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ABSTRACT

This study introduces the Bioclimatic Emission Amplification Theory (BEAT), a novel framework for detecting and

forecasting how terrestrial ecosystems, particularly the Amazon Basin, transition from being carbon sinks to becoming

carbon sources under compounded bioclimatic stress. BEAT synthesizes satellite-derived data from 2001 to 2022 and

integrates temperature anomalies, vapor pressure deficit (VPD), fire activity, and vegetation degradation into a Compound

Stress Index (CSI). Methodologically, the study applies piecewise regression, changepoint analysis, and early warning

signal (EWS) metrics, including rolling variance and lag-1 autocorrelation, to identify nonlinear emission tipping points and

ecological resilience loss. Machine learning models such as XGBoost and SHAP were employed to evaluate the predictive

relevance of CSI components and enhance model interpretability. Results reveal a critical CSI threshold (≥ 0.6), beyond

which Net Ecosystem Exchange (NEE) exhibits abrupt positive anomalies, indicating carbon emission amplification. EWS

metrics significantly increased prior to emission spikes, validating BEAT’s predictive capacity for ecological destabilization.

In addition, spatial clustering and time-lagged correlation analysis confirmed the alignment between compound stress

hotspots and emission anomalies, and when compared to traditional Earth System Models (ESMs), BEAT uniquely captures

synergistic stress interactions and nonlinearity. The findings underscore BEAT’s potential to improve early warning systems,
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REDD+ monitoring frameworks, and climate adaptation planning. Its scalable design enables application across vulnerable

biomes globally and offers a transformative tool for anticipating biosphere-climate tipping points and informing proactive

ecosystem governance.

Keywords: Climate Change; Machine Learning; Bioclimatic; Feedback Loops; Greenhouse Gas Emissions; Environment

Sustainability

1. Introduction

Climate change is an ever-growing challenge of the

century, described by rising global temperatures, extreme

weather phenomena, and extensive ecological disruptions.

The Amazon Basin, one of the world’s significant carbon

sinks, plays a pivotal role in regulating Earth’s carbon bal-

ance. However, the accelerating rate of land-use, deforesta-

tion, and climate-induced stresses is putting great pressure

on ecosystems such as the Amazon Basin, pushing them to-

wards concerning tipping points. These tipping points could

transform these useful carbon sinks into net carbon sources

and therefore compound global warming and reduce the ef-

fectiveness of current environmental mitigation strategies.

Current models often treat biosphere-atmosphere interactions

as largely linear processes, with gradual changes in emis-

sions correlated with climatic or anthropogenic drivers [1].

These models (e.g., CLM, LPJmL, CMIP6 ESMs) often

assume linear vegetation responses and fail to incorporate

compound stressor interactions, tipping point dynamics, and

early warning signals. For example, CLM typically separates

fire, drought, and vegetation dynamics; LPJmL underrepre-

sents feedback amplification; CMIP6 models rarely include

resilience thresholds or machine learning-derived diagnos-

tics. This limits their ability to predict abrupt emissions shifts

under compounded stress scenarios. However, this assump-

tion is challenged by the increased observations of abrupt

spikes in emissions following environmental events such

as wildfires, droughts, and heatwaves. These trends imply

that, in certain bioclimatic circumstances, nonlinear feedback

mechanisms might be at work, leading to increased emis-

sions. It is now more important than ever to understand and

incorporate these nonlinearities into forecasting models [2].

This study presents a new paradigm in climate-

biosphere feedback dynamics, where the Bioclimatic Emis-

sion Amplification Theory (BEAT) is proposed, a predictive

theory that explains how ecosystems amplify carbon emis-

sions under compound climate stress. It builds on the notion

that ecosystems that face compound climatic stressors may

experience sequential ecological breakdowns that greatly

increase carbon emissions (Figure 1). This study hypothe-

sizes that there exists a critical threshold of ecological stress

above which emission dynamics shift from linear to expo-

nential. When these thresholds are reached or surpassed,

ecosystems experience irreversible changes that alter their

carbon dynamics and ultimately ecological stability [3].

Figure 1. Conceptual diagram of the bioclimatic emission amplification theory (BEAT).
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Due to the ecological significance of theAmazon Basin,

along with its high carbon storage capacity, and increasing

exposure to compounding climatic stressors, it presents a

significant ground for testing the BEAT. For this, a new

compound metric is proposed, the Compound Stress Index

(CSI), which integrates temperature anomalies, vapor pres-

sure deficit (VPD), fire frequency, and vegetation health to

assess stress levels. By correlating CSI values with satellite-

based CO2 anomalies, this study aims to identify the thresh-

olds at which emissions escalate disproportionately and po-

tentially irreversibly [4].

The significance of BEAT lies in its ability to fill

existing gaps in current climate-biosphere models by of-

fering a scientifically based, data-driven explanation for

abrupt increases in ecosystem-based emissions. While ex-

isting models may miss or understate nonlinear emission

spikes, BEAT offers a coherent theoretical and empirical

framework to allow for accurate anticipation of such feed-

backs [5]. By offering accurate predictive models, we can

anticipate where and when such amplifications may occur

and ultimately offer a better understanding of biospheric

responses to a warming world. Scientifically, BEAT of-

fers a novel contribution that integrates climatic thresh-

olds, vegetation physiology, and carbon flux dynamics into

a unified framework. This approach challenges current

mainstream thinking and invites scientists to incorporate

nonlinear thinking into ecosystem-climate feedback assess-

ments [6–8]. As Table 1 shows, compared to other existing

models, it incorporates broader features that have not been

integrated previously. Compared to established models like

CLM, LPJmL, and CMIP6 ESMs, BEAT offers a more

advanced framework for capturing nonlinear carbon feed-

backs under compound climate stress. It uniquely integrates

multiple drivers into a CSI, enables tipping point detection

via changepoint analysis, and incorporates early warning

signals to identify resilience loss. Unlike traditional mod-

els, which often treat stressors in isolation and use static

vegetation types, BEAT employs machine learning to model

spatiotemporal emission regimes and provides actionable

diagnostics for policy applications such as REDD+ and

MRV systems [9]. It is theoretically rooted in Resilience

Theory and threshold dynamics, areas that have not yet

fully operationalized in forecasting models. Therefore, the

framework stands out for its ability to map high-risk areas,

guide policy actions, and improve climate forecasts with

more accurate, real-time feedback from nature [10,11].

