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ABSTRACT

Urban air quality degradation from rising CO2 is acute in rapidly developing tropical cities such as Makassar, Indonesia.

We deploy a drone-based Internet of Things (IoT) platform for real-time CO2 monitoring, integrating low-cost sensors

(NDIR, MQ135, MG811) on a DJI Phantom 4 with cloud streaming to Firebase. Measurements were collected at five

sites, namely Jl. AP. Pettarani, Jl. Ahmad Yani, Jl. Sultan Hasanuddin, Jl. Nusantara, and KIMA at 08:00, 12:00, and

16:00 in September 2024 while vertically profiling 1–20 m with three repeat flights per site and time. Descriptive statistics

and one-way ANOVAwith Tukey HSD assessed spatio-temporal differences; Pearson correlation quantified cross-sensor

agreement. Results show marked spatial and diurnal variability: Jl. AP. Pettarani exhibits the highest mean concentration

(442.5 ppm), likely due to flyover-induced trapping, whereas Jl. Ahmad Yani records the lowest (390.0 ppm). Vertical

profiles reveal mid-altitude peaks in street-canyon and industrial settings, and dilution with height in greener areas, indicating

ventilation contrasts. Preprocessing removed outliers and applied temperature-humidity corrections to low-cost sensors.

Differences across locations and times are statistically significant (p < 0.05), and cross-sensor correlations are strong (r

≈ 0.88–0.96) after correction. Compared with fixed ground stations, the system provides fine-scale three-dimensional

coverage and real-time visualization useful for field decisions. Limitations include payload-constrained endurance and
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intermittent data loss in obstructed areas. Findings support targeted interventions, improving canyon ventilation around

flyovers and expanding urban greenery relevant to Makassar and similar tropical cities.

Keywords: CO2 Monitoring; Drone-Based IoT; Urban Air Quality; Makassar; Spatio-Temporal Analysis

1. Introduction

Urban air quality is a critical global concern due to

rapid urbanization, industrial growth, and increasing vehic-

ular traffic, which elevate CO2 levels, a key greenhouse

gas contributing to global warming and indicating urban

pollution. In tropical cities like Makassar, Indonesia, CO2

levels vary significantly due to traffic, industrial activity,

and vegetation, necessitating effective monitoring for air

quality management, particularly in the context of urban

heat islands and health impacts [1–3]. The long-term effects

of elevated CO2 concentrations exacerbate climate change,

leading to consequences such as sea-level rise and extreme

weather events, particularly pertinent for coastal cities like

Makassar [4]. Traditional ground stations, while valuable,

lack the spatial coverage to capture complex vertical pollu-

tant gradients in urban atmospheres, limiting comprehensive

air quality understanding [5]. Drone-based IoT systems over-

come these limitations by enabling high-resolution, three-

dimensional data collection across varying altitudes, offering

superior flexibility in navigating complex urban topographies

compared to fixed stations [6–9]. These systems, which are

becoming a major application area for drone-based IoT [10],

facilitate real-time data transmission and analysis, crucial

for rapid pollution mitigation strategies [5,7,11]. Sophisticated

sensors integrated into drone platforms enable accurate CO2

measurements, especially when considering factors like road

traffic and meteorology [12–14].

2. Methodology

2.1. Study Area

The study was conducted in Makassar, Indonesia, a

tropical coastal city with high humidity (70–90%) and tem-

peratures (28–32 °C). Five locations were selected: Jl. AP.

Pettarani (high-traffic with flyover), Jl. Ahmad Yani (green

corridor), Jl. Sultan Hasanuddin (commercial area), Jl. Nu-

santara (port-adjacent), and KIMA (industrial zone). These

sites represent diverse urban features influencing CO2 distri-

bution [3,7].

2.2. Drone-Based IoT System and Data Acqui-

sition

A drone-based IoT system was employed to vertically

profile CO2 concentrations across altitudes ranging from 1 to

20 meters, building upon methodologies validated in similar

environmental monitoring applications [15,16]. The system,

meticulously designed for this study and depicted in Figure

1, integrates a DJI Phantom 4 drone as the primary aerial

platform, a common choice for such research [17]. This partic-

ular drone model was selected for its stability, precise flight

control, and ample payload capacity, which are crucial for

carrying sensor modules without compromising flight perfor-

mance [18]. The drone’s ability to maintain a stable hover at

specific altitudes, a key feature of unmanned aerial systems

(UAS) [19], ensures accurate data collection at desired ver-

tical points, critical for understanding pollutant dispersion

patterns in complex urban environments [20].

