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ARTICLE

Research on Precipitation Prediction Model Based on Extreme 
Learning Machine Ensemble

Xing Zhang, Jiaquan Zhou*, Jiansheng Wu, Lingmei Wu, Liqiang Zhang

Faculty of Mathematics and Computer Science, Guangxi Normal University of Science and Technology, Laibin, 
Guangxi, 546100, China

ABSTRACT
Precipitation is a significant index to measure the degree of drought and flood in a region, which directly reflects 

the local natural changes and ecological environment. It is very important to grasp the change characteristics and law 
of precipitation accurately for effectively reducing disaster loss and maintaining the stable development of a social 
economy. In order to accurately predict precipitation, a new precipitation prediction model based on extreme learning 
machine ensemble (ELME) is proposed. The integrated model is based on the extreme learning machine (ELM) with 
different kernel functions and supporting parameters, and the submodel with the minimum root mean square error 
(RMSE) is found to fit the test data. Due to the complex mechanism and factors affecting precipitation change, the data 
have strong uncertainty and significant nonlinear variation characteristics. The mean generating function (MGF) is 
used to generate the continuation factor matrix, and the principal component analysis technique is employed to reduce 
the dimension of the continuation matrix, and the effective data features are extracted. Finally, the ELME prediction 
model is established by using the precipitation data of Liuzhou city from 1951 to 2021 in June, July and August, and 
a comparative experiment is carried out by using ELM, long-term and short-term memory neural network (LSTM) 
and back propagation neural network based on genetic algorithm (GA-BP). The experimental results show that the 
prediction accuracy of the proposed method is significantly higher than that of other models, and it has high stability 
and reliability, which provides a reliable method for precipitation prediction.
Keywords: Mean generating function; Principal component analysis; Extreme learning machine ensemble; 
Precipitation prediction

mailto:wjsh2002168@163.com
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1. Introduction
In recent years, due to the intensification of some 

natural factors and human activities, the global cli-
mate has changed severely, resulting in the frequent 
occurrence of various extreme natural disasters. For 
example, the rainstorm in Henan on July 20, 2021 
affected 13.3198 million people in 1573 townships 
and towns in 150 counties of Henan Province, and 
the death toll reached 71 [1]. Precipitation data usual-
ly implicate rich information. Through the analysis 
of precipitation data, we can get the development 
law of data, and then predict the future precipitation 
in the precipitation area, so as to enormously reduce 
the critical harm of precipitation anomaly to society 
and people [2].

The traditional statistical methods have their own 
limitations, need to collect a large number of precip-
itation data and have high requirements for the quality 
of data, what is more, the complexity of precipitation 
causes makes its data nonlinear, which makes it dif-
ficult to predict [3,4]. However, the mathematical and 
statistical models used in traditional methods require 
complex computing power [5], and may be time-con-
suming and have little impact. With the development 
of science and technology, data acquisition methods 
are gradually diversified. The traditional precipita-
tion prediction model can not meet the development 
needs of current precipitation prediction.

With the rapid progress of computer technology, 
machine learning technology is favored by many 
scholars. The application of artificial intelligence to 
the field of meteorology is also rising after more than 
10 years of silence [6]. A neural network is widely 
used in various fields because of its fairly good adap-
tive learning ability and nonlinear mapping ability. 
Yu Xiang et al. applied ensemble empirical mode de-
composition to decompose the original rainfall time 
series into a batch, and then used Support Vector 
Regression (SVR) to predict the short-term compo-
nent intrinsic model function [7]. Yuanhao Xu et al. 
proposed particle swarm optimization (PSO) to op-
timize the super parameters of extended short-term 
memory (LSTM) neural network [8]. The real-time 
target detection method based on the convolutional 

neural network (CNN) classifier proposed by V.R.S. 
Mani et al. has achieved ideal results [9]. Zihao Zhang 
et al. proposed a variable weight neural network to 
solve a multivariable, strongly nonlinear, dynamic 
and time-varying problem [10].

Thanks to it being based on a least square al-
gorithm, an extreme learning machine (ELM) has 
strong computing power and good generalization 
performance. Yong Ping Zhao et al. set up one-stage 
transfer learning ELM (OSTL-ELM) and two-stage 
transfer learning ELM (TSTL-ELM). OSTL-ELM 
makes use of one stage to extract information from 
two domains, while TSTL-ELM uses two stages 
to realize the separate adaptation of the target do-
main. The network weights of these two methods 
are generated by calculation rather than iteration. 
Only a small amount of target domain data is need-
ed to acquire high diagnosis accuracy [11], CNN is 
combined with ELM, and the network is optimized 
based on the developed metaheuristic algorithm [12]. 
By transforming the structure of the ELM hidden 
layer, the threshold network can pass through adap-
tive stochastic resonance, and find the appropriate 
generalization performance of the threshold network 
by using the fast learning algorithm of ELM [13]. 
Xiao et al. employed regularized extreme learning 
machine (RELM) to distinguish fault types and iden-
tify faulty components. At the same time, LU de-
composition was used to solve the output matrix of 
rELM, so as to shorten the training time of RELM [14].  
Yang Ju generates an extreme learning machine clas-
sifier with large differences by randomly assigning 
hidden layer input weights and biases [15]. Chen Yang 
changed the distribution of hidden layer node param-
eters and randomly selected input weights for each 
ELM. Meanwhile, he searched for the optimal num-
ber of hidden nodes for each base learner and aver-
aged the output consequences of all base learners [16].

At present, ensemble learning technology has 
received great attention from scholars. Ensemble 
learning is a technology to create and combines mul-
tiple machine learning models to produce an optimal 
prediction model. The most common is an ensemble 
classifier based on neural network technology and 
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using bagging, boosting and random subspace com-
bination technology [17]. The algorithm proposed by 
Luká š Klein is based on a new combination of stack 
integration and basic learners. Wide and deep neural 
networks are used as meta-learners. The research 
results show that the algorithm achieves satisfactory 
results [18]. Madhurima Panja proposes an integrated 
wavelet neural network (XEWNet) model with ex-
ogenous factors. Compared with statistical, machine 
learning and deep learning methods, XEWNet per-
forms better in 75% of the short-term and long-term 
predicted cases of dengue fever incidence rate [19]. A 
neural network ensemble method considering parame-
ter sensitivity is proposed to solve the problem of con-
vergence and relatively low accuracy of training [20]. 

Huang proposed that ELM has significant char-
acteristics such as fast learning speed and excellent 
generalization performance in both regression and 
classification tasks [21]. However, due to the weights 
and deviations between the input layer and the 
hidden layer is randomly generated, the generated 
model is different each time. Ensemble learning can 
combine the advantages of ELM and make up for 
its disadvantages. In order to improve the accuracy 
and stability of ELM training and retain the advan-
tages of ELM learning, a new ensemble model based 
on an extreme learning machine is proposed in this 
paper. The ensemble model is based on the extreme 
learning machine with different kernel functions and 
supporting parameters, and the submodel with the 
minimum root mean square error is found to fit the 
test data.

Owing to the complex mechanism and factors 
affecting precipitation change, the data have strong 
uncertainty and significant nonlinear variation 
characteristics. Therefore, in this paper, firstly, the 
mean-generating function method is used to extend 
the precipitation sequence, and the principal compo-
nent analysis is used to reduce the dimension of the 
extension matrix. The processed data are used as the 
independent variable and the original precipitation 
sequence is used as the dependent variable to estab-
lish the extreme learning machine ensemble precip-
itation prediction model. The research structure of 

this paper is shown in Figure 1.

Figure 1. The structure of this study.

2. The proposed methodology

2.1 Mean generating function

For the sake of solving the problem the predicted 
value tends to be close to the average value of the se-
ries when multi-step prediction is carried out on time 
series data [22]. 

Wei Fengying and other scholars enriched the 
concept of arithmetic mean in mathematical statis-
tics, and proposed the algorithm of mean generation 
function (MGF) [23].

Assuming the precipitation data series as 

{ }Ntyt ,,2,1, = . The mean value of ( )∑
=

=
N

j
iy

N
y

1

1
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)(ty . The MGF is calculated as follows:
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NINTNl , l  is the period of 

the mean generating function, Q is the maximum 
length of the cycle, INT is rounded.

The periodic extension sequence is obtained by 
periodic extension calculation.
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where p is the number of steps to forecast the future, 
thus the extended mean generating function sequence 
matrix can be obtained.
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Then the first column in the extensive matrix of 
the MGF is marked as 1y , the second column is re-
corded as 2y ,..., the Q column is recorded as Qy .

2.2 Principal component analysis

PCA is a dimensionality reduction algorithm fa-
vored by various scholars. That is, high-dimensional 
data are mapped to low-dimensional space through 
some linear projection, so as to maximize the amount 
of data information in the projection dimension and 
to achieve the purpose of using fewer data and re-
taining more source data [24]. The main flow of prin-
cipal component analysis is shown in Figure 2.

Figure 2. The flow of principal component analysis. 

Assuming that there are m samples 1 2 M{X ,X , ,X }

1 2 M{X ,X , ,X } , each sample has n-dimensional features 
Ti

N
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i xxx ),,,(X 21 = . Every feature jx  has its own ei-
genvalue. Centralize all features.
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Using matrix science, the relationship between 
eigenvalues λ  of the covariance matrix C and its 
corresponding eigenvectors u  is gained.
Cu uλ=  (5)

The primitive feature is projected onto the se-
lected characteristic vector. For each sample iX , the 
original feature is Ti

N
ii xxx ),,,( 21  , and the new aspect 

obtained after projection is Ti
k

ii yyy ),,,( 21  . The com-
puting formula of the new feature is:
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For each and every specimen iX , the dimen-
sion is reduced from the original N features of 

Ti
N

ii xxxi ),,,(X 21 =  to the new K properties, and the 
purpose of dimension reduction is achieved.

2.3 Extreme learning machine

The learning process of the ELM algorithm can 
be summarized as given a regression objective func-
tion or classification objective function, as long as 
the size of hidden nodes in a feedforward neural 
network is nonlinear and continuous, it can random-
ly generate the connection weight and threshold be-
tween the input layer and phase hidden layer without 
adjusting the size of hidden nodes, It can approach 
the target continuous function randomly or classify 
the classified targets, which improve the counting 
rate and model prediction accuracy. The structure of 
ELM is shown in Figure 3.

Figure 3. The structure of ELM.

ELM consists of an input layer, a hidden layer 
and an output layer. Assuming that the neurons in the 
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input layer be n, the neurons in the hidden layer be r, 
the neurons in the output layer be m, and the training 
set be { }QjRsRxsx jjjj ,,2,1,,|, =∈∈ .

In the ELM model, the connection weight be-
tween the input layer and the hidden layer and the 
threshold of the hidden layer neuron is emerged ran-
domly [25], and the connection weight A  is set as:

11 12 1

21 22 2

1 2 r

n

n

r r n r n

a a a
a a a

A

a a a
×

 
 
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 
 





  



 (7)

where aij represents the connection weight of the i th 
neuron in the hidden layer and the j th neuron in the 
input layer. Set the connection weight B  between the 
hidden layer and the output layer as:

mrrmrr

m
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where bjk represents the connection weight of the j  
th neuron in the hidden layer and the k th neuron in 
the input layer. If the deviation of hidden nodes is C, 
that is, the threshold of hidden layer neurons, there is

rrccc ×′= 121 ],,,[C   (9)

In general, the first step of ELM training is to 
use a stochastic-created fastened quantity of neuron 
nodes to construct the hidden layer. The activation 
function may be whatever nonlinear function. The 
commonly used activation functions include the sig-
moid function, tanh function, relu function, etc. Let 
the activation function of hidden layer neurons be 
( )Xg . Then from the figure, the output S  of the net-

work can be expressed as:
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where [ ]1 2 1 2, , , ; , , ,
T

i i i in j j j nja a a a x x x x = =    .
It also can be expressed by the following formula:

SHB ′=  (11)

where H is the hidden layer output matrix of ELM. 
Because the connection between weight A and the 
threshold C of the hidden layer is generated random-
ly and preserves constant during the training process. 
Therefore, the connection weight between the hidden 
layer and the output layer B can be obtained by solv-
ing the least square solution of the following equa-
tions:

TSHB −min  (12)

The solution to Formula (12) is:
ˆ TB H S+=  (13)

where, +H  is the Moore Penrose generalized inverse 
matrix of the matrix H  [26].

2.4 Extreme learning machine ensemble

As weights and offsets between the ELM input 
layer and hidden layer are generated randomly, the 
models created are diverse at every turn, and their 
performance is also extremely discrepant. In order 
to surmount the problem of low precision of a sin-
gle ELM model and instability results caused by 
randomly setting input weights, an extreme learning 
machine ensemble method is proposed in this paper 
to enhance the degree of accuracy and stability of 
precipitation prediction. Its structure is shown in 
Figure 4.

Figure 4. Network structure of ELME.

In order to ensure high accuracy and good stabil-
ity of the results obtained by the ensemble model, 
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this paper will select the model with the minimum 
average absolute percentage error among the ELM 
model trained by different kernel functions, 

∑
=
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At this point, the optimization problem is:

( )





≥+ 1ˆ..
2
1min 2

cswyts

w

jj

 (15)

For solving the constrained optimization problem, 
the solution of the initial problem and the optimal 
problem can be gained by solving the dual problem.