Table 1. Comparison of BEAT with existing ecosystem feedback models.

Features

BEAT (Bioclimatic

Emission Amplification

Theory)

CLM (Community Land

Model)

LPJmL

(Lund-Potsdam-Jena

Model)

CMIP6 ESMs (IPCC

Suite)

Nonlinear Emission

Feedbacks

Yes – explicitly modeled

(piecewise,

threshold-based)

Limited – primarily linear

with occasional nonlinear

modules

Some – e.g., drought/fire

mortality, but often

simplified

Minimal – most treat

vegetation as

linear/modular sink

Compound Stressor

Integration

Yes – CSI includes VPD,

fire, NDVI, temperature,

etc.

No – usually modeled

separately

No – drought, fire, and

land use often treated in

isolation

Rarely integrated as

synergistic drivers

Tipping Point

Detection

Yes – changepoint analysis

and CSI thresholding

No – Assumed gradual

changes

Some modeled transitions,

but not forecasted

explicitly

Rarely modeled

Early Warning Signals

(EWS)

Yes – rising variance,

autocorrelation, EWS

maps

No No
Not used in emissions

forecasting

Machine Learning

(ML) Integration

Yes – SHAP, XGBoost,

time-series clustering
No (process-based) No (rule-based)

Some ESMs exploring ML

post-processing

Spatial-Temporal

Emission Regimes

Yes – regime clustering

(stable, volatile,

transitional)

No Static vegetation types
No spatiotemporal risk

modeling

Emission Forecasting

Capacity

Strong – with predictive

models & CSI-based alerts
Moderate – long-term only

Seasonal–annual

projections
Coarse – high uncertainty

Policy Application

Readiness

High – maps, signals, and

diagnostics usable for

REDD+, MRV

Indirect Limited
Indirect, mostly

scenario-based
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The aim of this paper is to articulate BEAT and ground

it in existing earth and climate science, while emphasizing

its uniqueness in bridging existing scientific and operational

gaps in present models. Also, the paper intends to formulate,

test, and validate the CSI metric to show its ability in pre-

dicting and detecting early signs of emission amplifications.

The work also aims to use machine learning to test the theory

using satellite data of CO2 fluxes over the Amazon Basin,

covering several years of climatic variabilities. Lastly, the

paper evaluates broader policy and scientific implications of

the theory, suggesting ways where it can better inform na-

tional and international climate decisionmakers and enhance

ecosystem management practices. The work aims to aid pol-

icymakers, scientists, researchers, and conservationists to

approach carbon emission challenges from new angles and

unconventional perspectives.

2. Literature Review

Understanding the complexity of climate-biosphere

feedback mechanisms has become a concern to the scien-

tific community as the interaction between ecosystems and

CO2 emissions is somehow better realized. The assumption

that these interrelations are linear is now replaced with a

stronger knowledge that ecosystems react in a more dynamic

and multifaceted manner. A growing body of literature has

documented how compound climate stressors intensely im-

pact on ecosystems and CO2 emissions. However, currently

there is no known published work that presents a comprehen-

sive, predictive, and integrative framework quantifying and

combining multiple stressors to forecast tipping points in

CO2 emissions. This is crucial because understanding how

ecosystems shift from being carbon sinks to carbon sources

under climate stress, requires moving beyond single-stressor

analyses. Such stressors include heat, drought, fire, and

vegetation degradation rarely act independently, leading to

nonlinear and synergistic impacts on ecosystem functioning,

accelerating the loss of carbon sequestration capacity and

triggering abrupt emission surges.

Historically, scientists have assumed that ecosystems

react passively to climatic forces and response linearly to

changes in temperature, anthropogenic disturbances, and pre-

cipitation. Over the past few decades this notion has been

challengedwhere numerous research has proved that there ex-

ists nonlinear biospheric responses that are dynamic and are

feedback-driven. For example, Burkett et al. (2005) studied

ten cases from North America, showing how climate change

can cause very rapid impacts with threshold type responses

in these ecosystems. This shows that it is crucial to anticipate

such nonlinear dynamics that were not fully understood in

the past [12]. Other studies showed that ecosystems may dis-

play rapid and nonlinear changes that may lead to full regime

shifts, causing these ecosystems to transform into different

states. Researchers underscore the urgency in expanding the

understanding of extent and nature of these impacts, espe-

cially with the increasing effects of human activity. More

recent works continued to build the understanding of which

climatic changes are changing ecosystems leading to lower

sequestration capacity and accelerating climate change [13,14].

There has been a focus also on climatic feedback in

amplifying or diminishing climate change, however previous

work was limited to models that assess these feedbacks using

few indicators. Heinze et al. (2021) conducted a compre-

hensive review, focusing on components such as clouds and

biochemical cycles but has assessed them individually, pre-

senting a somehow segmented approach that has overlooked

the compounded effects of multiple stressors [15]. Similar

studies expanded the understanding and considered multi-

variate models the state-dependency of climate feedbacks

over time. However, the focus remains on singular processes

without integrating multiple indicators that may influence

these feedbacks. Additionally, interactions between land use

change, urban heat dynamics, and atmospheric emissions

are increasingly documented. Studies have shown that agri-

cultural expansion, green cover loss, and urban heat islands

influence microclimates and emissions. Relevant studies in-

clude analyses on China’s metropolitan areas, urban heat in

Chongqing, and coupling between human and atmospheric

systems in Turkey and Southeast Asia. These support the

inclusion of anthropogenic stressors in emission feedback

frameworks [16,17].

In addition to climatic feedbacks, the issue of emission

amplification received greater interest in recent years. Re-

search on how land-use changes and climatic drivers have

shown that they contribute greatly to emission amplification.

Aragão et al. (2018) demonstrated that forest degradation,

even without complete deforestation, significantly increases

susceptibility to fire and heat-induced emissions. This study
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has also shown that it is crucial to incorporate both biophys-

ical and anthropogenic stressors when modeling emission

dynamics [18]. It is therefore important to link these scientific

conclusions to Holing’s Resilience Theory, which suggests

that ecosystemsmay appear stable until critical thresholds are

crossed, beyond which recovery is difficult or impossible [19].

With this backdrop, a strong movement has emerged to adopt

machine learning and data-driven modeling to accurately

study biosphere-climate interactions. These predictive mod-

els have been successful in predicting variable interactions

and lag effects on larger datasets across broader temporal

frames [20–22].