The core of the data acquisition system comprises an

ESP32 microcontroller, renowned for its low power consump-

tion, integrated Wi-Fi and Bluetooth capabilities, and suffi-

cient processing power for handling sensor data. This mi-

crocontroller interfaces directly with an array of calibrated

sensors. Specifically, the sensors included an NDIR CO2 sen-

sor with a range of 0–5000 ppm and an accuracy MQ135

sensor (10–1000 ppm) for broader air quality parameters, in-

cluding CO, NH3, H2S, and smoke, and an MG811 sensor

(350–10000 ppm) for supplementary CO2 measurements and

cross-validation. This multi-sensor approach enhances the

reliability and comprehensiveness of the collected air quality

data, providing a more robust dataset for analysis [21,22]. The

sensor suite is strategically mounted on the drone to ensure

minimal interference from the drone’s propellers and body,

and to capture representative ambient air samples at each des-

ignated altitude, typically away from the drone’s immediate

airflow [23]. The 660-gram sensor assembly, powered by a
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3.7V, 2000mAh LiPo battery, was encased in a protective plas-

tic container with strategically placed apertures to allow for

proper air circulation and sensor exposure. As presented in

Figure 2, this robust housing (Figure 2a) ensures the integrity

of the sensors during flight and protects them from environ-

mental elements. The entire assembly was securely affixed to

the drone’s underside using Velcro and zip ties (Figure 2b),

ensuring stability and minimal impact on the drone’s flight

dynamics. Such a low-cost system design is increasingly com-

mon for accessible environmental monitoring [24].

Figure 1. System Workflow for Drone-Based CO2 Monitoring.

Figure 2. Visual Context for the Hardware Implementation. (a) The Circuit; (b) The Circuit Installed on The Drone.

For robust data transmission, the system incorporates

versatile connectivity modules (WiFi, GSM/3G/4G). This

multi-protocol approach ensures continuous and reliable data

flow from the drone to the ground station, even in diverse

urban environments where network availability might vary.

Real-time data transmission is directed to a Firebase Realtime

Database, which serves as a scalable cloud-based backend for

immediate storage and accessibility [25]. This methodology

of using cloud platforms for real-time visualization and anal-

ysis is increasingly adopted in urban air quality monitoring

due to its efficiency and accessibility, enabling rapid insights

for pollution mitigation strategies [7,26,27]. The real-time na-

ture of this data stream allows for instantaneous monitoring

of CO2 levels, enabling quick identification of anomalies or

high-concentration areas during flight operations [28]. Such

immediate data availability is crucial for dynamic decision-
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making in environmental management, allowing for prompt

responses to pollution events [29].

Drones, as advanced remote sensing tools, have been

effectively utilized in various environmental monitoring ap-

plications beyond air quality, such as in biomass estimation

studies, to collect high-resolution spatial data [11,30]. Their

agility and ability to access challenging urban topographies

make them indispensable for generating comprehensive ver-

tical profiles of pollutants, providing a more nuanced under-

standing of air quality dynamics compared to static ground

stations [31]. The integration of IoT technology further em-

powers these drone systems, transforming them into intelli-

gent mobile sensing platforms capable of autonomous data

collection and immediate reporting, which is critical for dy-

namic urban planning and environmental management [2].

This integration allows for a more comprehensive and adap-

tive approach to air quality assessment, providing valuable

data for evidence-based policy formulation.

Figure 1 shows system Workflow for Drone-Based

CO2 Monitoring illustrates the architectural design of the pro-

posed system. It begins with the Drone UAV which houses

the Air Pollution Sensors and a Microcontroller. These com-

ponents are interconnected, enabling data acquisition. The

data from the microcontroller is then transmitted via WiFi,

GSM/3G/4G connectivity modules to a Web Service. This

web service interacts with a Data Storage unit (Firebase Re-

altime Database) and communicates with a Base Station.

Ultimately, the data is fed into a Web-based Monitoring Ap-

plication where Air Pollution Level Data Visualization oc-

curs, allowing for real-time monitoring and analysis. This

diagram clearly outlines the flow of data from raw sensor

readings to visualized insights.

Figure 2 provides visual context for the hardware im-

plementation. Figure 2a shows a close-up of the sensor

circuit board encased within a transparent plastic container.

