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On the cosmic picture of the ice surface lake Baikal discovered a dark ring 
a diameter of 7-8 km. The author shall give a physical interpretation of 
the given phenomenon, having expected that shaping rings are connected 
with a surge of the warm natural gas from sedimentary a thick mass of the 
bottom of the Baikal. Convection is formed in thick mass of water in the 
manner of torah around surge of the natural gas, which carries become 
warm water before surface (the lower edge ice) side from pole of the natu-
ral gas. The mechanism heatconductivity heat gets to the upper edge of the 
ice, where snow and ice begin intensive to melt. As a result thawed patch is 
formed on snow-clad ice in the manner of a ring.
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1. Background

About 23 years ago, by order of the Ministry of Natural 
Resources of Russia, daily space monitoring of the Bai-
kal natural territory began with the help of the UniScan 
receiving station and the EOStation software complex, 
which operate in Moscow (ScanEx RDC) and Irkutsk 
(Baikal Center LLC). With the help of these satellite data, 
unique ring formations with a diameter of 7-8 km were 
discovered, which are formed on the snow-covered ice 
field of Lake Baikal (Figure 1). Rings appear one or two 
at a time, but not every year. Undoubtedly, the formation 
of rings is not a new phenomenon, and it has occurred in 
previous years. But without satellite monitoring, it was 

impossible to detect them. Although the rings are of con-
siderable size, it is almost impossible to see them from the 
ice and even from the mountain ranges surrounding the 
basin of the lake.

Rings on Lake Baikal became famous in April 2009, 
when they became widely discussed on the internet. The 
author first observed them on a computer monitor on April 
4, 2009, when pictures of the rings were posted on the 
internet [1]. I immediately proposed a physical mechanism 
for the formation of rings, and established a system of 
equations describing convection. Even earlier, the pres-
ence of rings was established by employees of the Limno-
logical Institute, in particular Nikolai Granin. He suggest-
ed that the rings may arise due to the rise of deep waters, 

mailto:lab@rgp.bsc.buryatia.ru


65

Journal of Environmental & Earth Sciences | Volume 04 | Issue 01 | April 2022

which are caused by eruptions of mud volcanoes. At the 
same time, in the central part of the future ring structure, 
the temperature rises (on average by half a degree com-
pared to other parts of the lake), and the so-called anticy-
clonic current (circular flow directed counterclockwise) is 
formed. The current enhances vertical water exchange, as 
a result of which the ice cover is destroyed more strongly 
over the zones of maximum flow velocities [2,3]. The dark 
circles visible in the images are areas with minimal ice 
thickness. With an average thickness of the ice cover at 
the southern end of Lake Baikal of 70 centimeters within 
a radius of two kilometers from the center of the rings, it 
does not exceed 43 centimeters. Thin ice is more saturated 
with water than the average for the lake, and this contrast 
is clearly observed from space. Our consideration clarifies 
the picture proposed by Nikolai Granin - we abandon the 
anticyclonic flow as the cause of the formation of rings, 
and instead of mud volcanoes we consider emissions of 
natural gas. The latter is due to the fact that after the sink-
ing of the underwater vehicle “Paisis” (http://nabaimar.ru/
baikal/) in 1977 and 1991, the locations of mud volcanoes 
became known, the coordinates of which do not coincide 
with the coordinates of the rings in question.

Figure 1. Circular rings 1 (near the Svyatoy Nos Penin-
sula) and 2 (near the southern tip of Lake Baikal) on Lake 
Baikal. Picture from 4.04.2009.

In 2008-2010, MIR underwater vehicles sank to the 
bottom of Lake Baikal [4,5]. Studies conducted by scien-
tists were widely covered by the media and the internet. 
In particular, one of the moments of the descent of one of 
the devices was shown on television. At the same time, 
footage of natural gas emissions from the bottom of the 
lake literally flashed in the form of a clearly visible jet 
of bubbles against the background of the water column. 
These shots were shown at night local time, so the author, 
unfortunately, did not have time to photograph them. But 
natural gas emissions and their demonstration in a televi-
sion report undoubtedly took place.

