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ABSTRACT
Undeniably, Deep Learning (DL) has rapidly eroded traditional machine learning in Remote Sensing (RS) and 

geoscience domains with applications such as scene understanding, material identification, extreme weather detection, 
oil spill identification, among many others. Traditional machine learning algorithms are given less and less attention 
in the era of big data. Recently, a substantial amount of work aimed at developing image classification approaches 
based on the DL model’s success in computer vision. The number of relevant articles has nearly doubled every year 
since 2015. Advances in remote sensing technology, as well as the rapidly expanding volume of publicly available 
satellite imagery on a worldwide scale, have opened up the possibilities for a wide range of modern applications. 
However, there are some challenges related to the availability of annotated data, the complex nature of data, and 
model parameterization, which strongly impact performance. In this article, a comprehensive review of the literature 
encompassing a broad spectrum of pioneer work in remote sensing image classification is presented including network 
architectures (vintage Convolutional Neural Network, CNN; Fully Convolutional Networks, FCN; encoder-decoder, 
recurrent networks; attention models, and generative adversarial models). The characteristics, capabilities, and 
limitations of current DL models were examined, and potential research directions were discussed.
Keywords: Deep Learning (DL); Satellite imaging; Image classification; Segmentation and object detection
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1. Introduction
The swift development in remote sensing (RS) 

platforms and instruments have increased the acces-
sibility of earth observation to help Earth’s surface 
measuring feature. Satellite platforms accumulate im-
ages at frequent intervals which results in a growing 
exponential volume of data. In the digital era, data be-
come not only valuable but also intelligent. Big Data 
(BD) term has been introduced in mid-2011 to de-
scribe a broad set of heterogeneous large volumes of 
data that can hardly be managed and processed using 
conventional approaches. Technically, the five main 
dimensions that characterize BD [1] are: A massive 
amount of data, speed of data generation and delivery, 
structured and unstructured data sources, veracity, and 
value [2]. BD and open-source RS data open the door 
to improving DL approaches by extracting insights 
from the collected RS data to help establish more ro-
bust and effective models for RS applications. 

Meanwhile, several attempts to use DL in RS 
have been made [3]. Scientists use contemporary tech-
nologies and different RS data sources to improve 
context-based feature learning and exploit the po-
tential classification for massive volumes of remote 
sensing imageries.

Modern RS applications [4] rely basically on image 
classification techniques. Typically, image classifica-
tion in the remote sensing domain is grouped into su-
pervised, non-supervised, and object-based approach-
es. Other criteria to group image classification are by 
a number of labels per image: Single and multi-label 
classification. RS classification pipeline [5] is com-
posed of four main steps namely: Pre-processing, fea-
ture engineering, classification, and post-processing 
(see Figure 1a) whereas each step may include sub-
tasks. A solid breakdown of the process into sub-tasks 
with specific assumptions helps develop standalone 
sub-problems with solutions or models that can be 
integrated into the classification pipeline task. The 
preparation process includes correcting, de-noising, 
and synchronizing data to increase the process perfor-
mance. The feature engineering process involves re-
moving noisy data from the input image, lowering di-
mensionality, and establishing a collection of suitable 

representations (features) for the input from which the 
Machine Learning (ML) model may utilize to predict 
the target classes. The adopted model is built based on 
the training samples in order to recognize the associa-
tion between the training data features/representation. 
After training, testing, and validation, the adopted mod-
el predicts fresh data. Finally, in pixel-level classifica-
tion, post-processing is a collection of procedures used 
to improve the final classified image [6]. 

Recently, the increased capability of DL has led to 
its use in a wide spectrum of applications in the RS 
domain. End-to-end architecture generalizes (Figure 
1b) hierarchical rich feature learning. The current fo-
cus of the DL model was improved due to computing 
capability in new processor generations. In this con-
text, object detection, image segmentation and scene 
understanding were considered typical tasks where 
classification approaches were empowered.

The main contributions can be summarized as 
follows:

● This survey analyzes the most recent publi-
cations with respect to image classification, 
object detection, and image segmentation 
problems in the remote sensing domain.

● Different DL aspects were reviewed including 
network architectures, loss functions, training 
strategies, and key contributions.