The visible components include the microcontroller, vari-

ous sensors (indicated by their small size and typical con-

figurations), a LiPo battery, and wiring connections. The

illuminated LEDs suggest the circuit is operational. Figure

2b depicts the sensor assembly attached to the underside of

the DJI Phantom 4 drone. The plastic container is visible,

securely fastened with Velcro and zip ties, demonstrating the

practical integration of the monitoring system onto the aerial

platform. This image also shows individuals who appear

to be preparing the drone for flight, further illustrating the

practical deployment of the system in the field.

2.3. Sensor Calibration

Accurate data collection is paramount for robust air

quality assessment. All sensors underwent a rigorous two-

stage calibration and correction process.

2.3.1. Sensor Calibration Curves

The initial calibration was performed in a controlled

laboratory environment using certified gas standards (Linde

Gas). A baseline was established at 400 ppm, followed by

tests at 600 ppm, 800 ppm, and 1000 ppm to assess lin-

earity [14,32]. The raw sensor outputs (voltage) were plotted

against known concentrations to derive calibration functions.

The relationship between output voltage and CO2 concen-

tration was linear, as shown in Figure 3, with the following

calibration equations:

NDIR : CO2(ppm) =

500.2× V oltage(V )− 50.3, R2 = 1.000
(1)

MQ135 : CO2(ppm) =

480.7× V oltage(V )− 45.8, R2 = 0.998
(2)

MG811 : CO2(ppm) =

495.1× V oltage(V )− 48.2, R2 = 0.999
(3)

These equations validate the linear response of all sen-

sors, with NDIR showing the highest consistency, followed

by MG811 and MQ135 [14,32].

Given Makassar’s tropical climate (humidity 70–90%,

temperatures 28–32°C), which can affect sensor readings,

particularly for metal-oxide types like MQ135, a multi-

variable regression model was developed based on laboratory

characterization data. This model uses real-time temperature

and humidity readings (collected by an onboard BME280 sen-

sor) to correct raw CO2 readings from MQ135 and MG811

sensors, mitigating environmental cross-sensitivities [14,21,26].

Real-time calibration using machine learning is an advanced

alternative for such corrections [33]. No ad-hoc biasing (e.g.,

+10% for MQ135 or −5% for MG811) was applied; instead,
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the regression model ensures accurate corrections without

artificial adjustments. Ground-level readings were validated

against a high-precision Testo 440 CO2 meter, with recali-

bration if discrepancies exceeded 5% [34,35].

Figure 3. Calibration Curves of the CO2 Sensors (NDIR, MQ135, and MG811).

2.3.2. Environment Correction Model

Given Makassar’s tropical climate (humidity 70–90%,

temperatures 28–32°C), which can affect sensor readings,

particularly for metal-oxide types like MQ135, a multi-

variable regression model was developed based on laboratory

characterization data. This model uses real-time temperature

and humidity readings (collected by an onboard BME280 sen-

sor) to correct raw CO2 readings from MQ135 and MG811

sensors, mitigating environmental cross-sensitivities [14,21,26].

Real-time calibration using machine learning is an advanced

alternative for such corrections [33]. No ad-hoc biasing (e.g.,

+10% for MQ135 or −5% for MG811) was applied; instead,

the regression model ensures accurate corrections without

artificial adjustments. Ground-level readings were validated

against a high-precision Testo 440 CO2 meter, with recali-

bration if discrepancies exceeded 5% [34,35].

2.4. Data Collection

Data collection was systematically carried out in

September 2024 to ensure consistency in environmental con-

ditions. To capture temporal variations, measurements were

taken at three distinct times: 08:00 (morning), 12:00 (mid-

day), and 16:00 (afternoon). This schedule allows for the

observation of CO2 fluctuations influenced by varying traf-

fic patterns, solar radiation, and atmospheric mixing layer

heights.

At each of the five selected study locations, the drone

performed vertical profiling, ascending from 1 to 20 meters.

During each ascent, the drone was programmed to pause for 1

minute at every meter increment to allow the sensors to stabi-

lize and collect accurate readings. This standardized vertical

profiling technique is crucial for understanding the stratifi-

cation and dispersion of CO2 in the urban atmosphere
[16].

With three flights conducted per location and per time slot, a

total of 60 data points were generated per site (20 altitudes x

3 flights), ensuring high spatial and temporal resolution.

The collected data were immediately transmitted via

a 4G hotspot to a Firebase Realtime Database for real-time

visualization and storage. This direct transmission method

minimizes data loss and allows for immediate monitoring

during flight operations [7,15]. As shown in Figure 4, the

Firebase interface provided instantaneous readouts of sensor

values. This real-time capability is a significant advantage,

facilitating quick assessments and operational adjustments [6].

