility to support the testing and validation of the

FSframe framework.

4.2. Experimental Data

In this experiment, four diverse financial datasets were

used to evaluate the performance of the FSframe framework.

These datasets include historical stock prices, financial news,

market announcements, and financial reports, which were

selected to cover both structured time-series data and un-

structured textual data.

• CRSP Stock Dataset

The CRSP Stock Dataset [28] is a comprehensive

dataset containing historical stock price information

for thousands of U.S. companies. It includes daily,

monthly, and annual stock prices, returns, and trading

volumes, spanning several decades. This dataset is

essential for training models to predict stock price

movements, volatility, and other market behaviors.

Researchers often use this dataset to analyze histor-

ical performance and build predictive models based

on past stock trends. The data is cleaned and prepro-

cessed to ensure accuracy and completeness, making

it a reliable resource for financial forecasting tasks.

• Reuters Financial News Dataset

The Reuters Financial News Dataset [29] consists of a

large collection of financial news articles, including

stories about companies, financial markets, mergers,

acquisitions, economic events, and more. It is widely

used for tasks like sentiment analysis, event detec-

tion, and market prediction based on news content.

Each article in the dataset is labeled with metadata,

including the date of publication and categories rele-

vant to the financial sector. This dataset is invaluable

for studying how news events affect stock prices and

understanding the relationship between market senti-

ment and stock performance.

• SEC EDGAR Filings Dataset

The SEC EDGAR Filings dataset [30] provides access

to key regulatory filings submitted by publicly traded

companies to the U.S. Securities and Exchange Com-

mission. This includes documents like 10-K annual

reports, 10-Q quarterly reports, earnings announce-

ments, and other corporate disclosures. These filings

contain detailed information on a company’s financial

performance, risks, business operations, and execu-

tive decisions. The dataset is crucial for understanding

how corporate announcements influence stock price

movements and for performing event-driven analysis,

where market reactions to specific announcements are

studied.

• Compustat Financials Dataset

The Compustat Financials Dataset [31] is a compre-

hensive source of financial and market data, provid-

ing detailed company financials including income

statements, balance sheets, and cash flow statements.

The dataset covers a wide range of public companies

worldwide and includes historical data as well as esti-

mates and forecasts. This dataset is widely used for

financial analysis, including profitability analysis, fi-

nancial risk assessment, and company valuation. It

is particularly useful for training models that require

10
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a deep understanding of company fundamentals to

predict stock performance and answer financial ques-

tions.

4.3. Evaluation Metrics

To evaluate the performance of the FSframe frame-

work in financial analysis tasks, particularly in stock trend

prediction and financial question answering, we employ the

following four evaluation metrics: Accuracy, Precision, Re-

call, and F1-Score. These metrics are commonly used in

classification tasks and help in evaluating the model’s per-

formance in terms of its correctness and reliability.

• Accuracy

Accuracy measures the proportion of correct predic-

tions made by the model, either for stock trend predic-

tions (e.g., predicting price movements correctly) or

for financial question answering tasks (e.g., answer-

ing a question correctly). It is one of the simplest and

most intuitive metrics. However, accuracy may not be

sufficient when dealing with imbalanced classes, as it

does not take the distribution of classes into account.

Formula:

Accuracy =
TP + TN

TP + TN + FP + FN
(20)

Where, TP refers to the number of True Positive, TN

refers to the number of True Negatives, FP refers to

the number of False Positives, FN refers to the number

of False Negatives.

• Precision

Precision measures the proportion of positive predic-

tions that are actually correct. It is particularly useful

when the cost of false positives is high. In financial

question answering, for example, precision is cru-

cial in determining how often the model’s answer is

correct when it provides a positive prediction (i.e., a

confident answer). Formula:

Precision =
TP

TP + FP
(21)

Higher precision indicates that the model makes fewer

false positive errors, which is especially important in

scenarios where false positive predictions could lead

to financial loss or misinformed decisions.

• Recall

Recall (also known as Sensitivity or True Positive

Rate) measures the proportion of actual positive cases

that were correctly identified by the model. It is cru-

cial when the cost of false negatives is high, such as in

medical diagnoses or fraud detection, where missing

a positive case can have serious consequences. Re-

call helps ensure most positive cases are captured .

Formula:

Recall =
TP

TP + FN
(22)

A higher recall indicates that the model is better at

identifying positive instances, which is valuable in

tasks where it is critical not to miss any relevant

events, such as predicting stock price movements dur-

ing volatile market conditions.