The Lagrange multiplier 0≥jα  is introduced into 
inequality (15), and the Lagrange multiplier method 
takes advantage of solving the above quadratic pro-
gramming problem, then the above posture can be 
written as:
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On the basis of the duality of Lagrange, the dual 
problem of the original optimization problem can be 
transformed by the minimax problem:
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Find the partial derivatives of B and C respectively.

∑

∑

=

=

=⇒=
∂
∂

=⇒=
∂
∂

n

j
jj

n

j
jjj

y
c
L

syw
w
L

1

1

00

ˆ0

α

α

 (18)

Bring the outcome into Equation (16) to obtain:
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Thus, in light of the restraint condition, it is trans-
formed into a convex quadratic programming prob-
lem:
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According to the above conditions, the unique 
solution *

jα  of quadratic programming can be ac-
quired, and the optimal decision function form can 
be obtained after sorting:

( ) ( ) 





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The pseudo of ELME is shown in Algorithm 1.
Algorithm 1
Begin

Input T
jkki xxxxxx ],,,,,,[ 121  +=

Output: )(sf

Generate randomly: a and c;

for i=1 to j.

Set activation function：sine、sigmoid、hardlim;

Calculate S and B;

end for

for i=1 to k

Sort min ( )sÊM ;

Set ( ) 1ˆ ≥+ cswy jj ;
Introducing Lagrange multiplier;

Calculate jα ;
End

3. Empirical research

3.1 Modeling data

Liuzhou is the largest industrial base in Guangxi. 
The sustained and stable economic development of 
Liuzhou is of great importance to the development 
of Guangxi. Therefore, the real data on precipitation 
in Liuzhou from Guangxi Meteorological Bureau 
are selected in this paper. The aggregate data are 213 
data from 1951 to June, July and August 2021. A 
total of 180 data from 1951 to June, July and August 
2010 are used as the training data set to establish the 
precipitation fitting model, and the data from June, 
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July and August 2011 to 2021 are used as the test 
data set to optimize the verification model.

The precipitation data used in this paper first 
employs MGF method to extend the monthly precip-
itation series of Liuzhou from 1951 to 2021 in June, 
July and August, and takes the value that the cumu-
lative contribution rate of principal component var-
iance reaches 90%, so as to further reconstruct the 
original data. Then, take 10 steps of extension, estab-
lish the mean generating function extension matrix 
for the reconstructed succession data, and receive the 
mean generating function extension matrix, and then 
employ PCA to reduce the dimension of the data ob-
tained by MGF and extract effective data properties.

3.2 Model performance evaluation

In order to directly perceived through the senses 
observe the effect of model fitting, training data and 
test data are made use of in this paper to drill and test 
the model, and the indicators in Table 1 are used to 
measure the quality of the model.

Table 1. Performance evaluation metrics.

Number Metric Value

1
Root Mean 
Square Error 
(RMSE)
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where ix  indicates the observed value, and ix̂  rep-
resents the fitting value. ix  represents the mean of 
monthly precipitation observation value, and ix̂  rep-
resents the equal value of model output value.

Evaluation indexes 1 and 2 can be used to meas-
ure the deviation between the actual observation val-
ue and the fitting value of precipitation. The smaller 
the value, the smaller the deviation between them. 

Evaluation index 3 can perceive whether the model 
can correctly predict the precipitation trend. The 
greater its value, the more accurate the model can 
predict the future precipitation trend.

3.3 Result analysis

In order to verify the quality of ELME model. In 
this paper, the proposed ELME model is compared 
with representative machine learning methods such 
as ELM, GA-BP and LSTM. For the ELM model, 
this paper trained a total of 15 cases in which five ac-
tivation functions of “Sigmoid”, “Sine”, “Hardlim”, 
“Radbas” and “Tribas” were combined with three 
hidden neurons of 10, 20 and 30. The parameter 
combination with the best training effect was select-
ed, which was the activation function “sine” with 
hidden neuron 30. The parameters were employed 
in the training of ELM. For GA-BP model, the pa-
rameters of the genetic algorithm are set as follows: 
crossover probability is 0.3, mutation probability is 
0.1. For the LSTM model, the parameters are set as 
follows: Solver is “Adam”, gradient threshold is 1, 
and the initial learning rate is 0.01. After 125 rounds 
of training, the learning rate is reduced by multiply-
ing factor 0.2. The fitting results of the four models 
for 60 training data of precipitation in June, July and 
August in Liuzhou are presented in Figure 5, Fig-
ure 6 and Figure 7. The data in Table 2 specifically 
illustrate the fitting precision and fitting effect of the 
four models on the training data.

As can be observed in Figure 5, Figure 6 and 
Figure 7, the fitted values and real values of ELM, 
LSTM, GA-BP and ELME on Precipitation in Liu-
zhou in June, July and August have roughly the same 
trend. Among them, there is a section with a good 
fitting effect and a section with relatively considerable 
fitting error, and the fitting effect is consistent with the 
general experimental data fitting situation. Obviously, 
the fitting effect of LSTM, GA-BP and ELME model 
is closer to the real value in June and July. In August, 
it can be seen that the ELME model still has the same 
trend with the real value and the difference between 
each real value and the fitted value is not gigantic.

As can be seen from Table 2, the correlations of 
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Figure 5. Fitting effect of training data of four models in June.
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Figure 6. Fitting effect of training data of four models in July.
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Figure 7. Fitting effect of training data of four models in August.



9

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

the four models in June, July and August are highly 
correlated, indicating that the four models can make 
correct predictions on the precipitation trend. In ad-
dition, the RMSE value of ELM model was 59.418 
and sMAPE value was 0.220 in June, the RMSE 
value of LSTM model was 31.566 and sMAPE value 
was 0.129, and the RMSE value of GA-BP model 
was 50.811 and sMAPE value was 0.158, while 
RMSE value of ELME model is 30.253, sMAPE 
value is 0.127. In modeling the factor under the 
same conditions, ELME the precision of the model, 
relative to the ELM model LSTM model, GA-BP 
model increased by 42.272%, 1.550% and 19.620% 
respectively. Meanwhile, in the precipitation data in 
July ELME the precision of the model, relative to the 
ELM model LSTM model, GA - BP model increased 
by 53.169%, 10.135% and 46.800%, respectively. 
August precipitation data model of ELME the preci-
sion of the model, relative to the ELM model LSTM 
model, GA - BP model increased by 48.031%, 
20.482% and 54.007% respectively. The above data 
show that the fitting accuracy of ELME model based 
on precipitation data in different months is signifi-
cantly better than that of ELM model, LSTM model 
and GA-BP model in training data. 

One aspect of evaluating a model is its fitting 
effect, but more vital is its prediction effect, that is, 
the generalization ability of the model. Based on the 
above training model, the test data of precipitation in 
Liuzhou city in June, July and August are fitted, and 
the fitting results are shown in Figure 8, Figure 9 
and Figure 10. The data in Table 3 specifically illus-
trate the fitting precision and fitting effect of the four 
models on the test data.
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Figure 8. Four models were tested for data fitting in June.
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Figure 9. Four models were tested for data fitting in July.
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Figure 10. Four models were tested for data fitting in August.

Table 2. Evaluation indexes of training data fitting effect of four models.

Models
June July August

RMSE sMAPE PCC RMSE sMAPE PCC RMSE sMAPE PCC
ELM 59.418 0.220 0.946 50.850 0.284 0.970 42.532 0.254 0.967
LSTM 31.566 0.129 0.977 22.940 0.148 0.989 32.072 0.166 0.958
GA-BP 50.811 0.158 0.942 51.071 0.250 0.925 58.558 0.287 0.826
ELME 30.253 0.127 0.978 21.061 0.133 0.986 21.133 0.132 0.979



10

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

4. Discussion
As can be seen from Table 3, the correlation of 

GA-BP model established by precipitation data in 
July is only 0.458 in test data, indicating that the 
correlation of GA-BP model in this month is not 
very content. Meanwhile, the correlation of GA-BP 
model established by precipitation data in June and 
August is 0.677 and 0.666 respectively. The correla-
tion strength of the model is moderate. In addition, 
the correlation between ELM model and LSTM 
model based on precipitation data in July was 0.516 
and 0.676 respectively, and the correlation between 
LSTM model based on precipitation data in August 
was 0.710, indicating that the correlation strength of 
models verified by this test data was relatively gen-
eral. As for ELME model, the correlation coefficients 
in June, July and August are 0.896, 0.873 and 0.847 
respectively, indicating that the model has a greater 
correlation with the precipitation data in any month.

For precipitation test data in different months, it 
can be seen from Table 3 that the values of RMSE 
and sMAPE of ELME model are smaller than those 
of ELM, LSTM and GA-BP models. Among them, 
the sMAPE value of ELM, LSTM and GA-BP in 
June was 0.187, 0.251 and 0.352 respectively, while 
the sMAPE value of ELME model was 0.144, which 
compared with the other three models improved by 
22.995%, 42.629% and 59.091% respectively. The 
accuracy of July model ELME was improved by 
42.647%, 41.542% and 59.912% compared with 
model ELM, LSTM and GA-BP, respectively. The 
accuracy of the August model ELME was improved 
by 31.154%, 39.322% and 45.427% compared with 
model ELM, LSTM and GA-BP, respectively. The 
above data show that the fitting accuracy of ELME 
model based on precipitation data in different months 

is significantly better than that of ELM model, 
LSTM model and GA-BP model.

Based on Table 2 and Table 3, it can be seen 
that under the same construction pattern, the ELME 
model has a significantly better fitting effect on pre-
cipitation data than LSTM model and ELM model, 
regardless of training data or test data. In addition, 
compared with ELME model, it can be found that 
ELME model has superior fitting stability in precipi-
tation data.

5. Conclusions
In the modeling research of monthly precipitation 

forecast in atmospheric science, the one-dimensional 
time series observation data of various meteorolog-
ical elements or climate elements can provide the 
most notable forecast information source. With the 
rapid development of machine learning technology, 
every machine learning prediction technology can 
provide crucial and useful forecast information. In 
this paper, MGF is used to extend the precipitation 
series, and PCA is used to reduce the dimension of 
the extended series, so as to establish the ensemble 
precipitation prediction model of an extreme learn-
ing machine.

A novel extreme learning machine ensemble is 
put forward in this paper. The ensemble model is 
based on the extreme learning machine with differ-
ent kernel functions and supporting parameters, and 
the submodel with the minimum root mean square 
error is found to fit the test data. Consequently, the 
ELME model proposed in this paper reduces the 
complexity of the model and achieves better per-
formance. In this paper, the precipitation data of 
Liuzhou from 1951 to 2021 in June, July and August 
were utilized to train the model, and the model was 

Table 3. Evaluation indexes of fitting effect of test data of four models.

Models
June July August

RMSE sMAPE PCC RMSE sMAPE PCC RMSE sMAPE PCC
ELM 72.374 0.187 0.898 88.627 0.476 0.516 53.077 0.260 0.788
LSTM 84.686 0.251 0.822 88.671 0.467 0.676 55.663 0.295 0.710
GA-BP 109.454 0.352 0.677 88.910 0.681 0.458 69.072 0.328 0.666
ELME 57.049 0.144 0.896 45.685 0.273 0.873 40.119 0.179 0.847
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compared with ELM, LSTM and GA-BP models. 
Experimental results show that the proposed ELME 
achieves accurate prediction in the field of precipita-
tion, and the model has a simple structure, which can 
be used as an alternative to reduce the complexity of 
the model. This shows that ELME can be used in a 
variety of machine learning domains and has some 
general applicability, and the proposed algorithm 
can be verified on a variety of data sets in the future. 
However, the three activation functions in this paper 
are randomly set. At present, this structure cannot 
automatically select the three most appropriate acti-
vation functions. In the future, we can consider how 
to select the activation functions that are suitable for 
this structure at one time.
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ARTICLE

Outdoor Air Quality Monitoring with Enhanced Lifetime-enhancing 
Cooperative Data Gathering and Relaying Algorithm (E-LCDGRA) 
Based Sensor Network

G. Pius Agbulu*, G. Joselin Retnar Kumar

Department of Electronics and Instrumentation Engineering, SRM Institute of Science and Technology, SRM Nagar, 
Kattankulatur, Kancheepuram, Chennai, TN, 600083, India

ABSTRACT
The air continues to be an extremely substantial part of survival on earth. Air pollution poses a critical risk to 

humans and the environment. Using sensor-based structures, we can get air pollutant data in real-time. However, the 
sensors rely upon limited-battery sources that are immaterial to be alternated repeatedly amid extensive broadcast costs 
associated with real-time applications like air quality monitoring. Consequently, air quality sensor-based monitoring 
structures are lifetime-constrained and prone to the untimely loss of connectivity. Effective energy administration 
measures must therefore be implemented to handle the outlay of power dissipation. In this study, the authors propose 
outdoor air quality monitoring using a sensor network with an enhanced lifetime-enhancing cooperative data gathering 
and relaying algorithm (E-LCDGRA). LCDGRA is a cluster-based cooperative event-driven routing scheme with 
dedicated relay allocation mechanisms that tackle the problems of event-driven clustered WSNs with immobile 
gateways. The adapted variant, named E-LCDGRA, enhances the LCDGRA algorithm by incorporating a non-beacon-
aided CSMA layer-2 un-slotted protocol with a back-off mechanism. The performance of the proposed E-LCDGRA is 
examined with other classical gathering schemes, including IEESEP and CERP, in terms of average lifetime, energy 
consumption, and delay.
Keywords: Air quality; Cluster; Delay; Energy; Lifetime; WSN
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1. Introduction 
In recent years, air pollution has intensified in 

practically all societies on the planet [1]. The amount 
of particles in the atmospheric air is ascending, and 
the repercussion on the ecosystem cannot be over-
looked [2]. Air contamination is a major root of mor-
tality worldwide [3-5]. Air pollutant status is broadly 
tracked by adopting traditional fixed-monitoring 
mechanisms [5-7]. These typical monitors are extreme-
ly expensive, massive, and bulky [6]. Besides, air con-
tamination zones may deviate in seconds, and typical 
monitoring apparatuses cannot recognize such swift 
divergences. Using sensor-based structures, we can 
get air pollutant data in real-time [8-11].