● Drawing from the latest progress by the com-
puter vision community, several promising 
future directions for future research were de-
scribed and how they can be integrated to val-
ue-add existing and inspire RS applications. 

The rest of this article is organized as: Section 3 
provides histories of remote sensing imageries. The 
history of deep learning architectures is summarized 
in Section 4. Section 5 discusses the recent efforts 
of deep learning in remote sensing classification, 
segmentation, and object detection tasks. In Section 
6, the main challenges were discussed. Section 7 
illustrates future directions for DL-based classifica-
tion methods for Earth Observation (EO) imageries. 
DL-based image classification applications were 
highlighted in Section 8. Finally, conclusions were 
presented in Section 9. 
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2. Overview of remote sensing imageries
Remote sensing accumulates information about 

an object, area, or phenomenon with no contact with 
it [7]. Data collection and data analysis are consid-
ered two key processes in Figure 2, which displays 
the generalized processes and elements involved in 
remote sensing. The data collection process includes 
a) energy sources, b) energy propagation through the 
atmosphere, c) energy interactions with earth sur-
face features, d) energy retransmission through the 
atmosphere, (e) and (f) airborne and/or spaceborne 
sensors monitor changes in the way earth surface 
features reflect and emit electromagnetic energy. g) 
To analyze the collected data, various viewing and 
interpretation equipment is used. When available, the 
reference data (such as soil maps, crop statistics, or 
field-check data) are used to aid in data analysis and 
help in determining the extent, location, and condi-
tion acquired by the sensors. Finally, (h) and (i) the 
data are compiled, usually as maps, tables, or digital 

spatial data. Finally, the obtained information is de-
livered to users who utilize it to make decisions.

The latest generation of sensors produces ex-
plosion volumes of different resolution images for 
Earth, which created a new processing challenge. 
The development of an efficient image classification 
method for massive remote sensing imagery is criti-
cal for modern applications.

Earth observation technology is not limited to 
traditional platforms but extended to Light Detection 
and Ranging (LiDAR), and Unmanned Aerial Ve-
hicle (UAV). As shown in Figure 3, the sensors are 
categorized as active and passive. The sun provides a 
convenient source of energy for remote sensing. The 
sun’s energy is reflected, as it is for visible wave-
lengths, or absorbed and then re-emitted. Remote 
sensing instruments measure the energy that is nat-
urally available and is called passive sensors. Some 
examples of passive sensors include panchromatic, 
multi-spectral, hyperspectral imagery. Alternatively, 
active sensors provide their own energy source for 

a)

b)
Figure 1. Comparison between the common steps of a) the typical machine learning approaches, and b) the modern end-to-end DL 
structure.
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illumination. The sensor emits radiation which is di-
rected toward the target to be investigated.

The radiation reflected from that target is detect-
ed and measured by the sensor. Some examples of 
active sensors are LiDAR and Synthetic Aperture 
Radar (SAR).

Table 1 demonstrates the spatial, spectral, and 
temporal resolution of several common RS satellites. 
The spectral capabilities of the Landsat (7,8) and 
Sentinel (1,2) satellite missions complement each 
other, and with their open and cost-free access ar-

chives. The spatial resolution of images can be clas-
sified into three categories in this review: 1) High 
Resolution (HR) sensors (5-30 m), 2) Very High 
Resolution (VHR) sensors (4-m multispectral pixel 
size), and 3) medium to coarse resolution sensors  
(> 60 m multispectral pixel size). Spatial resolution 
is important for various applications. Coarse-resolu-
tion sensors are suitable for large-scale observation, 
but not for characterizing urban in compact zones. 
Very high- and high-resolution sensors help obtain 
more details.

Figure 2. Remote Sensing (RS) processes and elements.

                                                                       a)                               b)
Figure 3. A graphical representation of a) passive versus b) active sensing.

Table 1. Specification of the common remote satellites/sensors’ specifications [8].