• F1-Score

The F1-Score is the harmonic mean of Precision and

Recall. It is particularly useful when you need to bal-

ance the trade-off between Precision and Recall, as it

accounts for both false positives and false negatives.

The F1-score is especially important in financial anal-

ysis, where both false positives and false negatives

can have significant consequences. Formula:

F1− Score = 2× Precision× Recall

Precision+ Recall
(23)

The F1-Score gives a single value that balances the

trade-off between precision and recall. A higher F1-

score means that the model is providing reliable pre-

dictions without significantly sacrificing either preci-

sion or recall.

4.4. Experimental Comparison and Analysis

In this section, we compare the performance of the pro-

posed method with several existing mainstream methods on

four different datasets. Table 1 shows the accuracy, preci-

sion, recall, and F1-score metrics of these methods on the

CRSP Stock Dataset, Reuters Financial News Dataset, SEC

EDGAR Filings Dataset, and Compustat Financials Dataset.

By comparing these metrics, we can get a comprehensive

understanding of each model’s actual performance on finan-

cial data tasks and evaluate the advantages of the proposed

method.

From the results in Table 1 and Figure 5, we observe

that the proposed method outperforms all other methods in

11
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Table 1. Comparison of relevant indicators of the proposed method with other methods on four datasets.

Model
CRSP Stock Dataset Reuters Financial News Dataset

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Zhao et al. [32] 88.13 89.22 88.08 88.65 87.24 88.95 91.37 90.14

Chen et al. [33] 90.91 89.65 87.00 88.31 89.11 92.09 90.31 91.19

Qiu et al. [34] 87.09 91.79 92.43 92.11 92.47 89.07 89.00 89.03

Chaudhari et al. [35] 90.34 88.31 91.35 89.80 92.39 89.34 89.11 89.22

Teng et al. [36] 87.08 91.57 91.13 91.35 92.37 88.36 88.45 88.40

Verma et al. [37] 88.84 89.63 89.24 89.43 87.49 89.98 91.47 90.72

Ours 92.64 93.52 94.29 93.90 94.17 93.74 93.02 93.38

Model
SEC EDGAR Filings Dataset Compustat Financials Dataset

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

Zhao et al. [32] 91 90.94 90.63 90.78 90.50 91.78 90.11 90.94

Chen et al. [33] 90.36 88.65 87.26 87.95 87.59 88.67 91.33 89.98

Qiu et al. [34] 88.67 91.87 91.60 91.73 88.76 89.30 88.30 88.80

Chaudhari et al. [35] 88.16 87.88 90.90 89.36 87.37 91.06 86.44 88.69

Teng et al. [36] 90.62 88.99 87.31 88.14 88.17 86.22 91.60 88.83

Verma et al. [37] 89.29 90.46 86.06 88.21 87.98 90.17 90.94 90.55

Ours 93.16 93.53 94.29 93.91 93.26 92.34 93.84 93.08

terms of performance on all datasets. Particularly, on the

CRSPStock Dataset and Reuters Financial News Dataset, the

proposed method achieves accuracy scores of 92.64% and

94.17%, significantly higher than other methods (e.g., Zhao

et al. achieves 88.13% and 87.24%, respectively). Addition-

ally, the F1-Score, which is a comprehensive metric, is also

higher for our method across all datasets, especially on the

Reuters Financial News Dataset, where the F1-Score reaches

93.38%, almost 3 percentage points higher than Verma et

al.’s 90.72%. It is worth noting that Qiu et al.’s method per-

forms well in Recall, particularly on the CRSP Stock Dataset

(92.43%) and Reuters Financial News Dataset (89.00%), but

its performance in other metrics (such as Precision and F1-

Score) is balanced but still lower than the proposed method.

This suggests that Qiu et al.’s model has a higher recall for

capturing certain types of signals but lacks in precision and

overall performance. Moreover, Chen et al. and Chaudhari

et al.’s models show similar results to the proposed method

in some datasets, especially on the Reuters Financial News

Dataset, where Chaudhari et al. achieves an accuracy of

92.39%, slightly lower than the proposed method’s 94.17%.

However, the proposed method is still superior in terms of

multiple metrics, indicating its better adaptability and robust-

ness across various types of financial data.

Next, we compare the training indicators of different

models across the four datasets (Table 2). We evaluate each

model based on its number of parameters, inference time,

and training time, aiming to further understand the perfor-

mance from the perspective of computational efficiency and

resource consumption. The number of parameters directly

affects the model’s complexity, inference time reflects the

model’s real-time response capability, and training time indi-

cates the computational resources and time required during

the learning phase.

Figure 5. Visual comparison of relevant indicators on four datasets.