WSN (wireless sensor network) is an autonomous 
wireless configuration, set up by mini-sized sensor 
node devices [12]. The sensors are supposed to observe 
numerous environmental parameters and transfer the 
observation to a gateway [13]. The sensors rely upon 
limited-battery sources that are unreal to be swapped 
always amid considerable broadcast costs. Generally, 
the sensors disperse their total-energy prematurely 
from constant tracking and broadcast tasks [14,15].  
Thus, effective energy administration measures must 
be enforced to handle the expense of power-dissi-
pation.In this situation, routing policies play a prin-
cipal role, regulate the QoS and energy diffusion at 
the sensors. Clustered aggregation is an outstanding 
technology widely used to lessen redundancy, energy 
allocation and lengthen WSN longevity [16]. In a clus-
tered structure, the sensors are split into cells while 
a leader is allocated to accumulate readings of their 
cell and convey them to the remote gateway [17]. Var-
ious clustered aggregation schemes can be found in 
the literature [18-24].

To enhance the lifetime of diverse clustered 
WSNs, the lifetime-enhancing cooperative data gath-
ering and relaying algorithm (LCDGRA) was pro-
posed lately [25]. LCDGRA is a cluster-based coop-
erative event-driven routing scheme with dedicated 
relay allocation mechanisms that tackle the problems 
of event-driven clustered WSNs with immobile gate-
ways. It uses a centralized hybrid clustering strategy 
based on Huffman coding and K-means clustering 

to section sensors into the K-number of clusters. In 
LCDGRA, relay nodes are committed in the diverse 
cluster fields to support the CH’s transporting their 
assembled sensory data to the central gateway. Ran-
dom linear coding is realized at each hop from the 
event cluster to the central gateway/BS to assure 
minimum energy consumption. Hence, the relays ex-
ploit decode and forward techniques to cooperatively 
relay the observations to the central gateway. In this 
study, we propose outdoor air quality monitoring 
using WSN with an enhanced lifetime-enhancing 
cooperative data gathering and relaying algorithm 
(E-LCDGRA). The adapted E-LCDGRA improves 
the original LCDGRA algorithm by incorporating a 
non-beacon-aided CSMA layer-2 un-slotted protocol 
with a back-off mechanism. The performance of E- 
LCDGRA is examined with other typical clustered 
event-driven gathering schemes, including IEESEP 
and CERP, in terms of average lifetime, energy con-
sumption, and delay.

2. System model and communication 
protocol 

Figure 1 reveals the WSN model examined in 
this work for air quality monitoring. G= (V, S) de-
notes the network’s directed graph. V denotes the 
vertexes, which comprise arrays of nodes spread 
arbitrarily in the outdoor air quality monitoring 
zone and a central base station (BS) located at the 
monitoring zone-end. S signifies the links or edg-
es. According to their functions, each node fits into 
relay node (RN), normal node (NN), and cluster 
head (CH) categories. The proposed solution named 
E-LCDGRA is developed in cognizance of existing 
clustered event-driven routing design. In the exam-
ined sensor network, the sensor devices run over 
Zigbee/IEEE 802.15.4 protocol whilst being cog-
nizant of the in-network aggregation methodology. 
Every node device possesses the same ability to run 
as a full-function device (FFD) and reduced func-
tion-devices (RFD). Hence, the node devices can run 
in either sensor monitoring or communication modes 
to transfer recorded air quality data to other sensor 
neighbours in their reach.
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The protocol operation of the RN and CH is 
network coding-cognizant, and based on a non-bea-
con-aided CSMA layer-2 un-slotted protocol with a 
back-off mechanism. To boost more coding chances at 
the coding-layer, the CH’s and RN’s use CSMA-based 
listening and a back-off method to realize coding 
actions. It permits them to briefly hold their transmis-
sions and listen to broadcasts from MAC-layers of 
their upper layers before disseminating their packets. 
This is exclusively meant to boost coding gains at 
the intermediate nodes, as opposed to the archetypal 
collision-evasion mechanisms. All coded packets or-
dered by NC-layer header and a notification message 
are routed to the MAC-layer. The receiver’s hash for 
the MAC-address is included with the NC-header, to 
guarantee ease in the decoding operation. The opera-
tion of decode and forward (DF) on the packets at the 
relays, from the event zone is realized per-hop until 
they are obtained at the BS. Figure 2 shows the pro-
posed IEEE 802.15.4-based asynchronous communi-
cation protocol for two CH and RN.

3. Design methods and phases of 
LCDGRA algorithm

This section elaborates on the design methods of 
the adapted scheme named E-LCDGRA, which con-
sists of three phases as follows:

● Initialization and clustering;

● Relay nodes allocation;
● Data aggregation and broadcasting.

5

CH1

RN1

CH2

RN2

Time (s)Transmitting
Idle listening
Receiving
Back-off

Figure 2. Proposed IEEE 802.15.4 based asynchronous communication protocol of 2-CH’s and 2- RN’s.

3.1 Initialization and clustering

In this phase, the sensor network is initialized, then the sensors are clustered into equal K cells. The

central gateway starts this phase with messages of initialization (I-REQ) forwarded to every node in the

network space; whilst each node replies to the request by sending responses for initialization (I-REP). The

responses (I-REP’s) from sensors have information about their locations and energy.

By the procedures defined above, the network is initialized. A centralized hybrid clustering strategy
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Figure 2. Proposed IEEE 802.15.4 based asynchronous commu-
nication protocol of 2-CH’s and 2- RN’s.
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By the procedures defined above, the network is 
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employed to section sensors into K-number of clus-

 

Figure 1. Proposed network model.



16

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

ters. It is intended to augment the node’s coverage 
distances with their energy usage at the K formation 
stage. The allocation of the CHs is based on gauged 
competing value for each node regarding the distance 
from a competing node to its K-unit members, the 
contending node’s residual energy with reference to 
the energy desired for the transceiving of the mem-
ber’s K-bit packets, and the energy for RLNC-based 
aggregation. The clustering and CH allocation 
scheme are defined in the following subsections. 

Cluster development stage
At this epoch, the nodes are shared into K-divi-

sions of clusters. Firstly, the optimal overall K-points 
are computed using Equation (1).
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Here, D (N, BS) denotes the node’s Euclidean distances to BS, d signifies the threshold for communication

and A represents the monitoring of the area. Once the overall quantity of K-points is worked out, the sensors are

allocated to their nearby cluster centroids. The distance between the cluster center-point (centroid) and the nodes is

defined by Equation (2).
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where, i=1,2,….,N,  and  signify the node and cluster-centroid’s X coordinates, while  and  represent their

respective Y coordinates, meanwhile; N stands for total nodes. Lastly, fresh center-points are calculated for all

clusters till the points become unchaining.

Nomination of CH’s

In this phase, CH’s are nominated. Firstly, a competing-value  is premeditated for every node in entire
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where, i=1,2… , N, and N signifies the cluster over-all members,  connotes distance from the members to the

competing node, E signifies the competing node’s residual energy,  signifies the energy desirable for the

receipt of the member’s k-bit packets,  signifies the energy required to transfer the packets to the adjoining relays,

while E represents the requisite energy for realizing RLNC and In-network aggregation.

Next, succeeding evaluation of contending value  for every node, each sensor node’s cost is

multiplied by a random value in the line of 0 and 1, in order to ascertain their various probabilities. The obtained

probabilities for all node is subsequently summed to one and set up in a descending set. Later, a code is found for all

the nodes with Huffman coding method to figure out their weights. Eventually, the sensor node that possesses the

lightest weight in the distinct clusters is adopted as the head node and introduced to the K members. In each round-

cycle, other CH’s are appointed in all K-clusters to promote load balancing until every node drains its battery power

within the sensing area.

3.2 Relay node allocation
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where, i=1,2… , N, and N signifies the cluster over-
all members, dnode connotes distance from the mem-
bers to the competing node,Eresisignifies the compet-
ing node’s residual energy, Erx signifies the energy 
desirable for the receipt of the member’s k-bit pack-

ets, Etx signifies the energy required to transfer the 
packets to the adjoining relays, while EDAN represents 
the requisite energy for realizing RLNC and In-net-
work aggregation.

Next, succeeding evaluation of contending val-
ue Ncompi for every node, each sensor node’s cost is 
multiplied by a random value in the line of 0 and 1, 
in order to ascertain their various probabilities. The 
obtained probabilities for all node is subsequently 
summed to one and set up in a descending set. Later, 
a code is found for all the nodes with Huffman cod-
ing method to figure out their weights. Eventually, 
the sensor node that possesses the lightest weight in 
the distinct clusters is adopted as the head node and 
introduced to the K members. In each round-cycle, 
other CH’s are appointed in all K-clusters to promote 
load balancing until every node drains its battery 
power within the sensing area.

3.2 Relay node allocation

Here, the relay node appointment takes place. Re-
lay nodes are committed in the diverse cluster fields 
to support the CH’s transporting their assembled 
sensory data to the central gateway. Analogous to 
the CH appointment, the relay allocation scheme is 
computed by the central gateway employing a gra-
dient-descent (GD) based relay allocation algorithm. 
Algorithm 1 gives the GD relay assignment scheme. 

3.3 Data aggregation and broadcasting 

After the CH’s and relays are determined, the 
nodes switch into idle states forecasting events. An 
event means a mutation in the perceived sensory 
value of air quality (AQ) above defined-thresholds. 
Accompanied by incidents of an event within the 
outdoor air quality monitoring region are phases of 
aggregation and broadcasting. It is well acquaint-
ed that in WSN, the number of data transmissions 
substantially affects the network’s energy usage. 
Accordingly, it becomes vital to mitigate the esti-
mate of communications to maintain remarkably less 
energy usage. In the designed scheme, random linear 
coding is realized at each hop from the event cluster 
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to the central gateway/BS to assure minimum energy 
consumption. Hence, the relays exploit decode and 
forward techniques to cooperatively relay the obser-
vations to the central gateway.

Upon event incidence in the monitoring space, 
the event region K-members convey their recorded 
data to the head node. Then, the cluster head, gathers 
received outdoor air quality (AQ) variation beyond 
a set event threshold and arranges into n-blocks of 
packets Pi=[P1, P2..., PN] in accordance with the 
node’s IDs. The CH allocate 28 coding vectors ai = [1, 
2..., aN] and codes them mutually by linear mixture 
as represented in Equation (4).

7
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to assure minimum energy consumption. Hence, the relays exploit decode and forward techniques to cooperatively

relay the observations to the central gateway.

Upon event incidence in the monitoring space, the event region K-members convey their recorded data to the

head node. Then, the cluster head, gathers received outdoor air quality (AQ) variation beyond a set event threshold

and arranges into n-blocks of packets  = [1, 2…,] in accordance with the node’s IDs. The CH allocate 28

coding vectors =[1,2…,] and codes them mutually by linear mixture as represented in Equation (4).

 = =0
  ∗  (4)

Here, i=1, 2…N,  represents the coded-packet,  signifies the source-packet,  is the coding-vectors.

Following the coding operation at the CH, the coded-packet is transferred to the nearby relay hop. Recovery of the

source-packet from the coded-packet at the relay destination depends on the acquired amount of packet. Firstly, this

involves Gaussian extinction. The header-message is then set-up to n*n matrix and eventually to (reff) reduced-row-

echelon. Eventually, the source-packets are reconstructed upon evaluating a few series of underlying linear equations.

The operation of decode and

forward (DF) on the packets at

the relays, from the event

zone is realized per-hop

until they are obtained at the BS.

Figure 3 illustrates the full-

flowchart of the suggested E-

LCDGRA.

 (4)

Here, i=1, 2…N, PRLNC represents the coded-pack-
et, Pi signifies the source-packet, ai is the coding-vec-
tors. Following the coding operation at the CH, the 
coded-packet is transferred to the nearby relay hop. 
Recovery of the source-packet from the coded-pack-
et at the relay destination depends on the acquired 
amount of packet. Firstly, this involves Gaussian 
extinction. The header-message is then set-up to n*n 
matrix and eventually to (reff) reduced-row-echelon. 

Eventually, the source-packets are reconstructed 
upon evaluating a few series of underlying linear 
equations. The operation of decode and forward (DF) 
on the packets at the relays, from the event zone is 
realized per-hop until they are obtained at the BS. 
Figure 3 illustrates the full-flowchart of the suggest-
ed E-LCDGRA.
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Figure 3. E-LCDGRA full-flowchart.Figure 3. E-LCDGRA full-flowchart.