2. Physical Interpretation of Ring Formation

Lake Baikal is geologically a graben lake, a section 
of the earth’s crust bounded by steeply inclined gaps, 
confined to the rift zone (the Rift is a large linear tectonic 
structure of the earth’s crust, hundreds to thousands of 
km long). Rifts are characterized by increased heat flow 
and seismic activity, and direct rift depressions are char-
acterized by a powerful thickness of sedimentary rocks, 
several kilometers away, where a lot of organic matter 
accumulates. Increased thermal field and temperature gra-
dient cause intense gas formation [6]. The release of natural 
gas, in particular methane, from the bottom of the lake in 
summer is observed due to bubbles rising to the water’s 
surface and in winter the formation of “proparin” (ice-free 
surface of the water) with a size of 0.5 m - 100 m across. 
In addition to such relatively small proparins, space im-
ages of Lake Baikal revealed dark rings of an abnormal-
ly large size - with a diameter of 7-8 km (Figure 1) [1].  
In April 2009, the rings were discovered west of Cape 
Lower Headboard of the Svyatoy Nos peninsula (Figure 
1, circumference 1) and at the southern tip of Lake Bai-
kal (Figure 1, circumference 2). In Figure 2 and Figure 3 
rings are “tied” to the bathymetric map Baikal, where the 
geographical coordinates of the centers of the rings are 
also indicated (Bathymetric maps are geographical maps 
that display the underwater relief using isobaths, supple-
mented by depth marks). The fact that in the process of 
formation of rings the determining role is played by heat 
fluxes can be seen in Figure 4, where it is shown how as 
a result of heating is disturbed the strength of the ice, and 
it is crushed into ice blocks of different sizes. I associated 
the formation of rings on the surface of the ice with the 
giant convection of the entire water column around the 
release of natural gas. In the middle part of the rings, the 
temperature of the subglacial water is higher, according to 
the observations of Nikolai Granin on the rest of the wa-
ter. This leads to the melting of snow and the ice itself.

Figure 2. A section of the ring 1 in latitude on the bathy-
metric map near the Peninsula of the Holy Nose. 1 and 5 
are the outer edge of the ring, 2 and 4 are the inner edge 
of the ring, and 3 are the center of the ring. At the top are 
the geographical coordinates of the center of the ring.

http://nabaimar.ru/baikal/
http://nabaimar.ru/baikal/
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Figure 3. A section of ring 2 in longitude on a bathymet-
ric map near the southern tip of Lake Baikal. The numbers 
indicate: 1 and 5 - the outer edge of the ring, 2 and 4 - the 
inner edge of the ring, 3 - the center of the ring. At the top 
are the geographical coordinates of the center of the ring.

Figure 4. The destruction of the ice field was a result 
of the warming of the ice near the southern end of Lake 
Baikal. Photo from the International Space Station “MCS” 
from 25.04.2009.

The water of Lake Baikal is characterized by the fact that 
in the spring the temperature throughout the depth practically 
does not change and is usually 0 3 2 3 4T . . C= − ° . Only near 
the surface, from a depth of 150-200 m, the temperature 
gradually decreases to almost 0 °C afloat. The resulting 
temperature gradient is so insignificant that water convec-
tion does not occur (we are distracted from the internal 
currents of the water column that are not associated with 
temperature convection). Already here it can be seen that 
the problem under consideration is significantly different 
from the well-known Convection of Benard - Rayleigh. 
However, the outflow of natural gas from the sedimentary 
layer of the bottom disrupts the mechanical balance of 
water. The water column comes into a convective current, 
which, due to symmetry, takes a shape close to the torus, 
as shown in Figure 5. Contacting the lower point with 
warmer natural gas, as a result of the rotation of the water 
column, heat is carried to the upper point. The following 
system of equations makes it possible to prove that the 
temperature distribution on the surface of water in the 
middle part of the rings has a maximum. This picture is 

indicated by a completely similar phenomenon accompa-
nying the explosion of a hydrogen bomb, as in Figure 6. 
The difference only that the convection we are considering 
arises from the laminar rise of natural gas, and the con-
vection associated with the explosion of a hydrogen bomb 
arises from the rise of the turbulent flow of combustible 
products. (As far as the author knows, foreign researchers 
call the model in question - the model of the explosion 
of an atomic bomb). However, in both cases, convection 
takes the form of a torus. A well-known example of the 
rotation of smoke rings can be given.

Figure 5. A high-quality picture of the surfacing of a 
warm jet of natural gas and the convective flow of water 
around the jet in the form of an oblate torus. A shaded 
square at the bottom of the upward jet indicates the size of 
the source.