The use of cloud-based platforms streamlines data manage-

ment and supports timely intervention strategies for urban

air quality management [29,34,36].
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Figure 4. Real-Time CO2 Data Display on Firebase Realtime Database at Jl. AP. Pettarani, 20 Meters Height, 16:00.

2.5. Data Preprocessing

Raw data collected from environmental sensors, partic-

ularly low-cost ones, often contain noise, anomalies, and sys-

tematic biases that can obscure meaningful patterns. There-

fore, a robust preprocessing pipeline was implemented to

ensure the quality, reliability, and accuracy of the final

dataset [37].

The initial step involved detecting and removing out-

liers, a common challenge in environmental data [38]. Data

points exceeding three standard deviations from the mean of

their respective measurement batch (e.g., specific altitude,

time, and location) were systematically removed. This sta-

tistical approach filters out erroneous readings that might

result from sensor malfunctions or transient environmental

disturbances. Approximately 2% of the total dataset was

removed as outliers, indicating a generally stable data col-

lection process. This method is a widely accepted practice

for improving data integrity in environmental datasets [24].

Second, the environmental correction model, as de-

tailed in Section 2.3.2, was applied to theMQ135 andMG811

sensor data. This model-based adjustment is critical for miti-

gating biases caused by fluctuations in ambient temperature

and humidity, which are known to affect low-cost sensor per-

formance and can be more significant than minor instrument

noise [39].

Third, cross-sensor data validation was conducted.

Given the use of multiple sensors measuring the same pri-

mary compound (CO2), it is important to address poten-

tial variations in their factory calibration or long-term drift.

Analysis was performed to understand the relationships and

systematic biases between the NDIR, MQ135, and MG811

sensors. This step acknowledges that even after correction,

low-cost sensors can exhibit variability, a crucial consider-

ation for ensuring the robustness of the overall air quality

assessment [40,41].

Finally, temporal alignment and data completion were

performed. The timestamps of all collected sensor readings

were synchronized with the drone’s flight log and the Fire-

base Realtime Database to ensure that CO2 concentrations

were accurately correlated with their precise measurement

time and altitude. Consistency checks for missing values

were also conducted, with interpolation applied where appro-

priate, though the primary focus remained on outlier removal

and bias correction [37].

2.6. Data Analysis

The preprocessed CO2 concentration data, compris-

ing high-resolution spatio-temporal measurements, under-

went rigorous statistical analysis to elucidate the distribution,

variations, and influencing factors of urban air quality in

Makassar. The analytical approach was designed to provide

actionable insights for urban planning [42].

Firstly, descriptive statistics, including means, medians,

and ranges, were computed for CO2 concentrations across

all five study locations, different altitudes, and times of day.

These statistics provided an initial characterization of the

overall CO2 levels and their central tendency and spread

within the urban landscape. This fundamental step is essen-

tial for understanding the basic air quality characteristics of

the study area [24].

To understand the vertical distribution and changes in

CO2 levels, vertical profiles were generated for each loca-
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tion and time slot. These profiles graphically represent the

concentration gradients with increasing altitude (1–20 me-

ters), offering insights into atmospheric mixing and pollutant

dispersion patterns. To statistically evaluate spatio-temporal

dynamics, one-way Analysis of Variance (ANOVA) with

a significance level of α = 0.05 was performed. ANOVA

was used to determine if there were statistically significant

differences in CO2 concentrations across different locations,

times of day, and altitudes. This statistical test is crucial for

identifying variations attributable to specific urban features

or daily cycles [43].

Pearson correlation coefficients were calculated to eval-

uate the consistency and agreement between the readings of

the different sensors (NDIR CO2, MQ135, and MG811). A

strong positive correlation would indicate that the sensors

are measuring similar trends, thus reinforcing the reliability

of the collected data. This cross-sensor validation is vital,

especially when employing multiple low-cost sensors, to

ensure data integrity [41]. Furthermore, profile comparisons

were conducted to qualitatively and quantitatively assess the

specific impacts of distinct urban features (e.g., high-traffic

areas, industrial zones, commercial areas, and green spaces)

on CO2 concentrations. This involved comparing the vertical

and temporal CO2 profiles across different locations to iden-

tify patterns linked to emission sources and environmental

conditions.