Several studies have attempted to bridge this gap by

developing compound stress metrics or feedback-sensitive

modeling frameworks, yet most remain limited by coarse

spatial resolution, narrow variable integration, or lack of

empirical validation. For example, Goll et al. (2017) and

Walker et al. (2021) incorporate vegetation-climate inter-

actions within global models but often treat disturbances

like drought and fire in isolation [23,24]. Similarly, Forzieri

et al. (2022) present an Earth system risk model that maps

potential biosphere tipping points [25], but it does not explic-

itly include real-time vegetation stress indicators or integrate

nonlinear emission responses. Research by Lenton et al.

(2019) advances the concept of climate tipping elements, yet

application to specific carbon feedback patterns remains con-

ceptual [26]. Furthermore, few studies assess model outputs

against observed carbon flux anomalies using changepoint

detection or statistical early warning signals such as rising

variance or autocorrelation; methods increasingly recognized

as critical for detecting system resilience loss [25–28].

Machine learning has set the ground for the emergence

of compound stress indices that attempt to describe the syn-

ergistic impact of multiple simultaneous stressors on ecosys-

tems. Despite these advances, significant gaps remain. Cur-

rent models still assume that ecosystem feedback is somehow

predictable and linear, an underestimation of CO2 emission

risks. Also, current literature also lacks a unified framework

or theory that incorporates and connects compound stress,

threshold responses, and emission amplification in a predic-

tive framework [29–31]. Therefore, existing literature shows

strong evidence on the importance of nonlinear feedbacks in

biosphere-climate interactions, especially under compound

climatic stress. There remains the need for sophisticated

modelling approaches to capture the dynamics of threshold-

driven emission responses.

3. Theoretical Framework

The Bioclimatic Emission Amplification Theory

(BEAT) embodies a novel and necessary deviation from tradi-

tional understanding of ecosystem-climate interactions. It is

built upon the notion that simultaneous bioclimatic stressors

can trigger tipping points in terrestrial ecosystems leading

to significant outputs of Greenhouse Gas (GHG) emissions.

Prior models have treated emissions from such ecosystems

as either linear responses to certain triggers or passive out-

comes of events such as excessive land use or wildfires.

BEAT reconceptualizes this dynamic by proposing that un-

der specific compound stress conditions, ecosystems can

switch roles: from carbon sinks to powerful carbon sources,

potentially reinforcing the very climatic changes that induced

the stress.

At the center of BEAT is the understanding that cli-

mate stressors, such as heatwaves, long-lasting droughts,

and high vapor pressure deficits, don’t function in isolation.

When these stressors overlap, especially in vulnerable re-

gions like the Amazon Basin, they can trigger sudden and

drastic changes. These changes might include widespread

tree mortality, drying peatlands, and browning vegetation.

What makes BEAT unique is its focus on the combined ef-

fects of these stressors and their potential to amplify one

another. Unlike previous theories that concentrated on indi-

vidual thresholds, such as peak temperatures or minimum

rainfall, BEAT emphasizes how the interaction of various

stressors can push ecosystems into new, unexpected states

with unusual emission characteristics.

The theory is structured around three interdependent

mechanisms:

1. StressAccumulation, where environmental variables grad-

ually weaken ecological stability.

2. ThresholdTransgression, where a critical limit is breached,

causing system-wide transitions.

3. EmissionAmplification, the feedback loop where changes

in the biosphere feed back into the climate system via in-

creased greenhouse gas emissions.

Each of these stages can be detected, measured, and

potentially forecasted using a combination of in situ sen-
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sors, remote sensing data, and machine learning models.

Mathematically, BEAT can be expressed through a feedback

function that includes compound stress variables and early

warning signals:

∆NEEt = α · CSIt
∧β + γ · V SAt + δ · SMDIt + θ · EWSt + ε (1)

where:

∆NEEt =Anomalous Net Ecosystem Exchange at time t

CSIt = Compound Stress Index

VSAt = Vegetation Stress Anomaly

SMDIt = Soil Moisture Deficit Index

EWSt = Early Warning Signal (e.g., lag-1 autocorrela-

tion, rolling variance)

α, β, γ, δ, θ = Estimated model parameters

ε = Stochastic error term

The Compound Stress Index (CSI) is itself derived

from:

CSIt = w1 · V PDt + w2 · SPEIt + w3 · Firet (2)

where:

VPDt = Vapor Pressure Deficit

SPEIt = Standardized Precipitation-Evapotranspiration

Index

Firet = Fire activity or frequency

w1, w2, w3 = Normalized weights (e.g., z-score stan-

dardization or empirical weighting)

Threshold-based dynamics are modelled using a seg-

mented (piecewise) function:

∆NEEt =

f1(CSIt, V SAt, SMDIt, EWSt) if CSIt < τ

f2(CSIt, V SAt, SMDIt, EWSt) if CSIt ≥ τ
(3)

where:

τ = CSI tipping threshold (e.g., empirically found at

CSI ≈ 0.6)

f1, f2 = Distinct response functions pre- and post-

threshold.

This formulation captures the amplifying effect of com-

pound stress on carbon emissions. The primary driver, the

Compound Stress Index (CSIt), integrates temperature, vapor

pressure deficit (VPD), fire activity, and precipitation anoma-

lies into a single dynamic indicator of ecological pressure.

The term CSIt
∧β introduces nonlinear sensitivity to stress

accumulation, allowing the model to capture acceleration

effects as ecosystems approach tipping thresholds.

Additional terms account for secondary but influen-

tial stress variables: VSAt (Vegetation Stress Anomaly)

represents physiological stress reflected in vegetation in-

dices (e.g., NDVI anomalies), while SMDIt (Soil Moisture

Deficit Index) captures hydrological constraints on carbon

uptake. EWSt reflects system-level resilience loss through

early warning signals such as rising temporal variance and

autocorrelation in stressor time series. These signals are

indicative of critical slowing down, a hallmark of approach-

ing tipping points. A stochastic error term (ε) accounts for

residual variation not captured by the model. To further

account for potential regime shifts, we implemented a piece-

wise threshold model based on the observed CSI tipping

point (τ), beyond which ∆NEEt exhibits abrupt, nonlinear

increases, as shown in Figure 2.

Figure 2. Model structure and theoretical basis.
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A key innovation in BEAT is the conceptualization of

critical transitions using early warning signals. Drawing

on Resilience Theory and bifurcation analysis, the theory

anticipates that leading indicators such as increased vari-

ance in vegetation indices (NDVI/EVI), autocorrelation in

temperature and soil moisture anomalies, and clustering

of fire events may serve as precursors to emission surges.