Figure 6. Hydrogen bomb explosion (top view).

3. Convective Flow Equation System

Let us proceed to a theoretical description of the con-
vective flow. Such a description is possible only if we 
consider the equations of hydrodynamics (navier-Stokes 
equation and continuity equation) and the thermal con-
ductivity equation together. We’ll start with the thermal 
conductivity equation, which looks like this:

( ) TTV
t
T 2∇=∇⋅+

∂

∂
χ . (1)

Coefficient χ  is called the thermal diffusivity coeffi-
cient. Its presence in Equation (1) means that the thermal 
properties of water are described by only one parameter.

http://earthobservatory.nasa.gov/images/imagerecords/38000/38721/ISS019-E-010556_lrg.jpg
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The convection we are considering is a stationary pro-
cess in which all quantities do not clearly depend on time. 
For such quantities, the partial derivative in time turns 
to zero. In the absence of an external heat source, the 
water mass has a stationary temperature distribution T0,  
depending on the location only. Convection occurs due 
to the fact that an extraneous source of heat is introduced 
into the liquid. As a result of a stationary temperature dis-
tribution T0 a small addition of temperature is applied T. It 
follows that in order to describe convection by Equation 
(1), the value of T must be replaced by the sum T0+T. 
Then Equation (1) will take the following form:

( )
0

TV ∇⋅ + ( ) TV ∇⋅ = 0
2 T∇χ + T2∇χ . (2)

Convective flow as a mechanical movement occurs 
at a slow speed. Therefore, speed V in Equation (2) is a 
first-order quantity of smallness, as is the small addition 
of temperature T. Separating quantities of different orders 
of smallness and neglecting the second-order term, we ob-
tain the following equations:

0
2 T∇  = 0. (3)

( )
0

TV ∇⋅ = T2∇χ . (4)

Equation (3) for our problem of theoretical description 
of convection can be immediately solved. For the equilib-
rium state of water in the Earth’s gravitational field, the 
temperature T0 may depend only on the depth of z, where 
the z-axis is directed from the bottom to the water surface 
(Figure 7). Then Equation (3) has two solutions. One of 
them corresponds to the constant value of the equilibrium 
temperature: T0= const. The second solution will be a lin-
ear dependence on depth: 

zAcT −=
0 ,  (5)

where c and A are constant integrations defined by the 
condition of the problem. For of the Baikal water column, 
both cases are realized. Of the Baikal water column, both 
cases are realized. First, from the bottom of the lake to 
some depth with an elevation of 150-200 m from the sur-
face of the water, the equilibrium water temperature is 
constant and is 3.2-3.4 °C.

Figure 7. The depth of Lake H, the z-axis is directed from 
the bottom of the lake to the water’s surface.

Figure 8. Equilibrium temperature profile of the water 
mass in the spring on Lake Baikal.

Then the temperature is linearly compared with the 
temperature of the surface layer of water corresponding 
to the season. In the month of April, when it is possible 
to observe rings on Lake Baikal, the temperature of Cel-
sius on the surface is zero (Figure 8). We can see that in 
the spring the equilibrium temperature decreases evenly, 
which is why in solution (5) there is a minus sign before 
the constant A. If we assume that the depth is 1 km, and 
up to the mark of 800 m from the bottom, the tempera-
ture is constant and equal to 3.4 °C, then the solution of 
Equation (3) can be written as follows:

.

Let us now turn to the Navier-Stokes equation:

( ) gVPVV
t
V

+∇+
∇

−=∇⋅+
∂

∂ 2ν
ρ

, (6)

supplemented by the continuity equation:

0=⋅∇ V . (7)

where ν  is viscosity coefficient, g is the acceleration of 
free fall, P is the pressure, ρ  is density of water.

Velocity V is a small velocity of convective water flow, 
so ( ) VV ∇⋅  as a second-order term of the small can be 
omitted. In addition, we consider the stationary course. In 
this case, Equation (6) takes the following form:

gVP
+∇+

∇
−= 20 ν

ρ . (8)

In the absence of an external heat source, the density 
of water has a constant and equilibrium value 0ρ . With 
slight heating, the volume of water increases, respectively, 
the density decreases. In the first order of approximation 
of the small addition of temperature T, which is a conse-
quence of the appearance of an external heat source, the 
addition to the density will be proportional to this tem-
perature T. Thus, the density becomes equal to:

T00 ρβρρ −= . (9)
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Here is the multiplier β  is called the coefficient of 
thermal expansion. In the range from 0 °C to 3.4 °C it can 
be considered permanent.