4. Comparative experimental simu-
lation results

We assess E-LCDGRA performance employ-
ing MATLAB 2018b simulations. The experimental 
study was performed using 100 sensors spread ar-
bitrarily across (X = 100 m, Y = 100 m) 2D interest 
zone with one a gateway positioned at (X = 100 m,  
Y = 50 m) remotely from the 2D sensing zone. Further 
basic parameters employed in the experimental study 
are offered in Table 1. We chose IEESEP and CERP 
data-gathering schemes to authenticate the soundness 

Algorithm 1. Relay Node Election Algorithm

Step1: Input: Initial Guess (x0), Step length (a),
Step 2: Initialization
             Repeat
 Step 3: For i=0, i< Max i;
  i++ do
Step 4: For N do
Step 2: Calculate model parameters
Step 3: Set the parameters and assess f(GD) gra-
dient with reference to the weights
Step 4:  Modify the weights taking steps pro-

portionate to the f(GD) –Gradient, to 
find the optimal values that minimizes 
f(GD)

Step 5: Update relays 
Step 6: End for
Step 7: End for
Step 8: Until the iteration Maximum
Step 9: Assign the best node as “RN”
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of our adapted algorithm, named E-LCDGRA.

Table 1. Simulation parameters.

Parameter Value
Sensed-traffic Event driven
Round-time 4000
No of nodes 100
Dimension of field X=100 m, Y=100 m
No. of BS 1
BS placement X=100 m, Y = 50 m
Initial-Energy 5J
Data packet size 100(bytes)

Eelec 50 nJ/bit

Aggregation-energy 5 nJ/bit/signal

emp 0.0013pJ/bit/m

efs 100 pJ/bit/m2

Size of broadcast packet 25 (bit)

Figure 4 measures the average network latency 
with each of the schemes. The latency signifies the 
interval between data dissemination from the source 
to the receivers’ reception time. It comprises delays 
in propagation, data queuing, and data processing. It 
is noticeable from the experimental results obtain-
able in Figure 4 that the network’s average latency 
when using E-LCDGRA is rationally less compared 
to IEESEP. Again, when paying attention to the sys-
tem’s latency in Figure 4, it is indisputable that the 
average latency of IEESEP is relatively lesser than 
that of CERP. 

Figure 4. Network latency.

Figure 5 examines the network’s average network 
energy consumption in data gathering. The energy 
consumption per round is defined by Equation (5).
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Figure 5 examines the network’s average network energy consumption in data gathering. The

energy consumption per round is defined by Equation (5).
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where, i=1,2,…N, N denotes the over-all sensors, E represents the round energy consumption, and R

signifies the total rounds, Eri signifies the node’s residual energy upon a round conclusion. As can be

inferred from Figure 5, it is clear that network energy consumption for E-LCDGRA is considerably lower

than IEESEP and CERP, respectively.

Figure 5. Energy consumption.
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signifies the total rounds, Eri signifies the node’s re-
sidual energy upon a round conclusion. As can be in-
ferred from Figure 5, it is clear that network energy 
consumption for E-LCDGRA is considerably lower 
than IEESEP and CERP, respectively. 

Figure 5. Energy consumption.

Figure 6 evaluates the sensor network’s lifetime 
for each protocol. The lifetime is viewed as the ep-
och from initialization to the time halves of sensors 
drain their energy over the sensor network. It is ex-
plicit from Figure 6 that in E-LCDGRA, halves of 
the sensor deplete their energy at around 3500. On 
the other hand, it can be seen that in IEESEP and 
TEEN, halves of the sensors drained their energy 
around 3000 and 2600.

Figure 6. Network lifetime.

The above experimental results affirm that the 
adapted solution named E-LCDGRA incorporates 
the aids of a non-beacon-aided CSMA layer-2 
un-slotted protocol with a back-off mechanism, co-
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operative multi-hop communication, and random 
linear coding technology with the most suitable re-
lays in a clustered topology. These results verify that 
the designed strategy does not solely lessen system 
latency and energy expenditure, but again augments 
the longevity and energy efficiency above compara-
ble schemes. Thus, our solution, named E-LCDGRA, 
proves its supremacy in sufficing the need for further 
energy-efficient, reliable, and well-timed event dis-
semination in energy-constrained WSN set-ups for 
air quality monitoring.

5. Conclusions
Air pollution is a severe problem that has raised 

the concerns of communities, the public, and scien-
tists globally. By employing sensor-based structures, 
we can get pollutant data in real time and implement 
preventive measures. However, associated with sen-
sor structures deployed for air pollution monitoring 
are the problems of the constrained lifetime of sen-
sors and poor broadcast reliability. Thus, to tackle 
these issues, this work proposed outdoor air quality 
monitoring using a sensor network with an enhanced 
lifetime-enhancing cooperative data gathering and 
relaying algorithm (E-LCDGRA). LCDGRA is a clus-
ter-based cooperative event-driven routing scheme 
with dedicated relay allocation mechanisms that 
tackle the problems of event-driven clustered WSNs 
with immobile gateways. The adapted variant, named 
E-LCDGRA, enhances the LCDGRA algorithm by 
incorporating a non-beacon-aided CSMA layer-2 
un-slotted protocol with a back-off mechanism. The 
performance of E-LCDGRA was examined with oth-
er typical clustered event-driven gathering schemes, 
including IEESEP and CERP, in terms of average life-
time, energy consumption, and delay. 
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1. Introduction
Cyberattacks against federal information systems 

in the USA are more and more sophisticated. The 
probability of grave damages keeps increasing in 
spite of efforts and the use of substantial resourc-
es. There are challenges in completely aggregating 
heterogeneous data from various security tools, ana-
lyzing the collected data, prioritizing remediation 

activities, and reporting in an approach to directing a 
suitable response [1]. Cyberspace is a dynamic envi-
ronment. Targets are not always static. No offensive 
or defensive capability keeps being indefinitely ef-
fective. There is no permanent advantage [2]. 

Cyber attackers generally have advantages over 
the defender of an information system. The advan-
tages lie in: 1) Attackers can choose the place and 
time of an attack; 2) Attackers can only exploit a sin-
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gle vulnerability while the defender has a much more 
costly task of mitigating all kinds of vulnerabilities. 
Human-centered cyber-defense practices have not 
kept pace with threats of targeting and attacking 
organizations. An integrated approach is needed 
to speed up detection or responses and slow down 
attacks. Security automation and intelligence shar-
ing can reduce the defender’s costs and save time. 
Information sharing helps improve the efficiency in 
detecting and responding to cyberattacks [3].

There are four major categories of attacks [4-6]: 
1) Denial of service—trying to stop legitimate us-
ers from utilizing services; 2) Probe—trying to get 
the information of a target host; 3) User to Root 
(U2R)—unauthorized access to privileges of a local 
super-user (root); and 4) Remote to Local (R2L)—
unauthorized access from a remote machine. Signa-
ture-based detection and anomaly-based detection 
are the two main methods of detecting attacks. 
Signature-based detection uses predefined attack 
specifications that are clear and distinct signatures. 
The database of signatures needs to be updated when 
there are new signatures. Human security experts are 
generally required to analyze data related to attacks 
manually and formulate specifications regarding 
attacks [7]. Anomaly-based detection is also called 
behavior-based detection. It models behaviors of the 
network, computer systems, and users; and raises an 
alarm when there is a deviation from normal behav-
iors [8].

Many cyberattacks are characterized by a high 
level of sophistication. Typically, an advanced per-
sistent threat (APT) is a kind of attack targeting an 
asset or a physical system with high values. APT 
attackers frequently leverage stolen credentials of 
users or zero-day exploits to avoid triggering alerts. 
This kind of attacks could continue over an extended 
period of time [9]. Artificial intelligence (AI) or intel-
ligent agents are needed to fight attack, especially an 
APT. Therefore, the mechanisms of cyber defense 
should be 1) increasingly intelligent, 2) very flexi-
ble, and 3) robust enough to detect various threats 
and mitigate them. Much research has been done on 
intrusion detection and prevention systems. Various 

methods and algorithms of artificial intelligence 
have been used for cybersecurity. The algorithms in-
clude support vector machines (SVM), convolution 
neural networks, recursive neural networks, general 
artificial neural networks (ANN), Q-learning (QL), 
decision trees (DT), k-means, k-nearest neighbors 
(k-NN), etc. [10]. MDP and POMDP are used in this 
paper because they deal with the optimal policy or 
actions based on computed benefits or costs.

During an attack, both the attacker and the de-
fender are in the process of learning about each oth-
er. The knowledge evolution of the attacker and the 
defender indicates the process of learning. A defend-
er’s knowledge includes, for example, attackers’ ob-
jectives, methods utilized, possible technical levels, 
etc. An attacker’s knowledge can be the topology of 
a defender’s network or information system, the op-
erating system version and applications running on 
servers, etc. When an attack is detected, the defender 
can expel the attacker or keep it in the information 
system in order to observe or learn about it. The pol-
icy of always expelling the attacker is not optimal in 
many situations. There is a trade-off between the op-
portunity of learning about the attacker and the risk 
of the attacker’s damage during the defender’s learn-
ing process [11]. MDP and POMDP can handle the 
trade-off and decide on optimal policies or actions.

This paper aims to conduct analytics of an in-
formation system based on an MDP and a POMDP. 
Various methods and algorithms were used, includ-
ing value iteration (VI), policy iteration (PI), and 
Q-learning in the analytics of a discounted MDP 
over an infinite planning horizon to evaluate the 
MDP model validity and parameters in the model. In 
the modelling of a discounted POMDP over an in-
finite planning horizon, the effects of several impor-
tant parameters on the total expected reward of the 
system were studied. The data analytics of the MDP 
and POMDP in this paper was conducted using the R 
language and its functions. The organization of this 
paper is as follows: the next section introduces the 
methods of MDP; Section 3 introduces the methods 
of POMDP; Section 4 presents an MDP model of an 
information system; Section 5 shows the analytics 
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of the information system based on MDP; Section 
6 presents the analytics of the information system 
based on POMDP; and the final section is the con-
clusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, 

γ> [12-14]: S refers to a set of states; A is a set of ac-
tions; P represents a transition probability matrix 
that describes the transition from state s to state s' 
(

possible technical levels, etc. An attacker’s knowledge can be the topology of a defender’s
network or information system, the operating system version and applications running on servers,
etc. When an attack is detected, the defender can expel the attacker or keep it in the information
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optimal in many situations. There is a trade-off between the opportunity of learning about the
attacker and a risk of the attacker’s damage during the defender’s learning process [11]. MDP and
POMDP can handle the trade-off and decide on optimal policy or actions.
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( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state 
to the state ' after the action  .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 
  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat

∆ ← 0

) after action a (

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + (') )

∆ ← max (∆,   −  )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (') ))

4 Stopping rule
If policy is stable, then stop; else go to step 2

); R refers to the 
immediate reward after action a; and γ (

presents the analytics of the information system based on POMDP; and the final section is the
conclusions.

2. Markov decision process
An MDP can be defined by a tuple <S, A, P, R, > [12-14]: S refers to a set of states; A is a set of

actions; P represents a transition probability matrix that describes the transition from state  to state '

( ∈ , ' ∈ ) after action a ( ∈ ); R refers to the immediate reward after action a; and  (0 <  < 1) is
a discounted reward factor. Solving an MDP is often a process of finding an optimal policy to maximize
the total expected reward or minimize the total expected cost.

Policy iteration, value iteration, and Q-learning are often used to obtain an optimal policy for an
MDP. Data analytics results based on the algorithms of the three methods may be noticeably different, or
there can be convergence problems during iterations if the MDP model is not reasonable due to unsuitable
model parameters or an incorrect model structure. Therefore, the three methods are employed in this
paper, and results are compared to evaluate the model’s validity.

PI tries to find a better policy (compared to the previous policy). An iterative process of policy
evaluation and policy improvement is stopped when two successive policy iterations result in the same
policy, indicating the optimal policy is achieved. The policy iteration is described in Algorithm 1 [15,16].
(, , ') is the probability of the transition.  , , ' is the immediate transition reward from the state
 to the state ' after the action .   and (') are the expected total reward of state  and state ' ,
respectively. () is an optimal policy of state .

Algorithm 1. Policy Iteration.

1 Initial policy
Choose an initial policy arbitrarily for all  ∈ 

  ∈ R and π(s) ∈ A

2 Policy evaluation
Repeat
∆ ← 0

For each  ∈ 
 ← ()

  ← 
'

(, (), ')( , (), ' + (') )

∆ ← max (∆,   −  )
until ∆ <  (a very small positive number)

3 Policy improvement routine
For each state s

  ←←← (
'

(, , ')( , , ' + (') ))

4 Stopping rule
If policy is stable, then stop; else go to step 2

)  
is a discounted reward factor. Solving an MDP is 
often a process of finding an optimal policy to maxi-
mize the total expected reward or minimize the total 
expected cost. 

Policy iteration, value iteration, and Q-learning 
are often used to obtain an optimal policy for an 
MDP. Data analytics results based on the algorithms 
of the three methods may be noticeably different, or 
there can be convergence problems during iterations 
if the MDP model is not reasonable due to unsuitable 
model parameters or an incorrect model structure. 
Therefore, the three methods are employed in this 
paper, and results are compared to evaluate the mod-
el’s validity.

PI tries to find a better policy (compared to the 
previous policy). An iterative process of policy eval-
uation and policy improvement is stopped when two 
successive policy iterations result in the same policy, 
indicating the optimal policy is achieved. The policy 
iteration is described in Algorithm 1 [15,16]. 
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is the probability of the transition. R(s, a, s') is the 
immediate transition reward from the state s to the 
state s' after the action a. V(s) and V(s') are the ex-
pected total reward of state s and state s', respective-
ly. π(s) is an optimal policy of state s.