These metrics can be derived using time-series satellite data

(Figure 3) [32], and their thresholds can be calibrated for

specific biomes.

Figure 3. False-color MODIS image of the Amazon Basin on 20 August 2022, highlighting burn scars (dark) and healthy vegetation

(red).

Note: Scale bar represents 1 cm = 100 km at 300 DPI [32].

Another novel feature is the inclusion of anthropogenic

modulation. Human-induced landscape changes, including

selective logging, road construction, and irrigation, can inter-

act with natural stressors to modulate ecosystem sensitivity.

BEAT posits that these interactions must be treated not as

exogenous noise but as integral components of system dy-

namics. For instance, a partially degraded forest may respond

more severely to a mild drought than a pristine forest, thereby

exhibiting higher emission amplification even in the absence

of overt deforestation.

What sets BEAT apart from existing feedback models

is its unifying capacity: it synthesizes threshold theory, com-

pound stress analysis, emission physics, and data science

into a singular predictive framework. It is designed to be

implemented within a variety of modeling paradigms, from

Earth SystemModels (ESM) to local land-use planning tools.

Importantly, it also offers practical outputs: by identifying

when and where emissions are likely to be amplified, BEAT

can inform early warning systems and adaptive interventions

such as fire management, carbon offset adjustments, and

biodiversity conservation strategies.

4. Methodology

4.1. Study Area and Temporal Frame

This study has used data of theAmazon Basin covering

regions over Brazil, Peru, Colombia, and other neighboring

countries. This region was selected due to its significant role

in global carbon cycling, ecological diversity, and high expo-

sure to climatic perturbations and therefore ideal for testing

the principles of BEAT [33]. The temporal frame spans from
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2001 to 2022, capturing two decades of vegetation-climate

interactions, including multiple El Niño and La Niña events,

droughts, and extreme fire seasons. This period allows for

sufficient climatic and temporal variation to analyze stress-

emission feedback mechanisms.

4.2. Data Sources, Preprocessing Workflow,

Feature Engineering, and Quality Control

Multiple open-access datasets were integrated to con-

struct a robust spatiotemporal framework for analysis. These

includedMODIS products (MOD13Q1 andMOD11A2), pro-

viding NDVI, EVI, and land surface temperature (LST) at

16-day and 8-day intervals, respectively. Fire dynamics were

captured using the Global Fire Emissions Database (GFED),

offering data on burned area, fire radiative power (FRP), and

fire emissions. Atmospheric and hydrological variables such

as temperature and soil moisture were obtained from the

ERA5 reanalysis product by ECMWF, originally at hourly

intervals and subsequently aggregated to monthly means.

Long-term climatic variability and drought indices, particu-

larly the Standardized Precipitation-Evapotranspiration In-

dex (SPEI), were sourced from TerraClimate and CRU-TS

datasets. Carbon fluxes and NEE estimates were incorpo-

rated from FLUXNET and the Global Carbon Project (GCP).

Biome classification and normalization procedures utilized

land cover data from the ESA Climate Change Initiative

(CCI). All datasets were spatially constrained to the Amazon

Basin using the WWF ecoregion shapefile.

Feature engineering played a critical role in captur-

ing the compounded stress dynamics hypothesized in BEAT.

Several derived indices were developed to represent multi-

dimensional ecosystem stress. The CSI was constructed us-

ing a z-score standardized composite of vapor pressure deficit

(VPD) anomalies, standardized precipitation evapotranspira-

tion index (SPEI), and fire frequency data. This index reflects

the simultaneous bioclimatic pressures on vegetation. The

Vegetation Stress Anomaly (VSA) was derived from devi-

ations in NDVI and EVI relative to historical climatology,

normalized by biome type to enhance cross-regional compa-

rability. The Soil Moisture Deficit Index (SMDI) quantified

percent deviations of soil moisture from long-term monthly

means, capturing the severity of seasonal droughts. Prior to

modeling, all engineered variables were assessed for mul-

ticollinearity using variance inflation factor (VIF) analysis

and correlation matrices and were subsequently scaled and

normalized. These transformed features formed the core of

the input space used in machine learning applications of the

BEAT framework.

To ensure the reliability and robustness of the analy-

sis, rigorous quality control procedures were applied to all

datasets prior to modeling. This included, cloud and aerosol

masking, temporal gap-filling, outlier removal, and spatial

alignment. Time series were aggregated to monthly resolu-

tion and standardized as anomalies relative to long-term base-

lines, while land cover filtering ensured biome-specific con-

sistency and signal clarity across the region. Also, satellite-

based datasets were filtered for quality flags, excluding pixels

flagged as cloud-contaminated, low-confidence fire detec-

tions, or sensor anomalies. NDVI and LST values were

further processed using temporal smoothing via a Savitzky–

Golay filter to eliminate outliers and noise from sensor drift

or transient atmospheric conditions. Climate reanalysis data

were validated through cross-comparison with in-situ ob-

servations from FLUXNET stations where available and

aggregated at monthly scales to reduce high-frequency noise.

Also, the data gaps were addressed using linear interpolation

for short gaps (< 3 time steps) and flagged for longer gaps to

avoid artificial trends. For CSI calculations, we have incor-

porated z-score normalization to harmonize data ranges and

mitigate scaling bias. Uncertainty was quantified by boot-

strapping the CSI-NEE regression and generating 95% confi-

dence intervals for model coefficients and changepoints. The

model performance was cross-validated using k-fold (k = 10)

and compared across alternative algorithms to ensure result

consistency. These quality control procedures helped reduce

data-driven uncertainty and enhanced the reproducibility and

credibility of the BEAT-based findings.

4.3. Threshold Detection and Model Robust-

ness

The BEAT framework is used to identify potential tip-

ping points in carbon emissions driven by compound climatic

stress. Using piecewise regression and changepoint detection

algorithms such as PELT and Binary Segmentation, break-

points were detected in the relationship between the CSI and

NEE. These inflection points marked critical transitions in

emission behavior and were interpreted as ecological thresh-

olds triggered by compounded stress. Spatial clustering of
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these tipping points revealed vulnerability hotspots across the

Amazon Basin, which were classified into high-, moderate-,

and low-risk zones using K-means clustering based on the

persistence and intensity of anomalies. Sensitivity analyses

confirmed the robustness of these zones across alternative

CSI formulations and data smoothing levels.