In the pressure, let’s highlight the atmospheric pres-
sure A

P  on the surface of the water, hydrostatic pressure 
zg

0
ρ−  a column of water, and a small additive P asso-

ciated with the convective flow. Thus, in Equation (8), the 
value P is replaced by the following expression:

( ) PzHgP
A

+−+
0

ρ , (10)

where H is the depth of the lake. Substituting Equations (9) 
and (10) into Equation (8), in the first order of approxima-
tion by P, V and T we get: 

VTgP 2

0

0 ∇++
∇

−= νβ
ρ . (11)

To eliminate the pressure P, let’s use Equation (11) on 
the left with two rotor operators ( )...×∇×∇ . Using the 
rules of vector analysis, and taking into account the conti-
nuity Equation (7), the result is:

( ) V22∇ν  = ( ) 2g T g Tβ β∇ ⋅∇ − ∇
 

. (12)

We obtained Equations (3), (4), (7) and (12), which, 
supplemented by boundary conditions, completely deter-
mine the spatial distribution of temperature T and velocity 
V  convective flow (describe the known “mushroom” 
formed during an atomic explosion). 

4. Surfacing Natural Gas Jets

Convection in the form of a violation of mechanical 
equilibrium occurs when an external heat source appears. 
For Rayleigh-Bénard convection, the source of heat is a 
heated bottom. For the convection we are considering, 
the source of heat is a jet of heated natural gas introduced 
into the water column. Its mass element m∆  carries the 
element of heat sp TCmQ ∆=∆ . In here pC  is specific heat 
of the jet at constant pressure, sT  is temperature measured 
from the equilibrium temperature of the surrounding wa-
ter column. Let sρ  be density of natural gas, and sρ  < 0ρ ,  
so that the jet floats in the form of a pillar with a round 
cross-section. If s

r  is the cross-sectional radius of the jet, 
sz∆  is the jet height element, then the mass element will be

sss zrm ∆∆=∆ 2πρ .

During the time t∆  natural gas floats to a height 
tVz ss ∆=∆ , where sV  is the speed of the jet surfacing. 

Combining all the expressions, we get that in a unit of 
time a column of natural gas carries heat:

2
sssps rVTC

t
Q ρπ=
∆
∆ .  (13)

Jet surfacing is a regular and stationary process. Ignor-
ing also the dissipation of heat, we come to the position 
that the expression (13) is a constant value. Thus,

constrVT sss =2 . (14)

Consider the rise of a jet of natural gas in a viscous 
continuous column of water. Its surfacing is a stationary 
laminar current. The equation of motion of the jet is de-
rived from the equations of hydrodynamics in a similar 
way to convective motion and leads to Equation (12), but 
only with the non-zero left side, and the values provided 
with the index s:

( ) 2
s s ss s s

s

PV V g T Vβ ν
ρ

⋅∇ = −∇ − + ∇
   

. (15)

All the terms of Equation (15) are of the same order, so

s

s

z
V 2

 ~ 
ss Tgβ  ~ 2

s

s
s r

Vν .

Solving these equations together with Equation (14), 
we find that the jet emerges in the form of a figure of rota-
tion with the z-axis, moreover (Zeldovich relations [6]):

sr  ~ 
sz , constV

s
= , 

sT  ~ 
sz

1 . (16)

Expression (16) will be boundary conditions for the 
problem of determining the spatial distribution of the tem-
perature of the water column, especially interesting for us 
the distribution of temperature at the surface. Let’s rewrite 
the last ratio in Equation (16) as follows:






 ==+ HzryxT ,22  ~ 

z
1 .  (17).

This ratio describes the distribution of temperature in 
the convective flow at the point of contact with the jet. 
A laminar jet emerges from the sedimentary stratum of 
the bottom from a hole of some finite size, the minimum 
size of which can be found from the expression (14) and 
conditions max=Vsρ  [7]. Regularity sr  ~ sz , it is con-
venient to specify and write in the following form:

ss zDr = .  (18)

Below we define its numerical value for the value of D.