All data analyses were primarily performed using

Python programming language, leveraging its powerful li-

braries: Pandas for data manipulation and management, Mat-

plotlib for generating high-quality visualizations of profiles

and trends, and ANOVA and correlation analyses. This

choice of analytical tools aligns with established statistical

methods widely adopted for urban air quality analysis and en-

vironmental data science [17,40,44,45]. The use of these robust

and widely accepted libraries ensures the reproducibility and

scientific rigor of the findings. Moreover, advanced visual-

ization techniques, such as heatmaps or 3D plots, could fur-

ther enhance the interpretation of complex spatio-temporal

datasets [46,47].

2.7. Limitations

Despite the robust methodology, several limitations

were encountered. The DJI Phantom 4’s flight duration was

reduced to 22–25 minutes due to the 660-gram sensor pay-

load, necessitating frequent battery swaps [48]. Data transmis-

sion faced ~5% loss in obstructed areas like Jl. Nusantara due

to urban infrastructure interference [7,49]. Propeller wash may

have caused minor turbulence affecting local gas concentra-

tions; future studies could use computational fluid dynamics

(CFD) modeling to optimize sensor placement [34,50]. Makas-

sar’s tropical climate introduced residual cross-sensitivity in

MQ135 sensors, despite corrections [35,51]. Data collection

at three time points (08:00, 12:00, 16:00) with three flights

per site may not capture full diurnal variability, and only

September 2024 data were collected, limiting seasonal anal-

ysis. Multi-seasonal studies are recommended to capture

annual dynamics [8,9].

One significant operational limitation was the reduced

flight duration of the DJI Phantom 4 drone. With the added

660-gram sensor payload, the typical flight time was reduced

to approximately 22–25 minutes, significantly less than its

advertised maximum flight time without payload. This neces-

sitated frequent battery swaps during data collection, which

increased the time required for field operations and could po-

tentially introduce minor inconsistencies between flights [15].

Longer flight durations or the use of drones with greater

payload capacities and endurance would mitigate this issue

in future studies [52].

Another challenge arose in data transmission. While

the use of a 4G hotspot provided real-time data streaming,

approximately 5% data loss was observed, particularly in

obstructed areas like Jl. Nusantara (port area). This loss is

likely attributed to signal interference caused by dense urban

infrastructure, tall buildings, or large metallic structures com-

mon in port environments [7,29]. Implementing more robust

communication protocols or mesh networking capabilities

could help overcome such signal attenuation issues.

Makassar’s tropical climate posed a challenge. While

an environmental correction model was applied to mitigate

the effects of high humidity and temperature on the MQ135

sensor, some residual cross-sensitivity may persist, a com-

mon issue for metal-oxide sensors in tropical regions [37,53].

Furthermore, while the sensor was mounted to mini-

mize interference, a degree of air disturbance from propeller

wash is unavoidable. This turbulence could potentially af-

fect local concentration readings, especially at low ascent

speeds. Future work could benefit from computational fluid

dynamics (CFD) modeling to optimize sensor placement
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further [17,54]. The data collection was limited to three time

points per day (08:00, 12:00, 16:00) with three flights per

site at each time. This snapshot approach may not capture

the full diurnal variability, such as the early morning and late

evening concentration peaks. Amore continuous or frequent

sampling schedule would provide a more complete picture

of daily cycles.

Finally, the study was conducted solely in September

2024. This single-month dataset precludes a comprehensive

seasonal analysis. Air pollutant concentrations are known

to exhibit significant seasonal patterns influenced by meteo-

rological shifts (e.g., monsoon vs. dry season) and human

activities. It must be clearly stated that these findings rep-

resent conditions for that specific period. Future research

should aim for multi-seasonal data collection to build a more

holistic and dynamic model of urban air quality in Makassar.

3. Results and Discussion

3.1. Descriptive Statistics of CO2 Concentra-

tions

Infrared CO2 data from five Makassar locations—Jl.

AP. Pettarani, Jl. AhmadYani, Jl. Sultan Hasanuddin, Jl. Nu-

santara, andKIMA—at 08:00, 12:00, and 16:00 in September

2024 are presented in Table 1, revealing spatial and tempo-

ral variations consistent with urban air pollution patterns [16].

The inclusion of data from MQ135 and MG811 sensors in

Table 1 provides a more comprehensive view of air quality

parameters, supporting the multi-sensor approach.

Table 1. Mean CO2 Concentrations (ppm) Across All Heights (1–20 m) for Each Location and Time.