To anticipate these shifts, early warning signal (EWS)

metrics, such as lag-1 autocorrelation, rolling variance, skew-

ness, and kurtosis, were calculated over moving windows

using NDVI, fire activity, and CSI time series. Kendall’s

tau tests assessed trends in EWS behavior, with significant

increases in autocorrelation and variance interpreted as signs

of resilience loss. EWS intensity maps were spatially aligned

with observed emission anomalies, and time-lagged corre-

lation analysis confirmed their predictive relevance. Model

validation was conducted through comparison with observed

carbon release events during major El Niño years (2010,

2015–2016), showing strong alignment between BEAT pre-

dictions and actual NEE anomalies. Spatial overlap with

high-risk zones from the Global Carbon Project further sup-

ported model accuracy. Performance metrics (F1 score: 0.82;

precision: 0.85; recall: 0.78; R²: 0.71) demonstrated high

reliability. Additional statistical testing using bootstrapping

and permutation methods confirmed the significance of re-

sults. Perturbation tests with Gaussian noise and variable

exclusion showed that core predictors, particularly CSI and

fire anomalies, were essential to maintaining model perfor-

mance.

All analyses were conducted in Python 3.11, with re-

producibility ensured through Docker containers, Conda en-

vironments, and public GitHub repositories. Key libraries in-

cluded scikit-learn, XGBoost, SHAP, Ruptures, and Geopan-

das, with visualization tools such as Plotly, Folium, and

seaborn used for interactive and export-ready mapping. The

full workflow, from data preprocessing to model validation,

was designed for scalability and transparency, enabling future

replication across tropical biomes. By integrating remote

sensing data, compound stress diagnostics, early warning

analysis, and machine learning, the BEAT methodology cap-

tures the nonlinear dynamics of ecosystem responses to bio-

climatic stressors and offers a powerful tool for detecting

biosphere-climate feedbacks under global change.

5. Results

The results of this multi-method empirical study pro-

vide compelling and multi-dimensional evidence in support

of BEAT. Leveraging over two decades of data (2001–2022)

and a combination of analytical techniques, including remote

sensing, machine learning, and statistical change point detec-

tion, this study uncovered emergent, nonlinear relationships

between bioclimatic stress indicators and carbon emission

anomalies across the Amazon Basin.

5.1. Climatic Trends and Compound Stress In-

dicators

The Amazon Basin is experiencing intensifying cli-

matic stress, as confirmed by remote sensing data and climate

reanalysis. Land Surface Temperature (LST) has increased

by approximately 0.27 °C per decade over the last 20 years.

This warming trend is spatially concentrated in areas affected

by deforestation, road development, and fire recurrence, par-

ticularly in the so-called “arc of deforestation” stretching
from southern Pará through Mato Grosso to Acre. Vapor

Pressure Deficit (VPD), a proxy for atmospheric dryness and

vegetation stress, rose markedly during dry seasons, espe-

cially in years associated with El Niño events (e.g., 2005,

2010, 2015–2016). Concurrently, precipitation deficits dur-

ing these periods created an environment in which vegetative

transpiration and photosynthetic activity were significantly

impaired. NDVI measurements confirm a broad and con-

sistent decline in vegetation vigor, particularly during peak

drought intervals. These climatic shifts were synthesized

into the CSI, which integrates LST, VPD, Fire, and NDVI

anomalies into a single composite metric. CSI revealed not

only elevated mean values across the basin over time but also

highly localized peaks in regions under both climatic and

anthropogenic pressure. Figure 4 illustrates the temporal

trajectory of these variables, showing correlated increases

in LST and VPD with coincident reductions in NDVI and

surges in fire activity.

Table 2 provides a statistical overview of the core

bioclimatic variables used in the CSI formulation and sub-

sequent modeling efforts. Land Surface Temperature (LST)

had a mean of 27.5°C with relatively low variance, reflecting
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the persistent thermal pressure across the Amazon Basin.

Vapor Pressure Deficit (VPD), averaging 1.45 kPa, dis-

played moderate skewness, indicating a tendency toward

higher-than-average dryness during critical growth periods.

NDVI values averaged 0.74, suggesting dense vegetation

cover; however, the negative skewness highlights increasing

frequency of degraded vegetation patches. Fire events, with

a high standard deviation and skewness of 1.89, showed

considerable interannual variability, with peaks during ex-

treme drought years. Notably, NEE exhibited the highest

skewness (2.91), reflecting abrupt, large emission events in

high CSI years. These statistics affirm the volatility of the

emission response compared to the more gradual progression

of climatic stressors, lending empirical weight to BEAT’s

idea that feedback mechanisms under compound stress are

non-linear, asymmetric, and amplified.

Figure 4. CSI and NEEAnomalies (2010–2016).

Table 2. Summary Statistics for Core Variables (2001–2022).

Variable Mean Std Dev Skewness

LST (°C) 27.5 1.3 0.45

VPD (kPa) 1.45 0.28 0.87

NDVI (−1 to 1) 0.74 0.06 −0.53
Fire (events) 1265 830 1.89

NEE (negative values: CO2 sink and positive values: CO2 source) 1.27 2.14 2.91

5.2. Threshold Behavior and Piecewise Dynam-

ics

Central to BEAT’s theoretical framework is the idea

that ecosystems exhibit nonlinear responses to compounded

stress. The empirical results support this: using piecewise

regression, the relationship between CSI and NEE revealed

a statistically significant inflection point at CSI ≈ 0.6 (p

< 0.01). Below this value, ecosystems maintain relatively

stable carbon fluxes. However, once this threshold was

breached, NEE anomalies escalated rapidly and nonlinearly,

indicating a shift in the system’s feedback state. Figure 5 vi-

sualizes this piecewise relationship and underscores BEAT’s

prediction that compound stressors interact in ways that push

ecosystems across tipping points. The sharp upward trajec-

tory of NEE post-threshold confirms that the feedback loop

becomes self-reinforcing, an insight fundamental to BEAT’s

proposition of emission amplification. This threshold-based

dynamic also underscores the inadequacy of linear ecosystem

models. Unlike gradual degradation scenarios, BEAT cap-

tures the suddenness with which ecosystems can shift from

absorptive to emissive states, particularly under converging

stressors.