An optimal policy of the MDP can also be 
achieved by utilizing VI [15,17]. The stopping criterion 
is that the value difference of two successive itera-
tive steps is less than the tolerance τ (a very small 
positive number). Algorithm 2 shows the value itera-
tion process.

Algorithm 1. Policy Iteration.

1
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Choose an initial policy arbitrarily for all 
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An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.
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Select   arbitrarily (e.g.,   = 0 for all  ∈ )
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Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (, ) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
episode. The best action  at state  is chosen according to the optimal policy ().
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Q-learning update is as follows:
 ,  ← 1 −   ,  + [ , , ' + max


(', ) ]

until the final step of episode
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3 Output the optimal policy and the maximal values of V(s)

Q-learning [17,18] enables an agent to learn the 
Q-value function which is an optimal action-value 
function. It can be employed to solve a discounted 
MDP. Specifically, it is used to compute the expected 
total reward (or cost) and find the optimal policy in 
this paper. It can be used to perform data analytics 
and simulation of a discounted MDP over an in-
finite planning horizon if the number of iterations 
to perform is large enough. A Q-learning algorithm 
is shown in Algorithm 3. Q(s,a) is the action-value 
function. 

An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping criterion
is that the value difference of two successive iterative steps is less than the tolerance  (a very small
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In many applications, a POMDP is a more realistic model than the classic MDP [19]. The
transition model  ' ,  , actions A (s), and the reward function  , , ' in a POMDP are the same
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An optimal policy of the MDP can also be achieved by utilizing VI [15,17]. The stopping (a
very small positive number). Algorithm 2 shows the value iteration process.
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Q-learning [17,18] enables an agent to learn Q-value function that is an optimal action-
value function. It can be employed to solve a discounted MDP. Specifically, it is used to horizon
Algorithm 3. (, ) is the action-value function.  ∈ (0, 1) is the learning rate and it is often
chosen to be decreased appropriately, e.g.,  = 1 (+2) (n is the iteration step number or the
epoch number). The iterative process and the Q-learning update continue until the final step of
episode. The best action  at state  is chosen according to the optimal policy ().
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3. Partially observable Markov decision 
process

In many applications, a POMDP is a more real-
istic model than the classic MDP [19]. The transition 
model P(s'|s, a), actions A (s), and the reward func-
tion R(s, a, s') in a POMDP are the same elements as 
those in an MDP. The optimal action of the POMDP 
depends only on the agent’s current belief state. The 
agent does not know its real state; all it knows is the 
belief state [20]. Besides the three elements, there are 
a set of observations O = 

elements as those in an MDP. The optimal action of the POMDP depends only on the agent’s current
belief state. The agent does not know its real state; all it knows is the belief state [20]. Besides the three
elements, there are a set of observations O = 1, 2, …,  and a set of conditional observation
probabilities   ',  in a POMDP [21].

If b was the previous belief state, and the agent takes action a and then perceives evidence o, then
the new belief state [20] is obtained using the following formula:

' ' =   '
  ' ,  () (1)

where  is a normalizing constant, making the belief state sum to 1.

The optimal value of any belief state b is the infinite expected sum of discounted rewards starting
in state b, and executing the optimal policy. The value function, V*(b), is expressed as follows [22]:

∗  ===∈ () ,  +  ∈   ,  ∗(') (2)

4. A Markov decision process model of the information system

4.1 The structure of the MDP model

The information system has the following states: State 1—no attacker is connected to the
information system; state 2—an attacker is connected to the information system, but it has not been
detected; and state 3—the attacker is detected. The defender needs to make a decision: wait (no action) or
expel only when an attack is detected (state 3). After an expelling action, the system will return to state 1.

The MDP model of the information system is established. State transitions among three states
(states 1-3) of two decisions are shown in Figure 1.
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Figure 1. State transitions of two decisions: (a) decision 1 (wait) and (b) decision 2 (expel).

4.2 State transitions and rewards

Transitions among states in the created MDP model of the information system rely on decisions
and there are two main probabilities 1 and 2 . 1 is the probability of the transition from state 1 (no
attacker’s connection) to state 2 (connected). 2 is the probability of the transition from state 2 to state 3
(detected). There are no transitions from state 1 to state 3 directly and no transitions from the state 3 to the
state 2. The probability of a transition from state 3 to state 1 is 0 for decision 1 and 1 for decision 2. The
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4.2 State transitions and rewards

Transitions among states in the created MDP model of the information system rely on
decisions and there are two main probabilities 1 and 2 . 1 is the probability of the transition
from the state 1 (no attacker’s connection) to the state 2 (connected). 2 is the probability of the
transition from the state 2 to the state 3 (detected). There are no transitions from the state 1 to the
state 3 directly and no transitions from the state 3 to the state 2. The probability of a transition
from the state 3 to the state 1 is 0 for decision 1 and 1 for decision 2. The probability matrix of
state transitions  and the reward matrix  for the two decisions are expressed as follows:

1)  and  for decision 1 are:

 =
1 − 1 1 0

0 1 − 2 2
0 0 1

(3)

 =
0 12 0
0 22 23
0 0 33

=
0 −  0
0 −   − 
0 0  − 

(4)

where  is the cost due to attacking and  is the defender’s benefit due to collecting
information during the learning process of knowing about the attack.

2)  and  for decision 2 are:
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Figure 1. State transitions of two decisions: (a) decision 1 (wait) and (b) decision 2 (expel).
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3 to state 1 is 0 for decision 1 and 1 for decision 2. 
The probability matrix of state transitions Pd and the 
reward matrix Rd for the two decisions are expressed 
as follows:

1) Pd and Rd for decision 1 are:

probability matrix of state transitions  and the reward matrix  for the two decisions are expressed as
follows:
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where  is the cost due to attacking and  is the defender’s benefit due to collecting information during
the learning process of knowing about the attack.

2)  and  for decision 2 are:

 =
1− 1 1 0

0 1 − 2 2
1 0 0

(5)

 =
0 12 0
0 22 23
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=
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−  0 0
(6)

where  is the cost due to expelling.

5. Data analytics of the information system based on the MDP

5.1 Analytics based on MDP over an infinite planning horizon

Let 1 = 0.15, 2 = 0.15,  = 1,  =3,  = 5. The analytics of the information system with a
discount  = 0.85 over an infinite planning horizon is conducted. Policy iteration and value iteration are
used in the data analytics and the obtained optimal policies in both the two methods are d (1, 1, 2),
indicating that decision 1, decision 1, and decision 2 are made on the state 1, the state 2, and the state 3,
respectively. The total expected costs of the two methods and Q-learning are listed in Table 1 to evaluate
the model validity in this paper. Gauss-Seidel’s algorithm is employed in VI for an improved convergence
speed. The accuracy is also improved compared with the result of Jacob’s algorithm. In Q-learning, the
learning rate  is set to 1 +2 in this paper and N is the number of iterations to perform. The results of
policy iteration and the Gauss-Seidel method are the same and are close to that of Q-learning, which
indicates the parameters in the MDP model are reasonable, and the created model is valid.

Table 1. Total expected costs of three states in the information system based on
various algorithms over an infinite planning horizon ( = 0.85).

Algorithms   
VI (Jacob’ algorithm) 12.68322 21.77953 11.77344

VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208
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where Ce is the cost due to expelling.
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where  is the cost due to attacking and  is the defender’s benefit due to collecting information during
the learning process of knowing about the attack.

2)  and  for decision 2 are:

 =
1− 1 1 0

0 1 − 2 2
1 0 0

(5)

 =
0 12 0
0 22 23
31 0 0

=
0 −  0
0 −   − 

−  0 0
(6)

where  is the cost due to expelling.

5. Data analytics of the information system based on the MDP

5.1 Analytics based on MDP over an infinite planning horizon

Let 1 = 0.15, 2 = 0.15,  = 1,  =3,  = 5. The analytics of the information system with a
discount  = 0.85 over an infinite planning horizon is conducted. Policy iteration and value iteration are
used in the data analytics and the obtained optimal policies in both the two methods are d (1, 1, 2),
indicating that decision 1, decision 1, and decision 2 are made on the state 1, the state 2, and the state 3,
respectively. The total expected costs of the two methods and Q-learning are listed in Table 1 to evaluate
the model validity in this paper. Gauss-Seidel’s algorithm is employed in VI for an improved convergence
speed. The accuracy is also improved compared with the result of Jacob’s algorithm. In Q-learning, the
learning rate  is set to 1 +2 in this paper and N is the number of iterations to perform. The results of
policy iteration and the Gauss-Seidel method are the same and are close to that of Q-learning, which
indicates the parameters in the MDP model are reasonable, and the created model is valid.

Table 1. Total expected costs of three states in the information system based on
various algorithms over an infinite planning horizon ( = 0.85).

Algorithms   
VI (Jacob’ algorithm) 12.68322 21.77953 11.77344

VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208

 in this paper and N is the 

number of iterations to perform. The results of policy 
iteration and the Gauss-Seidel method are the same 
and are close to that of Q-learning, which indicates 
the parameters in the MDP model are reasonable, 
and the created model is valid. 

Table 1. Total expected costs of three states in the information 
system based on various algorithms over an infinite planning 

horizon (γ = 0.85).

Algorithms C1 C2 C3

VI (Jacob’ algorithm) 12.68322 21.77953 11.77344
VI (Gauss-Seidel’s algorithm) 12.73186 21.82816 11.82208
PI 12.73186 21.82816 11.82208
Q-learning (N = 120,000) 12.67515 21.63394 11.90482

5.2 Analytics over a finite planning horizon

The total expected costs of three states (states 1-3) 
are calculated utilizing the VI algorithm over a 40-
step planning horizon with and without a discount, 
respectively. The rewards (the negative values of the 
costs in this paper) at the end of the planning horizon 
are set to 0 for three states for the beginning of the 
backward recursion of the VI. Table 2 and Table 
3 show the computation results. C1(n), C2(n), and 
C3(n) represent the total expected cost at step n for 
the state 1, the state 2, and the state 3, respectively. 
It is shown that the total expected costs C1(n), C2(n), 
and C3(n)  in Table 2 are very close to C1, C2, and C3 
for infinite planning horizon in Table 1, respectively 
when Epoch n≤10 for a 40-step planning horizon  
(γ =  0.85). 

5.3 Analytics of the information system with 
various parameters of the transition probability 

Analytics of the information system with various 
state transition probability parameters P1 and P2 is 
performed based on the PI over an infinite planning 
horizon. The following data are utilized: P2 = 0.15, 
Ce = 1, Bi =3, Ca = 5, and γ = 0.85. The total expect-
ed cost Ci (i = 1, 2, 3) for states 1-3 at various P1 is 
analyzed and the result is shown in Figure 2. All the 
values of C1, C2, and C3 are increased with the in-
crease of P1.
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Table 2. Total expected costs of three states computed using the 

VI algorithm over a 40-step planning horizon ( γ = 0.85).

Epoch n C1(n) C2(n) C3(n)
0 12.7065 21.8028 11.7967

5 12.6746 21.7710 11.7649

10 12.6029 21.6992 11.6931

15 12.4412 21.5375 11.5315

20 12.0769 21.1731 11.1672

25 11.2565 20.3509 10.3471

30 9.4191 18.4836 8.5165

33 7.3930 16.3143 6.5226

35 5.4787 14.0296 4.6918

36 4.3432 12.4763 3.6503

37 3.1180 10.5134 2.5912

38 1.8720 7.9649 1.6375

39 0.75 4.55 1.00

40 0 0 0

Table 3. Total expected costs of three states computed using the 

VI algorithm over a 40-step planning horizon (γ = 1.0).

Epoch n C1(n) C2(n) C3(n)
0 85.3155 93.7710 76.7897
5 75.1760 83.7475 66.7897
10 64.9085 73.6947 56.7897
15 54.4104 63.5756 46.7897
20 43.5248 53.3072 36.7897
25 32.0626 42.7023 26.7897
30 19.9701 31.3391 16.7897
33 12.6354 23.7993 10.7897
35 7.9649 18.2667 6.7897
36 5.7897 15.2911 4.7946
37 3.7946 12.0945 3.0700
38 2.0700 8.5675 1.7500
39 0.75 4.55 1.00
40 0 0 0

Let P1 = 0.15, Ce = 1, Bi =3, Ca = 5, and γ =  0.85. 

The PI over an infinite planning horizon is utilized. 

The total expected cost Ci (i = 1, 2, 3) at various P2 

is shown in Figure 3. All the values of C1, C2, and C3 

are decreased with the increase of P2.

Figure 2. Total expected cost Ci (i = 1, 2, 3) at various P1.

Figure 3. Total expected cost Ci (i = 1, 2, 3) at various P2.

5.4 Analytics of the information system with 
various transition cost parameter Ca

Analytics of the information system with various 
transition cost parameters Ca is performed based on the 
PI over an infinite planning horizon. The following data 
are used: P1 = 0.15, P2 = 0.15, Ce = 1, Bi =3, and γ = 0.85. 
Figure 4 illustrates the total expected cost Ci (i = 1, 2, 3) 
at various Ca. The greater the value of Ca, the larger the 
value of the expected total cost Ci.