5. Spatial Temperature Distribution

The above system of Equations (3), (4), (7) and 
Equation (12), describing convection, has not yet received 
proper mathematical research. But they can be solved in 
one approximate case. Namely, near the water’s surface, 
we can assume that the convective flow of water is al-
most parallel to the water’s surface. This means that when 

Hz =  speed component RV  in the plane x y will have a lot 
more vertical components zV . Let’s project Equation (12) 
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onto a plane x y:

( )
z
T

gV RR ∂

∂
∇=∇ βν 22 , (19)

where R∇  is determined by the ratio 2

2

2

2
2

yxR
∂

∂
+

∂

∂
=∇ .  

Near Hz =  speed RV  can depend only on the radial in the 
plane x y of the coordinate r. Then the expression on the 
left in Equation (19) is a function only of r. In order for 
Equation (19) and the expression on the right to depend 
only on r, the temperature T must be a linear function of z. 
Thus,

zrvruzrT )()(),( += . (20)

Since the temperature ),( zrT  counted from the value 
0

T , which with Hz =  is zero, then and 0),( == HzrT .  
From here it can be seen that the functions )(ru  and )(rv  
have different signs. In addition, at the point of contact 
of the convective flow with the natural gas jet, when 

zDr = , the boundary condition Equation (17) must be 
met. This can be achieved if ),( zrT  select the following 
form [8]:

( ) 







−= 42

2 1,
r

zh
b

r
ThazrT m . (21)

Indeed, substituting zDr = , get

( )
zD

Hb
D

THa
zrTrT m

s
11,)(

2







 −== ,

in agreement with Equation (17). Permanent a, b and mT  
to be determined below.

When writing the solution in the form of Equation (21), 
we actually followed the general method, when solutions 
of a system of equations like Equation (7) and Equation 
(12) are searched in such a way as to satisfy the boundary 
conditions of the problem. The solution Equation (19) has 
a remarkable feature – dependence ),( HzrT =  has max. It 
follows that at a point max,

HbRm 2= ,  (22)

and, in addition,

ba 4= . (23)

So, for the ring in Figure 2 Rm=2.78 km and H=1.46 
km, from where b=1.81 and a=7.25. To establish the 
meaning of a quantity D in the formula (18), suppose that 
at the point of contact of water with the jet, the tempera-
ture Ts=0 °C (ice and snow do not melt on it). At a point 
maximum temperature Tm=4 °C (the ice is not melting 
yet, and the snow has already melted). Then, substituting 

zDr =  in Equation (21), for D we obtain a quadratic 
equation whose smallest solution will be:

Dm=4 km. (24)
We see that the dimensionless quantities a and b have 

values of the order of one. This circumstance once again 
justifies the choice of a solution in the form Equation (21). 
Here are the following values related to the ring in Figure 3:

Rm=2.76 km and H=1.05 km, b=3.45, a=13.8 and 
D=5.17 km.

They differ significantly from similar values for the 
values of ring No 1 (Figure 2). This difference seems to be 
related both to the approximation used in solving Equation 
(12) and to the difference in bottom relief for both rings.

To obtain other approximate solutions near the mid-
dle of the ring, it is necessary to involve the entire set 
of boundary conditions. However, information on the 
physical characteristics of the natural gas jet is not yet 
available. Therefore, scant experimental data (in fact, only 
space images and a bathymetric map were used) do not 
yet allow for a more detailed analysis of the phenomenon 
of the formation of giant rings on ice.

6. Convective Instability 

Consider the question of the criterion for the occur-
rence of instability of the water column in the form of a 
torus around the release of natural gas from the bottom of 
Lake Baikal. For the Rayleigh-Bénard convection, a sim-
ilar question is set out in the book Theory of Elasticity [6]. 
Let’s look for the perturbation of velocity and temperature 
described by Equations (3), (4), (7) and Equation (12) in 
exponential form:

( )zkirkirki zR +=⋅ exp)exp( . (25)

On the right in the exponent we write rki R , because 
we are considering a cylindrically symmetrical case. The 
appearance of instability will mean the emergence of the 
root of the equations,

( )Im Re 0Rk = , ( )Im Re 0zk = . (26)

Im means taking an imaginary part. The number of 
Rayleigh Re will be determined below. 