A key element of BEAT is its operational capacity, i.e.,

the ability to forecast regime shifts before they occur. To this

end, the study employed changepoint detection and rolling-

window analysis of autocorrelation and variance in NDVI

and CSI time series. These statistical results are considered
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indicators of  “critical slowing down”, where systems nearing
a divergence point recover more slowly from perturbations,

resulting in elevated variance and memory. Table 3 presents

early warning indicators across key regions and years. For

example, inAcre East (2010) andMato Grosso (2015), NDVI

variance increased significantly six to twelve months prior to

NEE spikes. CSI autocorrelation also trended upward, sug-

gesting declining resilience in the face of climatic anomalies.

This capability is transformative for climate policy. BEAT’s

approach not only retrospectively explains emission surges

but anticipates them. This has implications for real-time

ecological monitoring, allowing policymakers and land man-

agers to intervene during the buildup phase of stress, rather

than react post-collapse.

Figure 5. Piecewise regression of CSI and NEE anomalies (2010–2016).

Table 3. Early Warning Indicators by Region and Year.

Region Year NDVI Variance ↑ CSI Autocorr ↑ Emission Spike

Acre East 2010 Yes Yes Yes

Mato Grosso 2015 Yes Yes Yes

Pará South 2016 Yes Yes Yes

5.3. Machine Learning Model Interpretation

and Feature Importance

Advanced machine learning models were employed

to test BEAT’s predictability and identify key drivers of

emission anomalies. An XGBoost regressor trained on CSI,

NDVI, Fire, VPD, and LST data achieved a robust R² of

0.83 on the test set. The low mean squared error (MSE)

and stable performance across folds confirmed the reliability

of the model. Figure 6 displays SHAP (SHapley Additive

exPlanations) summary plots, providing insight into the in-

ternal logic of the model. Fire activity emerged as the most

impactful feature, followed by CSI and NDVI. Importantly,

SHAP interaction plots revealed nonlinear interdependen-

cies; e.g., CSI had a stronger effect on NEE when NDVI was

also degraded, supporting the concept of stress multiplicity

proposed by BEAT.

Additional models, Random Forest (R² = 0.79) and

Gradient Boosted Trees (R² = 0.81), yielded consistent re-

sults (Table 4), further corroborating the generalizability

of findings across different algorithmic approaches. Partial

dependence plots (Figure 7) reinforced that the relationships

between stressors and emissions are not merely monotonic

but exhibit thresholds, plateaus, and feedback loops.

To assess uncertainty, cross-validation was conducted

using a 5-fold strategy. The standard deviation of R² scores
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(0.03 for XGBoost) reflects consistent model performance.

Future versions of BEAT could incorporate confidence inter-

vals using Bayesian modeling to enhance uncertainty quan-

tification in emissions forecasts.

Figure 6. SHAP summary plot – key predictors.

Table 4. Cross-validation R2 scores.

Model Mean R² Std Dev

XGBoost 0.83 0.03

Random Forest 0.79 0.04

Gradient Boosted 0.81 0.03

Figure 7. Partial dependence plot – CSI components vs. NEE.
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5.4. Spatiotemporal Dynamics and Regime

Clustering

BEAT theorizes that emission amplification is geo-

graphically patterned and temporally staged. To explore

this, KMeans and Dynamic Time Warping clustering algo-

rithms were applied to CSI and NEE time series at pixel and

regional scales. Clustering revealed three dominant regime

types: stable, transitional, and volatile. Figure 8 presents

representative trajectories and their spatial footprints. Stable

regimes maintained low CSI and minimal emission anoma-

lies. Transitional zones showed rising CSI but laggedNEE in-

creases. Volatile regimes, by contrast, exhibited erratic, high-

amplitude emission behavior with frequent CSI exceedances.

Importantly, these clusters were not randomly distributed.

The volatile category consistently mapped onto areas with

extensive land use change, recurrent drought, and high fire

density. This spatial congruence between ecological stress

and emission feedbacks strengthens BEAT’s argument that

emissions are not random noise but patterned responses to

stress amplification.

Figure 8. Time-series clustering by emission regime.

5.5. Regional Sensitivity and System Hetero-

geneity

While BEAT provides a universal framework, its ap-

plication reveals regional differences in stressor-emission

coupling. Table 5 details how subregions vary in their domi-

nant drivers and emission responses. Acre and Rondônia, for

example, displayed rapid NEE escalation tied to fire events.

Pará North, however, showed gradual, VPD-driven emis-

sion shifts. This heterogeneity highlights the importance of

region-specific CSI calibration and localized early warning

thresholds. The findings also point toward a broader socio-

ecological implication: areas under active deforestation or

agricultural conversion are not only ecologically fragile but

climatically destabilizing. These insights therefore call for

differential policy instruments. While fire suppression might

be critical in Acre, reforestation and moisture retention may

be more effective in Pará. BEAT’s regional diagnostic ca-

pacity thus informs a multi-scalar governance approach.

Table 5. Regional sensitivity to key drivers.

Region Dominant Driver Emission Response Pattern

Acre/Rondônia Fire + CSI Rapid threshold breach

Pará North VPD + NDVI decline Gradual transition

Using BEAT-informed models, NEE anomalies were

projected under the SSP2-4.5 emissions scenario for the period

2025–2040. The results reveal a clear trend of increasing emis-

sion volatility and amplitude, particularly in southern and high-

CSI regions of the Amazon Basin. This pattern aligns with

BEAT’s central hypothesis: that ongoing compound stress ac-

cumulation destabilizes carbon dynamics and drives nonlinear

emission behaviour. Notably, this surge in emission variabil-
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ity cannot be attributed to anthropogenic emissions alone; it

reflects internal ecosystem feedbacks nearing critical thresh-

olds. These findings underscore the need to incorporate BEAT

metrics into Earth System Models (ESMs), which currently

tend to underrepresent such nonlinear biospheric feedbacks

or assume static carbon sink behaviour. Figure 9 highlights

emerging emission hotspots, demonstrating BEAT’s value for

spatially explicit, forward-looking climate risk assessments.

Without intervention, these regionsmay transition from carbon

sinks to net sources, amplifying global climate risk.

Figure 9. Projected NEE anomalies under SSP2-4.5 (2025–2040).

These findings elevate BEAT from a conceptual frame-

work to a robust, empirically validated model with both

scientific and policy relevance. By revealing how ecosys-

tems respond nonlinearly to compound stress, and how these

responses can be forecast using integrated bioclimatic indi-

cators, BEAT offers a transformative lens through which to

view climate-biosphere interactions. Its ability to identify

thresholds, detect early warning signals, and spatially target

intervention zones provides a critical toolkit for climate risk

assessment in a rapidly warming world. As such, BEAT rep-

resents not only a novel contribution to Earth system science

but a foundation for proactive, precision-oriented ecosystem

governance in the face of mounting climate instability.