Figure 4. Total expected cost Ci (i = 1, 2, 3) at various Ca.
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6. Data analytics of the information 
system based on POMDP

6.1 Analytics based on the POMDP over an 
infinite planning horizon

Analytics of the information system is performed 
based on a discounted POMDP over an infinite plan-
ning horizon. The following data are utilized: P1 = 
0.15, P2 = 0.15, Ce = 1, Bi =3, Ca = 5, and γ =  0.85. 
The following solution methods or algorithms are used 
in solving the POMDP problem: “grid”, “enum”, “two-
pass”, “witness”, “incprune”, and “SARSOP” [23]. The 
total expected cost Ct is shown in Table 4, indicating 
that the result of SARSOP is very close to the results 
of the other five methods (with the same results). 

6.2 The effects of various parameters on 
POMDP solutions

The following data are used to study the effects 
of various parameters on the total expected cost Ct: 
Ce = 1, Bi =3, and γ = 0.85. Figure 5 shows the effect 
of the connecting probability P1 on Ct at various P2 
(0.03, 0.15, and 0.27) when Ca = 5. Figure 6 shows 
the effect of P1 on Ct at various Ca (3.5, 5.0, and 
6.5) when P2 = 0.15. It is shown that Ct is increased 
with an increase of P1. Similarly, the effects of the 
detecting probability P2 on the total expected cost Ct 
are studied. The results are shown in Figure 7 and 
Figure 8. It is shown that Ctis decreased with an 
increase of P2. Figure 9 shows the effect of Ca on Ct 
at various P1 (0.03, 0.15, and 0.27) when P2 = 0.15. 
Figure 10 shows the effect of Ca on Ct at various P2 
(0.03, 0.15, and 0.27) when P1 = 0.15. It is shown 

that Ct is increased with the increase of Ca.

Figure 5. The effect of P1 on Ct at various P2 when Ca = 5.

Figure 6. The effect of P1 on Ct at various Ca when P2 = 0.15.

Figure 7. The effect of P2 on Ct at various P1 when Ca = 5.0.

Table 4. The total expected cost Ct based on six various methods.

Methods grid enum twopass witness incprune SARSOP

Ct 15.46070 15.46070 15.46070 15.46070 15.45570 15.46073
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Figure 8. The effect of P2 on Ct at various Ca when P1 = 0.15.

Figure 9. The effect of Ca on Ct at various P1 when P2 = 0.15.

Figure 10. The effect of Ca on Ct at various P2 when P1 = 0.15.

7. Conclusions

Data analytics of an information system based 
on the MDP demonstrates that the algorithms in this 
paper are effective in achieving optimal policies to 
minimize the total expected costs of states of the 
information system. These algorithms are effective 
in analytics over a finite planning horizon and an in-
finite planning horizon (for a discounted MDP). The 

VI (Gauss-Seidel’s algorithm) and the PI achieve 
the same results, and the result of Q-learning is very 
close to the results of the VI and the PI, indicating 
the MDP model is valid. The pros of data analytics 
of the information system based on the MDP lie in: 
1) Multiple methods can be used to check the valid-
ity of the created MDP model; 2) It is convenient to 
perform predictive modelling and study the effects of 
various parameters on the total expected cost of the 
information system. 

One of the main cons of the MDP-based method 
is that the state uncertainty is not considered while 
this problem is fixed in the POMDP method. In the 
analytics of a discounted POMDP (over an infinite 
planning horizon) of the information system, the 
total expected cost of the information system is in-
creased with an increase in the connecting probabil-
ity and is decreased with an increase in the detecting 
probability. The cost caused by the attacker is a pri-
mary factor in increasing the total expected cost of 
the information system.
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1. Introduction
Software design and development research started 

as a mathematical branch [1,2]. Since then and to the 
end of the previous millennia, the emphasis was put 
on tackling complexity and delivering high quality, 
derived from rigor, and user-friendliness software [3,4]. 

Despite good fundamental textbooks on software 
engineering [5-8], unfortunately, the state of the art in 
the field became largely dominated by technologies 
and glossy graphic user interfaces (GUI) [9], instead 

of principles and sound methodology. However, for-
tunately, there is still research and results inspired by 
the roots of this discipline. Among them, we were 
always interested in constraint-driven approaches. 

1.1 Literature survey

Almost three decades ago, for example, Hoog et al. [3] 
put it forward as an alternative to the waterfall mod-
el. Then, Lano [10] added constraints to UML class 
diagrams and state machines in the framework of 

*CORRESPONDING AUTHOR:
Christian Mancas, Math. & Computer Science Department, Ovidius University, Constanta, 900720, Romania; Email: christian.mancas@gmail.com

ARTICLE INFO
Received: 14 February 2023 | Revised: 28 February 2023 | Accepted: 1 March 2023 | Published Online: 10 March 2023
DOI: https://doi.org/10.30564/jcsr.v5i1.5476

CITATION
Mancas, C., Serban, C., Mancas, D.C., 2023. On Software Application Database Constraint-driven Design and Development. Journal of Comput-
er Science Research. 5(1): 31-45. DOI: https://doi.org/10.30564/jcsr.v5i1.5476

COPYRIGHT
Copyright © 2023 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

ARTICLE

On Software Application Database Constraint-driven Design and 
Development

Christian Mancas*, Cristina Serban, Diana Christina Mancas

Math. & Computer Science Department, Ovidius University, Constanta, 900720, Romania 

ABSTRACT
This paper presents a methodology driven by database constraints for designing and developing (database) 

software applications. Much needed and with excellent results, this paradigm guarantees the highest possible quality 
of the managed data. The proposed methodology is illustrated with an easy to understand, yet complex medium-sized 
genealogy software application driven by more than 200 database constraints, which fully meets such expectations. 
Keywords: Database constraint-driven design and development; Database constraint; Data plausibility; Software 
architecture; Design and development; The (elementary) mathematical data model; MatBase

mailto:christian.mancas@gmail.com


32

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

model-driven development (MDD), advocating for 
constraint-driven development (CDD). In the after-
math, Demuth et al. [11] went further and explored 
constraint-driven modeling (CDM), extended by 
Rebmann et al. [12] who proposed to automate the 
generation of model constraints instead of generating 
entire models.

In parallel, constraint-driven approaches were 
considered as well in narrower subfields of software 
engineering. For example, Siddiqui [13] proposed his 
Pike, a tool for checking code conformance to spec-
ifications; Shrotri et al. [14] use it for Machine Learn-
ing; Ciortuz [15] applies it to concurrent parsing of a 
natural language.

Moreover, such approaches are used outside the 
software engineering realm as well. For example, 
in linguistics, Kumaran [16] extends correspondingly 
Noam Chomsky’s Agree, while, in PCB hardware 
design, OrCAD [17] makes heavy use of the con-
straint-driven paradigm.

Getting back to software engineering, let us first 
note that most of the applications designed, devel-
oped, maintained, and used are database (db) ones: 
extremely few software applications of today are not 
managing databases (dbs). However, db constraints 
are not systematically considered in software engi-
neering design and development approaches any-
more. Moreover, what is very intriguing for us is the 
spreading of the JSON technology, which gives the 
false impression that there is no need for db design 
anymore: you just design objects for the applications 
and JSON is automatically mapping them into db ta-
bles, with all needed constraints.

We advocate a dual approach: you should care-
fully design and implement a db and then use an 
advanced tool of the 5th generation of programming 
languages, e.g., MatBase [18], to automatically gener-
ate accordingly the software application for manag-
ing that db. It is true that the Relational Data Model 
(RDM) [19,20], which is powering most of today’s 
DB Management Systems (DBMS), as well as the 
NoSQL datastores are not at all suited for such an 
approach: RDM provides only six constraint types, 
while NoSQL, practically, only one of them. This is 

probably why even otherwise excellent recent text-
books on db software application design like, for ex-
ample, the one by Kleppmann [21], is almost not even 
mentioning db constraints.

In fact, while software engineering is still crafts-
manship, dbs are pure applied math, namely the naïve 
algebraic theory of sets, relations, and functions, plus 
the first-order predicate logic (FOPL). In particu-
lar, db constraints are formalized by closed FOPL 
expressions, while db queries by the open ones [20]  
(recall that a FOPL expression is closed whenever all 
of its variable occurrences are bound to at least one 
quantifier and open when at least one of them is free, 
i.e. not bound to any quantifier; for example, all var-
iable occurrences within a SQL SELECT clause are 
free, while all those in either WHERE or HAVING 
ones are bounded to a universal quantifier).

MatBase is a prototype intelligent db and knowl-
edge base management system, based mainly on 
the (Elementary) Mathematical Data Model ((E)
MDM) [22], but also on the Entity-Relationship (E-R) 
one (E-RDM) [20,23], RDM, and Datalog [19,24]. Its (E)
MDM GUI accepts mathematical db schemes, trans-
lates them into both RDM and E-RDM ones, and 
automatically generates corresponding db software 
applications for managing them.

(E)MDM provides 73 constraint types on sets, re-
lations, and functions (that includes, either explicitly, 
or implicitly, the 6 relational ones provided by the 
RDM). All these 73 types belong to the Horn clauses 
class, the largest FOPL one for which the implication 
problem is decidable. 

1.2 Paper outline

MatBase’s strategy to enforce constraints (which 
was manually used by Mancas [9]), based on our pro-
posed DB Constraint-Driven Design and Develop-
ment (DBCDDD) approach, is presented in the next 
section of this paper.

The third section presents and discusses the re-
sults of applying it to an interesting sub-universe 
centered around the genealogy trees. The paper ends 
with conclusions and references.
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2. The DB constraint-driven design 
and development approach in software 
engineering

2.1 Proposed methodology

The DB Constraint-Driven Design and Develop-
ment (DBCDDD) approach that we are proposing in 
this paper is made up of the 6 methodological steps 
summarized in Figure 1.

2.2 Sub-universe analysis

You might want to apply in this step Algo-
rithm A0 from Mancas [20], such as to obtain for the 
sub-universe of interest an E-R data model [20], which 
is made of the following 3 deliverables:

(i) A comprehensive set of E-R diagrams (E-RDs);
(ii) An associated set of restrictions (business rules);
(iii) An informal description of the corresponding 

sub-universe.
This E-R data model (the only one that busi-

ness-oriented people may understand) should be ob-
tained with the help of and, finally, negotiated with, 
and approved by our customers. The E-R GUI of 

MatBase [25] may be used to draw, store, and main-
tain E-RDs. 

During this step, the domain-driven approach [5,7] 
is very useful as well.

Obviously, not even Artificial Intelligence (AI) 
might ever fulfill this task, but only, at most, help 
software architects! 

2.3 Translation of the resulting E-R data model 
into a(n) (E)MDM scheme

This step, detailed in Algorithm A1 from Man-
cas [26], can be partially done automatically, with the 
help of an intelligent DBMS like MatBase, which is 
translating E-RDs into (E)MDM schemes, but only 
software architects may formalize restrictions (busi-
ness rules) as FOPL constraints.

2.4 (E)MDM scheme validation and enhance-
ment

For validation, you might want to apply in this 
step the Algorithm A2 from Mancas [26], to correct 
any modeling errors done in the first step (e.g., de-
claring a set as being of the relationship type when, 

1.2. Paper outline

MatBase‘s strategy to enforce constraints (which was manually used by Mancas [9]), based on
our proposed DB Constraint-Driven Design and Development (DBCDDD) approach, is presented
in the next section of this paper.

The third section presents and discusses the results of applying it to an interesting sub-universe
centered around the genealogy trees. The paper ends with conclusions and references.

2. The DB Constraint-Driven Design and Development Approach in Software
Engineering

The DB Constraint-Driven Design and Development (DBCDDD) approach that we are proposing
in this paper is made up of the 6 methodological steps summarized in Figure 1.

2.1. Proposed methodology

sub-universe analysis

translation of the resulting E-R data model into a(n) (E)MDM scheme

(E)MDM scheme validation and enhancement

corresponding RDM db generation

corresponding db software application generation driven by the non-relational db constraints

for all constraints, detect all use cases in which they might be violated

based on the above, establish the corresponding event-driven procedures needed to be coded

generate needed code to enforce all constraints that cannot be enforced by the host DBMS

ergonomic polishing of the generated application GUI

Figure 1. The DBCDDD methodology steps

2.2. Sub-universe analysis

You might want to apply in this step the Algorithm A0 from Mancas [20], such as to obtain for the
sub-universe of interest an E-R data model [20], which is made of the following 3 deliverables:

Figure 1. The DBCDDD methodology steps.
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in fact, it can only be of the entity one or adding a 
constraint that does not exist in reality).

In our opinion, data correctness is utopian: for 
example, very probably, almost nobody knows or 
will ever know what the height of HM Queen Eliza-
beth II in Her last days on Earth was (moreover, we 
bet that most of us do not exactly know our current 
height, most of the time). Dually, anybody should be 
sure that the height in centimeters of any world per-
son, any time, is a number between 20 (under which 
no premature baby managed to survive) and 275 (as 
the tallest man recorded was 272), so that only the 
values in this interval are plausible for the Height 
property of persons.

We understand by plausible data value (abbrevi-
ated as plausible data), in any sub-universe of dis-
course, any value of the data associated with a prop-
erty (i.e., function codomain) that is satisfying all the 
business rules of that universe (or, equivalently, is 
not violating any of them). As such, data plausibility, 
i.e., the fact that a db instance stores only plausible 
values, is the highest possible form of data quality.