From the results in Table 2 and Figure 6, we can see

that the proposed method has a clear advantage in both train-

ing time and inference time, particularly in terms of inference

efficiency, where it significantly outperforms other mod-
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Table 2. Comparison of training indicators on four datasets.

Model

CRSP Stock Dataset Reuters Financial News Dataset

Parameters

(M)

Inference

Time (ms)

Training Time

(s)

Parameters

(M)

Inference

Time (ms)

Training Time

(s)

Zhao et al. [32] 418.68 318.77 229.76 453.93 381.53 233.23

Chen et al. [33] 431.66 291.50 219.29 400.13 337.20 315.19

Qiu et al. [34] 401.33 282.74 284.20 430.01 301.19 276.08

Chaudhari et al. [35] 405.33 299.29 230.74 447.99 301.07 287.61

Teng et al. [36] 527.59 295.21 283.47 466.74 298.18 286.79

Verma et al. [37] 414.81 304.80 277.12 475.68 378.53 277.47

Ours 372.64 273.04 198.71 370.36 282.41 202.81

Model

SEC EDGAR Filings Dataset Compustat Financials Dataset

Parameters

(M)

Inference

Time (ms)

Training Time

(s)

Parameters

(M)

Inference

Time (ms)

Training Time

(s)

Zhao et al. [32] 514.80 364.97 254.45 437.21 335.60 282.99

Chen et al. [33] 415.49 374.36 286.37 400.11 378.07 270.71

Qiu et al. [34] 465.37 332.40 233.24 421.46 376.66 237.00

Chaudhari et al. [35] 572.71 452.62 233.71 467.47 358.42 267.43

Teng et al. [36] 460.54 317.81 266.90 498.95 320.68 236.92

Verma et al. [37] 555.02 324.36 284.90 432.53 356.09 262.07

Ours 375.35 279.03 214.64 371.27 284.57 217.69

els. For example, on the CRSP Stock Dataset, the inference

time of our method is 273.04ms, while Zhao et al. takes

318.77ms and Chen et al. takes 291.50ms. This highlights

the efficiency of our method in inference. Training time

is also favorable for the proposed method, with a training

time of 198.71s on the CRSP Stock Dataset, which is signif-

icantly shorter than Chen et al.’s 219.29s and Zhao et al.’s

229.76s. The optimization of inference and training time

may be attributed to the lightweight design of our model

and the efficient training algorithms used. This allows the

model to minimize resource consumption and training time

while maintaining good performance, making it more suit-

able for large-scale applications. It is also noteworthy that

while Teng et al.’s model exhibits a shorter inference time of

298.18ms on the Reuters Financial News Dataset, its train-

ing time (286.79s) and parameter size (466.74M) are rel-

atively large, making it less efficient in terms of resource

consumption compared to the proposed method. In contrast,

the proposed method has a parameter size of 370.36M and

a training time of 202.81s, demonstrating a better balance

between efficiency and performance.

To gain a deeper understanding of the components of

the proposed method and the impact of each module on

the final performance, we conducted ablation experiments.

Table 3 shows the results of these experiments, where we

remove different modules such as LLMs (Large Language

Models), RAG (Retrieval-Augmented Generation), and SA

(Sparse Attention), to observe the effect of each module on

performance.

Figure 6. Visual comparison of training indicators.

The results in Table 3 and Figure 7 clearly demon-

strate the significant impact of each module on the model’s

performance, particularly the Sparse Attention (SA) module.

When the SAmodule is removed, the model’s precision and

recall drop significantly. For example, on the CRSP Stock

Dataset, the precision drops to 85.62%% and the recall to

84.74%, compared to 93.52% and 94.29% with the complete

model. This suggests that the SA module plays a critical
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Table 3. Ablation experiments on four datasets.

Model
CRSP Stock Dataset Reuters Financial News Dataset

Precision Recall F1-Score Precision Recall F1-Score

Fsframe 93.52 94.29 93.90 93.74 93.02 93.38

W/o LLMs 90.27 91.63 90.94 91.06 91.76 91.41

W/o RAG 87.33 86.26 86.79 89.74 88.13 88.93

W/o SA 85.62 84.74 85.18 86.43 85.24 85.83

Model
SEC EDGAR Filings Dataset Compustat Financials Dataset

Precision Recall F1-Score Precision Recall F1-Score

Fsframe 93.53 94.29 93.91 92.34 93.84 93.08

W/o LLMs 89.06 88.69 88.87 88.14 89.57 88.85

W/o RAG 87.38 86.71 87.04 86.83 86.21 86.52

W/o SA 84.67 83.92 84.29 84.73 85.26 84.99

role in enabling the model to focus on relevant financial

information and capture long-range dependencies. Further-

more, the removal of the Retrieval-Augmented Generation

(RAG)module also leads to a noticeable performance decline.