6. Discussion

The findings presented in the Results section robustly

support the central assumption of the theory. This section

interprets those results through the lens of theoretical implica-

tions, comparative literature, and broader policy significance.

By weaving together empirical patterns and conceptual in-

sights, the discussion offers a refined understanding of how

BEAT contributes to climate science, ecosystem modeling,

and anticipatory governance strategies.

One of BEAT’s most pivotal claims is the existence of

threshold-based, nonlinear emissions behavior in response

to bioclimatic stress. This notion departs from traditional lin-

ear biosphere models that assume gradual and proportionate

responses to environmental pressure. The results, especially

from the piecewise regression in Figure 5, demonstrated a

sharp increase in NEE once the CSI crossed the threshold

of ∼ 0.6. This confirms that stress accumulation can remain

latent until a critical point, beyond which ecosystems rapidly

flip into carbon source states. These results reflect findings

in recent literature on ecological tipping points [26,27], but

BEAT extends this knowledge by introducing a quantifiable

composite stress framework that links compound climate

drivers with emission behavior. The synergy among vari-

ables like fire count, NDVI degradation, and VPD strength-

ens the theory’s assertion that it is not single stressors but

their co-occurrence that propels ecosystems into instability.

The strong performance of the CSI as a predictor of

emissions is one of the most promising contributions of this

study. CSI integrates multiple bioclimatic dimensions: ther-

mal, hydric, and disturbance-based, into a single index, allow-

ing for multidimensional stress monitoring. This aligns with

calls in climate science for integrative indicators capable of

capturing complex biosphere-climate interactions. The ma-
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chine learning results reinforce this: SHAP analysis (Figure

6) placed CSI among the top drivers of NEE anomalies. Im-

portantly, the CSI interacted nonlinearly with other variables

supporting the multiplicative stress hypothesis at the heart of

BEAT. Moreover, the clustering and spatial patterns revealed

by time-series analyses suggest that high-CSI zones act as

bioclimatic “pressure cookers” that can destabilize regional
carbon dynamics.

BEAT emphasizes the geographical specificity of stress

amplification, and our results underscore the spatial pre-

dictability of these feedbacks. The arc of deforestation, ex-

tending from southern Pará through Mato Grosso to Acre

and Rondônia, consistently emerged as a hotspot in CSI-

NEE overlays. These regions show repeat patterns of fire

outbreaks, NDVI collapse, and emission anomalies. This

spatial convergence points to the interaction of anthropogenic

and climatic pressures. Human-induced land use changes,

particularly deforestation and fragmentation, act as ampli-

fiers of climatic stress, validating BEAT’s socio-ecological

extension. That is, human activity is not just a driver of

climate change but also an enabler of ecosystem instability

under climate pressure.

One of BEAT’s most policy-relevant claims is that eco-

logical tipping points are preceded by detectable early warn-

ing signals. This was validated through increasing autocorre-

lation and variance in NDVI and CSI prior to emission spikes.

These patterns are consistent with the “critical slowing down”
phenomenon, where systems approaching a bifurcation point

exhibit delayed recovery from perturbations. This insight

has profound implications. Monitoring statistical early warn-

ing indicators provides a means of real-time, anticipatory

intervention. It transforms BEAT from a post-hoc explana-

tory model into a forward-looking predictive tool, suitable

for integration into Earth observation systems and national

carbon monitoring strategies.

Akey nuance in BEAT is that while the theory identifies

general mechanisms, its manifestations are context depen-

dent. The study revealed distinct regional sensitivities: some

areas (e.g., Acre and Rondônia) show acute, threshold-like

emission jumps in response to fire and CSI, while others (e.g.,

Pará North) exhibit gradual, VPD-driven changes. This het-

erogeneity calls for regionally customized models and policy

responses, a point often underappreciated in large-scale ESM.

It also affirms BEAT’s scalability: it can accommodate both

abrupt and incremental emission behaviors depending on

local configurations of stress and resilience. This flexible

architecture enhances its utility across biomes and continents.

One of the persistent gaps in current ESM is their lim-

ited incorporation of nonlinear ecosystem feedbacks. Most

models assume either linear relationships or oversimplified

carbon sinks. BEAT offers a corrective lens by showing how

stress accumulation can invert sink-source dynamics and

how these transitions can be anticipated. The forward mod-

eling under SSP2-4.5 showed increased volatility in NEE

anomalies, particularly in high CSI zones. This predictive

feature of BEAT, supported by empirical and modeled data,

underscores the urgency of embedding CSI and nonlinear

feedback logic into ESMs. Doing so can improve the accu-

racy of carbon budget projections, especially in vulnerable

tropical systems.

BEAT’s applied dimension is perhaps its most transfor-

mative. With CSI, SHAP-informed modeling, early warning

indicators, and regional sensitivity profiles, the theory pro-

vides a full-stack toolkit for anticipatory climate governance.

Policymakers and conservation agencies can use these tools

to:

• Identify at-risk zones before emission flips occur.

• Tailor interventions (e.g., fire management, reforestation)

based on regional drivers.

• Integrate BEAT-based indicators into REDD+ and MRV

(Measurement, Reporting, and Verification) frameworks.

• Set up real-time dashboards that combine satellite data

with machine learning prediction for emissions risk.

For instance, Acre and Rondônia, where fire and CSI

exceedances dominate, would benefit from intensified fire

suppression, carbon offset schemes, and controlled burning

programs. Pará North, where VPD and vegetation stress

prevail, may prioritize reforestation, water retention, and

early drought response. Such tailored strategies reflect the

diverse stress-response profiles captured by BEAT. More

specifically, in the southern Amazon, where high CSI values

coincide with elevated Vegetation Stress Anomalies (VSA)

and frequent fire disturbance, policy interventions should

prioritize enforced deforestation moratoria, enhanced fire de-

tection and suppression infrastructure, and incorporation of

BEAT-based early warning metrics into subnational Monitor-

ing, Reporting, and Verification (MRV) systems. The central
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Amazon, exhibiting rising early warning signal (EWS) vari-

ance but lower absolute stress exposure, would benefit from

adaptive land-use governance, climate-resilient agroforestry

transitions, and predictive zoning informed by BEAT’s tip-

ping threshold diagnostics. In northwesternAmazon regions,

currently functioning as resilient carbon sinks, pre-emptive

conservation is critical. This includes the formal recogni-

tion of Indigenous territories, ecological corridor preserva-

tion, and restriction of extractive activities through biome-

specific policy safeguards. BEAT’s spatial regime mapping

and changepoint analytics can serve as operational tools

to inform REDD+ crediting frameworks, emissions attribu-

tion models, and regionally calibrated climate adaptation

plans. As such, the theory supports a precision-governance

approach to biosphere-climate risk mitigation across diverse

Amazonian sub-ecologies.