Beware that any existing constraint in the mod-
eled sub-universe which is missing in your (E)MDM 
(or any other data model) scheme allows for storing 
unplausible data in your db (e.g., two persons with 
the same SSN (i.e., US Social Security Number), two 
countries with a same name, persons living a neg-
ative number of days or more than 120 years, etc.); 
dually, any constraint in your data model scheme 
that does not exist in the corresponding sub-uni-
verse prevents your software application end-users 
to store valid data in your db (e.g., enforcing for 
a MARRIAGES set/table the constraint Husband • 
Wife minimally one-to-one, i.e., declaring this set a 
relationship, instead of an entity type one, prevents 
storing data on remarriages, like, for example, the 
famous ones between Richard Burton and Elizabeth 
Taylor). 

Moreover, enforcing redundant constraints (e.g., 
that Mother: PEOPLE → PEOPLE is not only acy-
clic, i.e., nobody may be his/her own mother, neither 
directly, nor indirectly, but also irreflexive and asym-
metric, as acyclicity implies both of them), while 

not tampering with the db instances plausibility, is 
slowing down your corresponding software applica-
tion for nothing. Consequently, redundant constraints 
should never be enforced, but only minimal con-
straint sets must be [22].

Dually, and much more important, we always 
need to make sure that our constraint sets are always 
coherent [22]: For example, if a constraint set contains 
both the constraint CurrentCity acyclic, i.e., no city 
may be its current one, neither directly, nor indirect-
ly, and the constraint CurrentCity reflexive, i.e. the 
current city of any city is itself, then the correspond-
ing CurrentCity column (of a CITIES table) would 
ever remain void (i.e., the corresponding function’s 
image would always be the empty set), because 
acyclicity implies reflexivity, and any set containing 
both reflexivity and reflexivity is incoherent. Conse-
quently, we should always remove incoherence from 
our constraint sets, preferably before coding an inco-
herent one.

Enhancements involve constraint discovery, as 
well as guaranteeing the coherence and minimality of 
the constraint sets. This second sub-step is the crucial 
one in the process and needs thorough deep think-
ing. Both (E)MDM and MatBase provide assistance 
algorithms for detecting all missing constraints [26-30],  
as well as for guaranteeing the coherence and mini-
mality of the constraint sets [22,26]. 

Obviously, this step too may only be taken by 
software and db architects: For example, only humans 
may decide whether, in a given sub-universe, a func-
tion is a one-to-one, or a function product is minimally 
one-to-one or not (e.g. Mormons, some Arabs, some 
Chinese, etc. may have several simultaneous marriag-
es, orthodox Christians may have at most 4 sequential 
marriages in a lifetime, catholic ones only one, except 
for exceptional papal approvals, etc.).

2.5 Corresponding RDM db generation

This step may be fully automated by an intelli-
gent DBMS and MatBase is successfully doing it. 
Alternatively, you might do it manually, by using 
Algorithm A7 from Mancas [26]. 

This step also produces the sets of the non-rela-
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tional constraints and of the relational ones that can-
not be enforced by the target DBMS (e.g., MS SQL 
Server wrongly assumes implicitly that the NULLS 
set contains only one value, not infinite many ones; 
as such, it cannot enforce uniqueness constraints on 
table columns that might contain more than one null 
value). All constraints from both these sets must be 
enforced in the next step.

2.6 Corresponding db software application 
generation

This step is the core DBCDDD one: It takes as 
input the two above constraint sets that cannot be 
enforced by the DBMS host and generates the corre-
sponding software application, which must enforce 
them instead. This step has the 3 sub-steps separated 
in Figure 1 by dashed lines.

Especially this step might never be totally entrust-
ed to anything or anybody else than a software and 
db architect. (E)MDM and MatBase are only assist-
ing this process with Algorithm A9 from Mancas [26]  
and are automatically generating corresponding code 
whenever possible.

2.7 Ergonomic polishing of the generated ap-
plication GUI

Even when using an intelligent tool like MatBase, 
at the end of the previous step you end up with only 
a set of MS Windows forms and their classes that are 
enforcing all the constraints. However, they must be 
ergonomically architectured in a hierarchy of forms 
and sub-forms that are called by a menu of the corre-
sponding application.

Moreover, basic ergonomic principles should 
incite you to replace all context-independent (and, 
generally, incomprehensible to application’s end-us-
ers, as they are hard to understand sometimes even 
by senior db developers) DBMS error messages with 
context-sensitive ones, to add facilities like pre-pro-
grammed queries and reports, navigation shortcuts 
between related data, to embellish the standard GUI 
with end-users fancied options, etc.

Obviously, all these may only be accomplished 

manually, by developers. 

3. Results and discussion on applying 
DBCDDD to a genealogy sub-universe

Mancas [9] considered an extended genogram 
sub-universe, by adding to the genealogy trees data 
on countries, cities, monuments, marriages, and 
reigns of rulers over countries.

The MS SQL Server 2022 Developer edition was 
chosen as the application db host.

3.1 The sub-universe objects and their main 
properties

The corresponding E-R data model contains the 
following 13 object types (with their main properties 
in parentheses):

1) PERSONS (Name, Sex, Birth and PassedAway 
Dates and Cities, Mother, Father, Killer, BurialMon-
ument, Family/Dynasty, Title, Nationality, Website, 
Picture, Notes);

2) DYNASTIES/FAMILIES (Name, Country, 
Founder, ParentHouse);

3) TITLES (Name);
4) MARRIAGES (Husband, Wife, Marriage, and 

Divorce Dates);
5) COUNTRIES (Name, Capital city, Current-

Country, MainNationality);
6) CITIES (Name, Country, CurrentCity);
7) COUNTRIES_CAPITALS (Country, City, Es-

tablishingYear);
8) CITIES_PICTURES (City, Picture, PictDe-

scription);
9) MONUMENTS (Name, Type, City, Website, 

Notes);
10) MONUMENT_TYPES (Name);
11) MONUMENTS_PICTURES (Monument, 

Picture, PictDescription); 
12) REIGNS (Person, Title, Country, Start and 

End Dates, Notes);
13) PARAMS (maxLifeYears, minMFertileAge, 

minFFertileAge, maxMFertileAge, maxFFertileAge, 
maxSurvivalMDays, maxSurvivalFDays).

The Sex property accepts 3 values: ‘F’ for fe-
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males, ‘M’ for males, and ‘N’ for anything else (e.g., 
military occupations, international bodies adminis-
trations, etc.).

The corresponding structural E-RD [20] is shown 
in Figure 2.

3.2 The sub-universe constraints

This sub-universe is governed by 210 business 
rules. Their corresponding constraints are grouped as 
follows:

(i) 172 relational constraints, out of which:
- 21 domain (range) ones;
- 53 totality (not-null) ones;
- 2 default value ones;
- 12 primary key ones;
- 26 unique ones;
- 28 reference integrity (foreign key) ones;
- 30 tuple (check) ones.

(ii) 38 non-relational constraints.
Out of these 210 constraints, only the following 

65 might raise issues (as the domain, totality, except 
for 2 of them, the ones for pictures, default, primary 
and foreign keys, as well as most of the tuple/check 
ones are simple to have them enforced by the MS 
SQL Server):
	C1: There may not be two persons of the same 

dynasty (family) born in the same year and 
having the same names.

	C2: No mother gives the same names to two of 
her children.

	C3: No father gives the same names to two of 
his children.

	C4: No person may live less than 0 days and 
more than maxLifeYears years.

	C5: Mothers’ sex must be ‘F’.
	C6: Wives’ sex must be ‘F’.
	C7: Fathers’ sex must be ‘M’.
	C8: Husbands’ sex must be ‘M’. 
	C9: Nobody may be his/her own mother, nei-

ther directly, nor indirectly (i.e., no ancestor, 
other than his/her mother, or descendant of 
somebody may be that somebody’s mother).

	C10: Nobody may be his/her own father, nei-
ther directly, nor indirectly (i.e., no ancestor, 
other than his/her father, or descendant of 
somebody may be that somebody’s father).

	C11: Nobody may be his/her ancestor or de-
scendant.

	C12: No woman may give birth before being 
minFertileFAge or after being maxFertileFAge 
years old, or after her death.

	C13: No man may have a child before being 
minMertileFAge or after being maxMer-
tileFAge years old, or more than maxMSurviv-
alDays after his death.

	C14: Nobody may get married before being 
born or after death.

Figure 2. The structural E-RD of the genealogy db from Mancas [9].
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	C15: Nobody may divorce before being born or 
after death.

	C16: Nobody may divorce before getting mar-
ried.

	C17: Nobody may get married twice on a same 
date.

	C18: Nobody may get divorced twice on a 
same date.

	C19: Nobody can get married while still being 
married. 

	C20: For any marriage, both spouses must be 
simultaneously alive for at least one day.

	C21: No woman may be the wife of one of her 
ancestors or descendants.

	C22: No man may be the husband of one of his 
ancestors or descendants.

	C23: Nobody may be killed by somebody who 
was not alive when the assassination occurred.

	C24: Nobody may belong to a dynasty (family) 
founded after his/her death.

	C25: The founder of a dynasty (family) must 
belong to that dynasty or to its parent house. 

	C26: Nobody may have found more than one 
dynasty (family). 

	C27: There may not exist two dynasties with 
the same name. 

	C28: Any parent house must be established be-
fore any of its child dynasties. 

	C29: No dynasty (family) may be its ancestor 
or descendant, neither directly, nor indirectly.

	C30: It does not make sense to store more than 
once a title. 

	C31: Nobody may reign before birth or after 
death.

	C32: No country may be simultaneously ruled 
by two persons, except for spouses and for re-
gencies. 

	C33: No reign may end before its start. 
	C34: It does not make sense to store more than 

once the fact that somebody started his/her 
rule in a country at any given date. 

	C35: It does not make sense to store more than 
once the fact that somebody ended his/her rule 
in a country at any given date.

	C36: There may not be two countries having 
the same names.

	C37: No country maybe its current one, neither 
directly, nor indirectly. 

	C38: No former country may be a current one.
	C39: There may not be two cities of the same 

country having the same names.
	C40: No city may be its current one, neither di-

rectly, nor indirectly. 
	C41: No former city may be a current one.
	C42: The capital city of any country must either 

belong to that country, or to the current coun-
try of it, or to a former country whose current 
one is that country.

	C43: No country establishes more than one city 
as its capital in any given year.

	C44: It does not make sense to store more than 
once a picture from a city.

	C45: Picture descriptions for the same city 
must be unique.

	C46: It does not make sense to store more than 
once a picture of a monument.

	C47: Picture descriptions for the same monu-
ment must be unique.

	C48: There may not be two monuments in the 
same city having the same names.

	C49: The website of a monument may not be 
shared by another monument.

	C50: It does not make sense to store more than 
once a monument type.

	C51: Whenever birth month and/or day are 
known, the birth year must be known too.

	C52: Whenever the death month and/or day are 
known, the death year must be known too.

	C53: Whenever the reign start month and/
or day is known, the reign start year must be 
known too.

	C54: Whenever the reign end month and/or day 
are known, the reign end year must be known 
too.

	C55: Persons of sex ‘N’ may not have either 
parents or children, may not marry, and may 
not belong to dynasties (families).

	C56: There may not be two persons having no 
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parents, no birth year, but the same name, sex, 
notes, and dynasty, or no dynasty.

	C57: Nobody may have a brother as his/her fa-
ther.

	C58: Nobody may have a sister as his/her 
mother.

	C59: City pictures are mandatory.
	C60: Monument pictures are mandatory.
	C61: There may not be more than one value for 

any application parameter.
	C62: Parameter values may not be deleted.
	C63: 0 < minMFertileAge < maxMFertileAge < 

maxLifeYears
	C64: 0 < minFFertileAge < maxFFertileAge < 

maxLifeYears
	C65: maxSurvivalFDays and maxSurvivalM-

Days parameter values may not be modified.
Out of these 65 constraints, 28 are relational 

ones, but only the following 9 out of them may be 
enforced by the MS SQL Server, namely: C27, C30, 
C36, C39, C43, C48, C50, C63, and C64.

The 19 remaining ones (13 of type uniqueness, 
namely C1, C2, C3, C17, C18, C26, C34, C35, C44, C45, C46, 
C47, and C49, as well as 4 of type tuple/check, namely 
C4, C16, C33, C55, and 2 of type totality, namely C59 
and C60) may not be enforced through the MS SQL 
Server, because the first 17 ones include at least one 
table column (which corresponds to a function de-
fined on the set represented by its table, which corre-
sponds in its turn to an object property) that accepts 
nulls, whereas the last two ones are on columns of 
type VARBINARY, on which no constraints are al-
lowed. Consequently, all these 19 constraints must 
be enforced by the software application, just like the 
38 non-relational ones.

Unfortunately, in the end, two of these 57 con-
straints may not be enforced at all, namely C44 and 
C46, as large, good quality pictures (for both cities 
and monuments, in this case) may not be manipu-
lated in memory either, not even by the Variant type 
of VBA (although they are linked or embedded as 
OLEDB objects). 

3.3 The use cases that might violate the 55 
constraints to be enforced through applica-
tion code

Please note that, as expected, persons for whom 
passed away dates are null are considered still alive. 
Similarly, reigns for which end dates are null are 
considered still ongoing. Marriages for which di-
vorce dates are nulls are considered still ongoing 
only while both spouses are alive.

Constraint C1

(i) Current person’s dynasty (family) is replaced 
by a not-null one;

(ii) Current person’s name is modified;
(iii) Current person’s birth year is replaced by a 

not-null one.

Constraint C2

(i) Current person’s mother is replaced by a not-
null one;

(ii) Current person’s name is modified when his/
her mother is known.

Constraint C3

(i) Current person’s father is replaced by a not 
null one;

(ii) Current person’s name is modified when his/
her father is known.