Taking into account Equation (25), this system of equa-
tions takes the following form:

02
0

2

=
zd

Td
, (27.a)

TkTk
zd

Td
V zRz

220 χχ +=− , (27.b)

0=+ zzRR VkiVki , (27.с)

( ) TkkgVkk zRRzR βν −=+ 222 . (27.d)

Here it is advisable to move on to one equation. For 
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example, excluding speed components RV  and zV , we get 
the equation for temperature T:

( ) 32 2 2Re 0R z Rk k k T + − =   . (28)

And here the number of Rayleigh Re is a dimensional 
quantity. If the wave number k is measured in units of 
some length H∆ , then the Number of Relays will be di-
mensionless:

( )4
0 /

Re
g H d T d zβ

ν χ
∆ −

= . (29)

It was noted above that at a significant part of the 
depth the temperature constT =0 . This means turning 
the Rayleigh number to zero and no convection. Since 
convection undoubtedly takes place, a component must 
be added to the right side, arising from the fact that the 
water column is not in contact with a solid surface, but 
with a heated liquid stream of natural gas. In an area 
where the temperature is linearly dependent on the depth, 
we have AzdTd =− /0 . Substituting in Equation (28) 

222 / zddkz −= , get:
32

2 2
2 Re 0R R

d k k T
d z

  
 − + = 
   

.  (30)

This equation formally coincides with the correspond-
ing equation in the book Theory of Elasticity [6]. There-
fore, you can immediately write the critical values for the 
Rayleigh number and the radial component of the wave 
number:

Re 1708c = , 3.12 /R ck H= ∆ . (31)

Replacing in Equation (28) 










∂
∂

∂
∂

−=
r

r
rr

kR
12 , get:

3
21 1Re 0zr k r T

r r r r r r

  ∂ ∂ ∂ ∂
 − − = ∂ ∂ ∂ ∂   

. (32)

As far as is known, no such equation has been analyses. 
Such an analysis should give the same value for Rec , that 
both the given in Equation (31) and the numerical value for 

czk . However, the value for czk  can be found without actu-
ally solving Equation (32). Indeed, by substituting Equation 
(32) with Equation (28), you can immediately find:

3.97 /z ck H= ∆ . (33)

Further, since it is obvious that, 

cRk  ~ mR/1 , czk  ~ H/1 ,

then from the ratios (31) and (33), after exclusion H∆ ,  
followed by Equation (22), which, by this, gets another 
justification. Due to different boundary conditions for our 

problem, and for the Rayleigh-  convection, the 
numerical values in formulas (31) and (33) will generally 
be different. However, the conclusion about the linear 
relationship (22) between the radius of the rings and the 
depth of the lake will remain.

7. Conclusions

It was established that the formation of rings on the ice 
surface of Lake Baikal is associated with giant convection 
of the water column due to the release of warm natural gas 
from the sedimentary bottom of Lake Baikal. Natural gas, 
rising to the surface, cools, but manages to warm up the 
surrounding cold water. As a result, convection forms in 
the water column in the form of a torus around the release 
of natural gas, which carries warm water to the surface 
(lower edge of the ice) away from the column of natural 
gas. By the mechanism of thermal conductivity, the heat 
reaches the upper edge of the ice, where ice and snow be-
gin to melt intensively. As a result, a protalin in the form 
of a ring is formed on snow-covered ice. Convection in 
the form of a torus is described by joint solutions of the 
equations of hydrodynamics and the equation of thermal 
conductivity. From these equations, a system of equations 
describing convection in the form of a torus is obtained. 
By the mechanism of thermal conductivity, the heat reach-
es the upper edge of the ice, where ice and snow begin 
to melt intensively. As a result, a protalin in the form 
of a ring is formed on snow-covered ice. Convection in 
the form of a torus is described by joint solutions of the 
equations of hydrodynamics and the equation of thermal 
conductivity. From these equations, a system of equations 
describing convection in the form of a torus is obtained. 
An approximate solution for the spatial distribution of 
temperature near the water surface is given. The latter is 
due to the fact that our system of equations has not yet 
received proper mathematical research. Indeed, let us re-
call that about 15 years have passed since the discovery 
of the  cells and their mathematical description by 
Rayleigh. The question of convective instability is consid-
ered. In solving this question, it was established that the 
radius of the rings is linearly related to the depth of the 
lake.
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