Location Time Infrared CO2 (ppm) MQ135 (ppm) MG811 (ppm)

08:00 422.5 462.5 402.5

Jl. AP. Pettarani 12:00 442.5 482.5 422.5

16:00 462.5 502.5 442.5

08:00 380.0 420.0 360.0

Jl. Ahmad Yani 12:00 390.0 430.0 370.0

16:00 400.0 440.0 380.0

08:00 405.5 445.5 387.0

Jl. Sultan Hasanuddin 12:00 405.5 446.0 393.5

16:00 415.0 455.0 395.0

08:00 401.0 441.0 375.5

Jl. Nusantara 12:00 406.0 446.0 378.5

16:00 415.5 455.0 385.0

08:00 420.0 460.0 400.0

KIMA 12:00 425.0 465.0 405.0

16:00 430.0 470.0 410.0

Jl. AP. Pettarani consistently showed the highest mean

CO2 concentrations at 442.5 ppm (SD = 15.0 ppm), with read-

ings ranging from 422.5 ppm (08:00) to 462.5 ppm (16:00).

This elevated concentration is primarily attributed to pollu-

tant trapping exacerbated by the presence of the flyover and

high vehicular traffic. Flyover development can indeed in-

troduce environmental risks like pollutant trapping [55]. The

industrial zone, KIMA, exhibited a mean CO2 level of 425.0

ppm (ranging from 420.0 ppm to 430.0 ppm), reflecting the

significant contribution of industrial emissions to localized

air pollution, which can be exacerbated by urban infrastruc-

ture development [28]. Conversely, Jl. Ahmad Yani recorded

the lowest mean CO2 concentration at 390.0 ppm (ranging

from 380.0 ppm to 400.0 ppm), likely due to the mitigating

effects of the urban park and surrounding vegetation. Jl. Sul-

tan Hasanuddin and Jl. Nusantara recorded moderate mean

CO2 concentrations of 408.7 ppm (405.5–415.0 ppm) and

407.5 ppm (401.0–415.5 ppm), respectively, due to mixed-use

and port activities, further influenced by urban infrastructure

such as flyovers [27]. Temporally, a clear trend of increasing

CO2 concentrations was observed from 08:00 to 16:00 across

most locations, most notably at Jl. AP. Pettarani. This diurnal

pattern is driven by diurnal traffic patterns, which influence

air pollutant distributions in urban settings [40].
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3.2. Spatio-Temporal Variations in CO2 Con-

centrations

Vertical profiles (Figure 5) and boxplots (Figure 6),

further analyze CO2 variations across 1–20 m using all three

sensors; the boxplots summarize distributions.

Statistical analysis usingANOVAconfirmed significant

differences in CO2 concentrations across locations [F(4, 297)

= 14.73, p < 0.001] and times [F(2, 299) = 9.87, p < 0.001].

At Jl. AP. Pettarani, Infrared CO2 concentrations consistently

peaked at approximately ~498 ppm (16:00, 12 meters). Sim-

ilarly, KIMA showed peaks around ~433 ppm (12 meters),

reflecting traffic and industrial impacts, respectively. These

high concentrations at specific altitudes not only contribute

to ambient pollution but also exacerbate urban heat island

effects and influence indoor air quality [16,40]. In contrast, Jl.

Ahmad Yani demonstrated a notable decrease in concentra-

tions with height to < 300 ppm at 20 meters, clearly showing

vegetation mitigation. Jl. Sultan Hasanuddin and Jl. Nusan-

tara displayed moderate levels with gradual declines, indi-

cating mixed-use and port emission dispersion, influenced

by urban infrastructure such as flyovers [37,44,52]. Temporally,

CO2 increased from 08:00 to 16:00, driven by traffic and

industry, while vegetation mitigated levels [39,51]. The use of

drones enabled these vertical measurements, overcoming the

limitations of ground stations by capturing three-dimensional

CO2 distributions, which are critical for understanding urban

pollutant dynamics [15]. Additionally, real-time data trans-

mission to Firebase facilitated rapid visualization and analy-

sis, allowing for timely insights into CO2 variations across

Makassar’s diverse urban landscape, a capability increas-

ingly recognized in IoT-enabled drone systems for air quality

monitoring [3,5,7].

Figure 5. Vertical CO2 Profiles Across Sensors and Locations.

Figure 6. Boxplot of Infrared, MQ135, and MG811 CO2 Concentrations Across Locations and Times.
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3.3. Sensor Calibration and Validation

The performance and reliability of the CO2 sensors

(Infrared, MQ135, and MG811) were rigorously evaluated

post-calibration and environmental correction. Cross-sensor

validation was conducted by analyzing the correlation be-

tween the primary Infrared NDIR sensor and the supplemen-

tary MQ135 and MG811 sensors across all collected data.