Constraint C4

(i) Current person’s birth or/and passed away 
dates are replaced (for birth by a not null one);

(ii) For persons still alive, simply by the passing 
time (i.e., not when data is modified).

Constraint C5

(i) Selecting as the mother of the current person 
somebody of sex ‘M’ or ‘N’;

(ii) Changing the current person’s sex to ‘M’ or ‘N’ 
when that person is a mother.

Constraint C6

(i) Selecting as the wife of current marriage 
somebody of sex ‘M’ or ‘N’;
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(ii) Changing the sex of a wife to ‘M’ or ‘N’.

Constraint C7

(i) Selecting as the father of the current person 
somebody of sex ‘F’ or ‘N’;

(ii) Changing the current person’s sex to ‘F’ or ‘N’ 
when that person is a father.

Constraint C8

(i) Selecting as the husband of current marriage 
somebody of sex ‘F’ or ‘N’;

(ii) Changing the sex of a husband to ‘F’ or ‘N’.

Constraint C9

Might be violated only when, for the current per-
son, is selected as his/her mother that person or a 
maternal ancestor or descendant of him/her.

Constraint C10

Might be violated only when, for the current 
person, is selected as his/her father that person or a 
paternal ancestor or descendant of him/her.

Constraint C11

(i) Selecting as the father of the current person 
somebody who is an ancestor or descendant of his/
her mother;

(ii) Selecting as the mother of the current person 
somebody who is an ancestor or descendant of his/
her father.

Constraint C12

(i) Selecting as the mother of the current person 
somebody who does not satisfy this condition;

(ii) Modifying birth and/or death dates of a moth-
er;

(iii) Modifying birth and/or death dates of a child 
of a known mother.

Constraint C13

(i) Selecting as the father of the current person 
somebody who does not satisfy this condition;

(ii) Modifying birth and/or death dates of a father;
(iii) Modifying birth and/or death dates of a child 

of a known father.

Constraint C14

(i) Selecting as a spouse of current marriage 
somebody who does not satisfy this condition;

(ii) Modifying marriage date;
(iii) Modifying birth and/or death dates of a spouse.

Constraints C15 and C16

Let us consider constraint C15’: Nobody may di-
vorce before getting married or after death. Together 
with C14 , C15’ obviously imply both C15 and C16; con-
sequently, we replace them with C15’, which might be 
violated only in the following 3 use cases:

(i) Selecting as a spouse of current marriage 
somebody who does not satisfy this condition;

(ii) Modifying marriage and/or divorce dates for 
the current marriage;

(iii) Modifying the death date of a spouse.

Constraint C17

(i) Replacing the marriage date for the current 
marriage with a not-null one;

(ii) Modifying a spouse of the current marriage.

Constraint C18

(i) Replacing the divorce date for the current mar-
riage with a not-null one;

(ii) Modifying a spouse of the current marriage.

Constraint C19

(i) Selecting as a spouse of current marriage 
somebody who does not satisfy this condition;

(ii) Modifying marriage and/or divorce dates for 
the current marriage.

Constraint C20

(i) Selecting as a spouse of current marriage 
somebody who does not satisfy this condition;

(ii) Modifying marriage and/or divorce dates for 
the current marriage;

(iii) Modifying birth and/or death dates of a 
spouse.

Constraint C21

Might be violated only when, for the current 
marriage, is selected as husband somebody who is 
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an ancestor or descendant (either maternally or/and 
paternally) of the corresponding wife.

Constraint C22

Might be violated only when, for the current 
marriage, is selected as wife somebody who is an 
ancestor or descendant (either maternally or/and pa-
ternally) of the corresponding husband.

Constraint C23

(i) Selecting as a killer of the current person 
somebody else who does not satisfy this condition;

(ii) Modifying birth and/or death dates of a killer 
or/and the death date of the current person.

Constraint C24

(i) Selecting as the founder of the current dynasty 
somebody who does not satisfy this condition;

(ii) Modifying the birth date of a founder of a dy-
nasty;

(iii) Modifying birth and/or death dates of a mem-
ber of a dynasty;

(iv) Replacing the current person’s dynasty with a 
not-null one. 

Constraint C25

(i) Selecting as a founder of the current dynasty a 
known person;

(ii) Modifying the dynasty of its founder;
(iii) Replacing the current dynasty’s parent house 

when the current dynasty’s founder is not null. 

Constraint C26

C26 is redundant, as implied by C25: Any founder 
belonging to its dynasty may not belong to another 
one as well.

Constraint C28

(i) Selecting as founder of the current dynasty a 
known person;

(ii) Modifying the birth date of the dynasty 
founder;

(iii) Replacing the current dynasty’s parent house 
with a not-null one. 

Constraint C29

Might be violated only when, for the current dy-

nasty, is selected as the parent house either the cur-
rent dynasty or one of its ancestors or descendants.

Constraint C31

(i) Selecting as ruler of current reign somebody 
who does not satisfy this condition;

(ii) Modifying birth and/or death dates for a ruler;
(iii) Modifying start and/or end dates of the cur-

rent reign.

Constraint C32

(i) Selecting as co-ruler of a reign somebody who 
does not satisfy this condition;

(ii) Modifying birth and/or death dates for a 
co-ruler;

(iii) Modifying marriage and/or divorce dates for 
a co-ruler;

(iv) Modifying start and/or end dates of the cur-
rent reign;

(v) Modifying the country of the current reign;
(vi) Modifying the title of a co-ruler.

Constraint C33

Might be violated only when, for the current 
reign, start and/or end dates are modified.

Constraint C34

(i) Modifying the start date of the current reign;
(ii) Modifying the country of the current reign;
(iii) Modifying the ruler of the current reign.

Constraint C35

(i) Modifying the end date of the current reign;
(ii) Modifying the country of the current reign;
(iii) Modifying the ruler of the current reign.

Constraint C37

Might be violated only when, for a country, is se-
lected as its current one itself or one of its former ones.

Constraint C38

Might be violated only when, for a country, is se-
lected as its current country or a former one.

Constraint C40

Might be violated only when, for a city, is select-
ed as its current one itself or one of its former ones.



41

Journal of Computer Science Research | Volume 05 | Issue 01 | January 2023

Constraint C41

Might be violated only when, for a city, is select-
ed as its current city or one of its former ones.

Constraint C42

(i) Selecting for the current country in COUN-
TRIES_CAPITALS a city that does not satisfy this 
condition;

(ii) Modifying for a country occurring in COUN-
TRIES_CAPITALS its current one;

(iii) Modifying for a capital occurring in COUN-
TRIES_CAPITALS its current city;

Constraint C45

(i) Replacing the description of the current city 
picture with a not-null one;

(ii) Replacing the city of the current city picture 
with another one.

Constraint C47

(i) Replacing the description of the current monu-
ment picture with a not-null one;

(ii) Replacing the monument of the current mon-
ument picture with another one.

Constraint C49

Might be violated only when replacing the web-
site URL of a monument with a not null one.

Constraint C51

Might be violated only when modifying the birth-
day and/or month and/or year of a person.

Constraint C52

Might be violated only when modifying the death 
day and/or month and/or year of a person.

Constraint C53

Might be violated only when modifying the start 
day and/or month and/or year of a reign.

Constraint C54

Might be violated only when modifying the end 
day and/or month and/or year of a reign.

Constraint C55

(i) Selecting a not null dynasty, father, or mother 

for a person of sex ‘N’;
(ii) Replacing the sex value of a person with ‘N’.

Constraint C56

(i) Attempting to enter corresponding duplicate 
data for a new person;

(ii) Replacing the mother and/or father and/or 
birth year of the current person with nulls;

(iii) Replacing name or/and sex or/and notes or/
and dynasty of the current person.

Constraint C57

(i) Adding/replacing a brother to the current per-
son;

(ii) Adding/replacing the father of the current per-
son.

Constraint C58

(i) Adding/replacing a sister to the current person;
(ii) Adding/replacing the mother of the current person.

Constraint C59

Might be violated only when adding to the cur-
rent city a picture description without a picture.

Constraint C60

Might be violated only when adding to the current 
monument a picture description without a picture.

Constraint C61

Might be violated only when a second line is 
saved in the PARAMETERS table.

Constraint C62

(i) Replacing a parameter value with a null one;
(ii) Deleting the only line of the PARAMETERS 

table.

Constraint C63

Might be violated only when modifying the val-
ues of at least one of these 3 parameters.

Constraint C64

Might be violated only when modifying the val-
ues of at least one of these 3 parameters.

Constraint C65

Might be violated only when modifying the value 
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of at least one of these 2 parameters.

3.4 Establishing the corresponding event-driven 
procedures needed to be coded

This sub-step heavily depends on the platform 
used for coding the application. For example, Mat-
Base, which has two versions:  -one for students and 
small dbs and a professional one- that uses VBA and 
C#, respectively. Mancas [9] opted for VBA, which is 
both simpler, very robust, and provides an extensive 
set of data-oriented events and associated event-driv-
en procedures.

It is out of the scope of this paper to enter into 
details on software application development on any 
platform, as this would need at least another 20 pag-
es per platform and would not be of any academic, 
but only of technological interest.

The only general aspect about this sub-step is the 
fact that there are two possible algorithmic approach-
es to enforce db constraints in software applications, 
just like in healthcare, namely:

(i) preventively (i.e., providing users to choose 
from only plausible data in combo-boxes),

(ii) curatively (i.e., letting users enter desired data 
and reject unplausible ones).

The preventive ones are the best and, for exam-
ple, in VBA they may be coded in the Form_Current 
event-driven procedures, which are automatically 
called each time the cursor is set on another data line 
of the current form. For example, in the DYNASTIES 
form, this procedure should dynamically modify the 
SQL SELECT statements that compute the com-
bo-boxes Founder and ParentHouse and then re-que-
ry them, such as to eliminate from ParentHouse the 
current dynasty and from Founder all persons that 
are not belonging to either the current dynasty or its 
parent house, as well as those dead before the birth 
of the current founder (thus preventively enforcing 
constraints C24, C25 , and C29, respectively).

Sometimes, however, this is not possible (not 
even for all combo-boxes and all types of constraints 
involving their corresponding columns, hence func-
tions). For example, to enforce constraint C49 you 
can only let the user type any desired text string in 

the Website text-box control of the MONUMENTS 
form’s current data line and then reject it within the 
Website_BeforeUpdate VBA event-driven procedure 
(corresponding to the Validating event type of .NET) 
if that URL is already stored in the db for another 
monument. 

3.5 Comparative analysis

In Mancas [9], state-of-the-art analysis of genealo-
gy software applications available on the market was 
conducted as well, starting from the No1Reviews.
com website post on the top 10 of such applications 
in 2022 [31]. Only 8 of them have been analyzed (as 
one is only for Apple hardware and software and 
the other is a website builder not freely available for 
evaluation) and only 3 of them provide a rudiment of 
data quality consideration: For a few unplausible val-
ues (e.g. passed away date less than birth one) they 
warn you and ask a confirmation message to which, 
unfortunately, you can answer Yes, thus saving that 
unplausible data in their dbs. In all 8 of them we eas-
ily manage to save aberrantly unplausible data, like 
persons living centuries, getting married or/and bap-
tized before birth or after death, mothers of sex ‘M’, 
fathers of sex ‘F’, persons being buried before death, 
etc.

Unfortunately, this is not an exception: Such 
software applications abound in all fields, not only 
in the genealogy one. Some might say that the cor-
responding software companies lack software and/
or db architects or that all fine ones are working only 
for giants like Microsoft, Google, Apple, Tesla, etc.

We strongly believe, however, that the main rea-
son for this catastrophic reality is that, on one hand, 
software engineering treats db applications just as 
the not-db ones and, on the other, it completely lacks 
consideration of the main asset of any db applica-
tion, namely its managed data quality. And, as we’ve 
explained, data quality may be guaranteed only by 
plausible data values and data plausibility may be 
guaranteed only by discovering all business rules 
governing the considered sub-universes and enforc-
ing all their corresponding constraints.

This is why we consider that our proposed db 
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constraint-driven design and development method-
ology described in this paper is a crucial approach to 
take towards the delivery of high-quality software db 
applications, not only exhibiting glossy GUIs, but, 
especially, guaranteeing the highest quality possible 
of the managed data. 

Using the DB Constraint-Driven Design and De-
velopment approach, the genogram software applica-
tion described in Mancas [9] and in the previous sec-
tion of this paper successfully and elegantly enforced 
all 208 constraints governing this sub-universe that 
can be enforced with the currently available technol-
ogies. The contrast between this application and the 
ones considered in reviews [31] as the best ones in this 
field could not be more spectacular.

4. Conclusions and further work
We introduced a novel database constraint-driven 

methodology for designing and developing software 
database applications. We exemplified it with a com-
plex medium-sized software database application 
for managing genograms. We argued that, using this 
methodology, this application guarantees the highest 
possible quality of the data it is managing, whereas 
most of the similar applications available and con-
sidered to be the best ones in this field have almost 
no concern at all about data quality.

Moreover, although Mancas [9] used this paradigm 
manually, our previous research and the MatBase 
prototype embedding it provide powerful tools to 
program while modeling, which is the future of 
software, as fewer and fewer developers and testers, 
while more and more architects and designers will 
soon be needed with the generalization of automatic 
code generation.

Further work is needed to automate software ap-
plications’ code generation for the (E)MDM general 
object constraints [22,26] in MatBase. 
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