Particularly on the Reuters Financial News Dataset, the F1-

Score drops to 88.93%, compared to the complete model’s

F1-Score of 93.38%. This indicates that the RAG module

is essential for information retrieval and augmented gener-

ation, helping the model extract more relevant information

from large-scale documents, thereby boosting performance.

Finally, when the Large Language Models (LLMs) module

is removed, the model’s performance drops, but to a lesser

extent than the removal of SA. These ablation experiment

results confirm the critical roles of each module in the final

performance of the model. The combination of LLMs, RAG,

and SAmodules enables the proposed model to perform ex-

ceptionally well on multiple datasets, showcasing its strong

adaptability and superiority.

Figure 7. Visual comparison of ablation experiments on four

datasets.

5. Conclusions

1. Proposed Model Overview:

In this paper, we proposed a novel model based on

Sparse Attention for financial text classification tasks. Our

model is designed to handle diverse financial datasets and

to effectively capture key information in financial data for

improved predictions.

2. Experimental Evaluation:

We conducted extensive experiments on four widely-

used datasets: the CRSP Stock Dataset, Reuters Financial

News Dataset, SEC EDGAR Filings Dataset, and Compustat

Financials Dataset. The results demonstrate the effectiveness

and robustness of our approach.

3. Performance Improvements:

Our model outperforms existing methods in terms of

accuracy, precision, recall, and F1-score across all datasets,

showing significant improvements in F1-score compared to

previous models. These improvements highlight the model’s

superior performance in diverse financial text domains.

4. Computational Efficiency:

In addition to its predictive accuracy, our model main-

tains high computational efficiency. It has fewer parameters,

lower inference time, and shorter training time compared to

existing methods, making it highly scalable and suitable for

real-world financial applications.

5. Ablation Study:

Ablation experiments confirmed the importance of each

component in our model. The removal of Sparse Attention

(SA) resulted in a noticeable decline in performance, em-

phasizing the crucial role of SA in enabling the model to
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focus on relevant financial information. Additionally, the

inclusion of LLMs and RAG provided valuable context and

enriched the predictions, demonstrating the effectiveness of

incorporating external knowledge sources.

6. Future Work:

In conclusion, the proposed model offers a robust, effi-

cient, and highly accurate solution for financial data analysis.

Future work could focus on further optimizations, the appli-

cation of this framework to additional real-world financial

datasets, and the integration of other advanced techniques to

enhance the model’s capabilities.

In this paper, we proposed a novel model based

on Sparse Attention for financial text classification tasks.

Through extensive experiments conducted on four widely-

used datasets, including the CRSP Stock Dataset, Reuters

Financial News Dataset, SEC EDGAR Filings Dataset, and

Compustat Financials Dataset, we demonstrated the effec-

tiveness of our approach. The results show that our model

outperforms existing methods in terms of accuracy, precision,

recall, and F1-score across all datasets, proving its robustness

and applicability in diverse financial text domains. Through

extensive experimentation, we showed that our model consis-

tently outperforms other methods in terms of accuracy, pre-

cision, recall, and F1-Score. Notably, our method achieved

higher performance metrics across all datasets, with signifi-

cant improvements in F1-Score compared to previousmodels.

Moreover, our model maintains computational efficiency,

with fewer parameters, lower inference time, and shorter

training time compared to its counterparts. This makes our

approach highly scalable and suitable for real-world applica-

tions in financial data analysis. Ablation experiments further

confirmed the importance of each component in our model.

The removal of SparseAttention (SA) resulted in a noticeable

decline in performance, emphasizing the crucial role of SA in

enabling the model to focus on relevant financial information.

Similarly, the inclusion of LLMs and RAG provided valu-

able context and enriched the predictions, highlighting the

effectiveness of incorporating external knowledge sources.

These results underscore the synergy between the key tech-

niques used in our model, demonstrating that their combined

usage is essential for achieving state-of-the-art results in fi-

nancial prediction tasks. In conclusion, the proposed model

offers a robust, efficient, and highly accurate solution for

financial data analysis. Its ability to handle diverse datasets,

coupled with its computational efficiency, positions it as a

powerful tool for future research and practical applications

in financial prediction. Future work could explore further

optimizations and the application of this framework to ad-

ditional real-world financial datasets, as well as integrating

other advanced techniques to enhance its capabilities.
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