As shown in the scatter plots (Figure 7, relabeled from

Figure 6), a strong positive correlation was observed be-

tween the Infrared sensor and the MG811 sensor (Pearson’s

r = 0.96), indicating high consistency and reliability. The

MG811 consistently tracked the primary sensor’s readings

with a minimal and stable offset, suggesting its robustness

across varying environmental conditions encountered during

the flights.

Figure 7. Sensor Sensitivity Analysis.

The correlation between the Infrared sensor and the

MQ135 sensor was also strong (Pearson’s r = 0.88). While

the MQ135 exhibited a greater offset, particularly during

midday (12:00), which corresponds to peak traffic and solar

radiation, the application of the multi-variable regression cor-

rection model successfully mitigated major environmental

cross-sensitivities. The strong correlation coefficient con-

firms that the MQ135 provided valid trend data, reinforcing

the overall dataset’s robustness.

These results validate the multi-sensor approach. The

high correlation across sensors, especially after environ-

mental correction, demonstrates that the system provides

reliable and consistent measurements, a crucial factor for

drone-based air quality monitoring in dynamic urban envi-

ronments [40].

Infrared vs. MQ135 showed a Pearson correlation of

0.88, with MQ135 overestimating by +42.4 ppm (08:00),

+47.7 ppm (12:00), and +36.7 ppm (16:00), reflecting a +5%

to +15% bias due to NOx sensitivity at Jl. AP. Pettarani [24,40].

Infrared vs. MG811 had a 0.96 correlation, with underesti-

mation of −20.4 ppm (08:00), −22.0 ppm (12:00), and −20.5

ppm (16:00), aligning with a −5% bias, possibly due to hu-

midity, a factor impacting sensor accuracy in tropical urban

environments [39]. MQ135’s peak overestimation at 12:00

reflects midday traffic, while MG811’s stability suggests

reliability despite environmental factors, a key considera-

tion for drone-based air quality monitoring [45]. Calibration

adjustments are needed for urban monitoring.

3.4. Impact of Urban Features on CO2 Distri-

bution

Vertical profiles are influenced by local atmospheric

dynamics. Peak concentrations at mid-altitudes (12–15 me-

ters) in Jl. AP. Pettarani and KIMA suggest a shallow urban

boundary layer and poor ventilation within street canyons,

exacerbated by flyovers trapping pollutants [15,16,52]. Solar

heating creates thermal turbulence, but urban structures limit

mixing with cleaner upper layers. In contrast, Jl. Ahmad

Yani’s gradual CO2 decrease at higher altitudes indicates

effective vertical mixing due to vegetation [16]. Atmospheric

stability and mixing height significantly influence these pat-

terns, with stable conditions trapping pollutants and unstable

conditions promoting dispersion [15].

As shown in Figure 8, each graph plots vertical CO2

profiles from 1–20 m at the five sites, averaged across NDIR,
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MQ135, and MG811, with three time-of-day curves: 08:00

(red), 12:00 (green), and 16:00 (blue). All graphs share a

common y-axis range (≈300–500 ppm). The lines denote
mean concentrations.

Site-specific gradients are evident. Jl. AP. Pettarani

shows the highest levels overall with a mid-altitude peak

(~12–15 m); KIMA exhibits a similar mid-level hump. Jl.

Sultan Hasanuddin is comparatively flat with a slight crest

around 8–10 m followed by a gentle decline, while Jl. Nu-

santara shows a weaker bump near ~12 m. By contrast, Jl.

Ahmad Yani decreases monotonically with height and is the

lowest among the sites. Diurnal differences are modest: at

most locations, the 12:00/16:00 curves sit slightly above

08:00, and the three curves tend to converge near 18–20 m.

Figure 8. Vertical CO2 profiles (1–20 m) at five urban sites: Jl. AP. Pettarani, Jl. Ahmad Yani, Jl. Sultan Hasanuddin, Jl. Nusantara, and

KIMA, averaged across NDIR, MQ135, and MG811 at 08:00, 12:00, and 16:00.

3.5. Statistical Validation

ANOVA and Tukey HSD tests validated CO2 variations.

Significant differences were found across locations [F(4, 297)

= 14.73, p < 0.001] and times [F(2, 299) = 9.87, p < 0.001].