This work in general marks a critical shift from reactive

conservation to proactive ecosystem stabilization, an evo-

lution urgently needed in the face of escalating compound

climate threats. While the theory has demonstrated empirical

validity and theoretical strength, several limitations merit

consideration. Data constraints persist due to issues such as

cloud cover, sensor inaccuracies, and the limited temporal

resolution of remote sensing platforms like MODIS, partic-

ularly during wet seasons. The generalizability of BEAT

beyond the Amazon Basin also remains a challenge; appli-

cation to other biomes such as boreal forests or savannahs

would require recalibration of the CSI weights and validation

of tipping thresholds. Furthermore, BEAT currently empha-

sizes terrestrial biosphere-climate feedbacks, with limited

integration of hydrological, soil carbon, or microbial pro-

cesses; components that could enhance the CSI structure.

Additionally, the model may not fully account for lagged

ecosystem responses such as delayed vegetation recovery,

underscoring the need for hybrid frameworks that capture

both short- and long-term dynamics.

To address these gaps, future research should focus on

expanding BEAT’s applicability and predictive power. Key

directions include cross-biome validation in regions like the

Congo Basin, Southeast Asia, and Australia; enhancement

of CSI metrics through the integration of additional data

streams such as soil moisture, canopy height, and biodiver-

sity indices; development of AI-driven systems for real-time

monitoring and emissions forecasting; and coupling BEAT

with socioeconomic variables, including land tenure and

commodity pricing, to explore human-biosphere feedbacks.

These steps are essential to advancing the theory as a glob-

ally relevant, operational tool for anticipating and mitigating

ecosystem tipping points under climate change [34–36].

7. Conclusion

This study introduces and validates the Bioclimatic

EmissionAmplification Theory (BEAT), a new paradigm for

understanding how ecosystems under compounded climatic

stress can transition from carbon sinks to carbon sources.

By integrating multiple stress variables, temperature, va-

por pressure deficit, fire, and vegetation degradation, into a

composite stress framework, BEAT explains the nonlinear,

threshold-based emission behavior observed in the Amazon

Basin. The empirical evidence, spanning statistical inflec-

tion points, spatial clustering, machine learning models, and

early warning indicators, supports the core premises of the

theory and highlights its predictive and diagnostic power. Its

implications are both theoretical and operational: advancing

climate-biosphere feedback science while offering actionable

tools for emissions monitoring and intervention.

In a rapidly warming world, where feedbacks between

climate and the biosphere are accelerating, BEAT represents

a critical evolution in how we detect, model, and respond

to early signs of ecological destabilization. Unlike tradi-

tional modeling frameworks that often focus on equilibrium

states or long-term projections, it emphasizes near-term tran-

sitions, emergent behaviors, and risk mapping, making it

highly relevant for adaptive environmental governance. It

encourages a shift from retrospective assessments to forward-

looking diagnostics that can inform timely interventions in

high-risk regions. The framework also opens the door for

cross-disciplinary integration, where ecological thresholds

are interpreted alongside socioeconomic pressures and land-

use dynamics, potentially transforming how policies like

REDD+ or restoration financing are prioritized.

Future research should prioritize refining the CSI by

calibrating it to specific biomes, recognizing that vegetation

responses to stressors such as vapor pressure deficit or fire

differ markedly between tropical rainforests, savannahs, bo-

real woodlands, and arid shrublands. Such biome-specific

calibration will improve the sensitivity and specificity of
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BEAT’s predictions. Additionally, integrating key biogeo-

chemical processes, particularly microbial respiration, soil

carbon fluxes, and hydrological feedbacks like evapotranspi-

ration and groundwater depletion, can enhance the ecological

realism of the model. These components are critical to cap-

turing belowground dynamics that contribute significantly

to carbon emissions under stress. Extending BEAT’s ap-

plicability to non-forest systems such as drylands, boreal

ecosystems, and even urban green spaces will test the the-

ory’s generalizability and scalability.

Equally important is the incorporation of socioeco-

nomic variables, such as land tenure regimes, agricultural

commodity prices, and infrastructure expansion, which can

modulate ecosystem stress and resilience. These additions

would allow BEAT to better capture human-induced feed-

back and guide policy interventions. Finally, operationaliz-

ing BEAT within artificial intelligence–powered monitoring

systems, such as real-time dashboards for emissions alerts,

can support decision-makers in climate risk management at

national and subnational levels, enabling targeted and timely

ecosystem interventions.

Looking forward, extending the theory beyond the

Amazon will not only test its generalizability but also offer

insights into the unique stress-response mechanisms of differ-

ent biomes. Incorporating microbial feedback, biodiversity

metrics, and human-environment interactions could further

enhance its precision. Equally important is the translation of

BEAT into operational tools, such asAI-driven dashboards or

satellite-linked alert systems, that empower decision-makers

with real-time ecosystem intelligence. As climate volatil-

ity becomes the new norm, theories like BEAT, grounded

in both data and dynamic systems thinking, may prove in-

dispensable to preserving biospheric integrity and climate

stability in the Anthropocene. While the BEAT framework

demonstrates robust predictive capacity within the Amazon

Basin, further validation across other biomes and climate

regimes is essential to evaluate its generalizability. Addition-

ally, CSI weights are currently empirical and may benefit

from dynamic calibration as more ground-truth data becomes

available. These limitations highlight the need for adaptive,

ecosystem-specific tuning in future applications. Nonethe-

less, BEAT offers timely and actionable insights for climate

governance. By integrating early warning capabilities into

monitoring systems, the framework supports proactive emis-

sions management, ecosystem resilience planning, and in-

ternational carbon accounting under the Paris Agreement.

Recognizing and operationalizing these dynamics may de-

termine the effectiveness of global climate targets and the

long-term stability of terrestrial carbon sinks.
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