A Tukey HSD post-hoc test was conducted to perform pair-

wise comparisons between all locations (Table 2). The results

show that the mean CO2 concentration at Jl. AP. Pettarani

(442.5 ppm) is significantly higher than at Jl. Ahmad Yani

(390.0 ppm, p < 0.01), Jl. Sultan Hasanuddin (408.7 ppm, p <

0.05), Jl. Nusantara (407.5 ppm, p < 0.05), and KIMA (425.0

ppm, p < 0.05), reflecting the severe impact of the flyover. A

Tukey HSD post-hoc test was conducted to perform pairwise

comparisons between all locations (Table 2).

Table 2. Tukey HSD Post-Hoc Test for Pairwise Comparison of Mean CO2 Concentrations (ppm) Across Locations.

Comparison (Locations) Mean Difference (ppm) p-value Significance

AP. Pettarani vs. Ahmad Yani 52.5 < 0.01 Significant

AP. Pettarani vs. Sultan Hasanuddin 33.8 < 0.05 Significant

AP. Pettarani vs. Nusantara 35.0 < 0.05 Significant

AP. Pettarani vs. KIMA 17.5 < 0.05 Significant

Ahmad Yani vs. Sultan Hasanuddin −18.7 > 0.05 Not Significant

Ahmad Yani vs. Nusantara −17.5 > 0.05 Not Significant

Ahmad Yani vs. KIMA −35.0 > 0.05 Not Significant

Sultan Hasanuddin vs. Nusantara 1.2 > 0.05 Not Significant

Sultan Hasanuddin vs. KIMA −16.3 > 0.05 Not Significant

Nusantara vs. KIMA −17.5 > 0.05 Not Significant
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The results of the Tukey HSD post-hoc test, detailed

in Table 2, provide a granular view of the statistical differ-

ences between the study locations. The analysis confirms

that the mean CO₂ concentration at Jl. AP. Pettarani (442.5

ppm) was significantly higher than at all four other sites: Jl.

Ahmad Yani (mean difference = 52.5 ppm, p < 0.01), Jl.

Sultan Hasanuddin (mean difference = 33.8 ppm, p < 0.05),

Jl. Nusantara (mean difference = 35.0 ppm, p < 0.05), and

KIMA (mean difference = 17.5 ppm, p < 0.05). This ro-

bustly identifies the high-traffic corridor with the flyover

structure as the most significant CO₂ hotspot among the stud-

ied areas, highlighting the severe impact of traffic congestion

and urban infrastructure design on pollutant trapping [52].

Conversely, no statistically significant differences were

found in the pairwise comparisons between Jl. Ahmad Yani,

Jl. Sultan Hasanuddin, Jl. Nusantara, and KIMA. Although

Jl. Ahmad Yani recorded the lowest mean concentration

(390.0 ppm), the mitigating effect of its green spaces brought

its CO₂ levels into a range that was statistically indistinguish-

able from the mixed-use, port, and industrial zones. This

important finding suggests that while these diverse urban

zones have different primary emission sources (vehicular,

shipping, industrial), they contribute to a comparable, moder-

ate level of background CO₂ pollution in Makassar. The lack

of significant difference underscores the complex interplay

of emission and dispersion factors across the urban landscape,

providing a strong evidence base for developing targeted,

site-specific air quality improvement strategies rather than a

one-size-fits-all approach.

Each boxplot summarizes the distribution of CO₂ concen-

trations from 1 to 20 meters. The box represents the interquar-

tile range (IQR), the line inside the box is the median, and the

whiskers extend to 1.5 times the IQR, with outliers plotted as

individual points. This visualization highlights the variability

and central tendency of readings for each sensor at different

times and locations. (Image for Figure 9 remains the same).

Figure 9. Boxplot of Infrared, MQ135, and MG811 CO₂ Concentrations Across Locations and Times.

4. Conclusions

This study demonstrated the efficacy of a drone-based

IoT system in monitoring urban CO₂ levels in Makassar, pro-

viding high-resolution spatio-temporal data critical for urban

air quality management. The highest CO₂ concentrations

at Jl. AP. Pettarani (442.5 ppm) highlights the severe im-

pact of flyover-induced pollutant trapping, while Jl. Ahmad

Yani’s lower levels (390.0 ppm) underscore the mitigating

role of green spaces. These findings recommend targeted in-

terventions, such as engineering flyover ventilation systems

and expanding green infrastructure, which apply to other

tropical cities facing similar urbanization and pollution chal-

lenges [15,48]. Future research should include multi-seasonal

studies to capture long-term dynamics, integrate advanced

sensors with inherent humidity compensation, and enhance

the Firebase platform with predictive analytics to support ur-

ban policy-making, potentially leveraging machine learning

and advanced visualization techniques [9,54].
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