Mission Properties Sentinel-2 Landsat 7 Landsat 8 MODIS
Spatial resolution (m) 10, 20, 60 (15), 30, 60 (15), 30, 100 250, 500, 1000
Temporal resolution (days) 2-3 16 16 1-2
Spectral resolution 13 bands 8 bands 11 bands 25 bands
Radiometric resolution 12-bit 8-bit 16-bit 12-bit
Swath width (km) 290 185 185 2330
Wavelength range (nm) 442-2186 450-12,500 433-12,500 459-2155
Supported study area scale local, national national, regional national, regional national, regional
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3. History of deep learning
This section discusses the most frequently DL 

architectures, including Convolutional Neural 
Networks (CNNs) [9], Recurrent Neural Networks 
(RNNs), Long Short-Term Memory (LSTM) [10], En-
coder-Decoders (EDs) [11], and Generative Adversar-
ial Networks (GANs) [12]. Numerous upgrades have 
been proposed in response to the sudden popularity 
growth of DL, including capsule networks, atten-
tions, and deep belief networks. It is worth noting 
that in some instances, DL models are trained from 
scratch on new datasets (given the appropriate qual-
ity and amount of labelled data). However, transfer 
learning [13,14] is frequently employed to deal with in-
completely labelled datasets. As illustrated in Figure 
4, DL-based architectures were classified into eight 
groups based on their primary technical contribu-
tions.

Figure 4. Deep learning architecture taxonomy.

3.1 CNN architectures

CNN family has grown since 2012, AlexNet [15] 
was presented at the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC). A standard CNN 
composes of three types of layers: i) convolutional 
layer, where filter (kernel) of weights is convolved 
to extract feature maps; ii) nonlinear layers, which 
apply an activation function on feature maps (usually 
elementwise) to enable the modeling of non-linear 
functions by the network; and iii) pooling layers, to 
reduce feature map spatially based on statistical in-
formation (mean, max, etc.) of a neighborhood.

Convolutional layer [16]: The input (image) is 
convolved then the result is passed to the next layer. 
Convolutional layers require four main pieces of 
information (filter size, number of filters, stride, and 

padding). The obtained result is a number of abstract 
feature maps equal to the number of used filters.

Pooling layer: A spatial reduction to the feature 
maps to minimize CNN parameters. The pooling 
layer has no impact on volume depth [9]. The most 
frequent approaches are max and average pooling [10]. 

Fully Connected Layer: A typical Multilayer per-
ceptron (MLP) that transfers 2-D feature maps to 
1-D vectors [11]. Figure 5 shows that adding more pa-
rameters does not always improve precision [12]. The 
following sections investigate CNNs from a broader 
perspective.

Figure 5. Summary of deep learning in terms of architecture, 
parameters, top-1 accuracy [12].

Vintage CNN architectures
Vintage CNN architectures include: AlexNet [15],  

ZFNet [17] and VGGNet [18] named after Alex 
Krizhevsky, Zeiler and Fergus, Visual Geometry 
Group [13], as shown in Figure 6. AlexNet is regard-
ed as the root of CNN architectures family. The three 
vintage networks share a similar architecture called 
“template”: Stacking convolution with non-linear 
activation followed by pooling layers to extract hi-
erarchical features from an input image and ending 
with a fully connected classifier head [14]. The model 
provides and predicts the probability for each possi-
ble class based on the extracted features. To sum up, 
the main contribution of vintage architectures can be 
summarized as follows:

● Consisting of multiple convolutions to boost 
feature depth and scaling methods such as 
pooling with stride 2 to reduce the resolution.

● Activating the ReLU after convolutional lay-
ers speeds up backpropagation using stochas-
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tic gradient descent.
● A wide range of deep networks were created 

by repeated building blocks such as VGG-19.

Inception family
In 2015, Google introduced a novel architecture 

called GoogLeNet which considered a starting point 
of the Inception Family and sometimes called Incep-
tion-V1. The network was built on VGG architecture 
in which, the Inception modules (see Figure 7a) with 
occasional max pooling to reduce the dimension (see 
Figure 7b) are stacked after the stem of the first con-
volutions. A typical Inception module is composed of 
parallel convolutions of various kernel sizes and max 
pooling which results in a variety of different feature 
maps (see Figure 7b). Various updated Inception 
versions were proposed [19-21] to boost performance 
using the revised sparsely connected topologies. To 
sum up, the Inception Family proposed a significant 
update to classical CNN as follows:

● Bottleneck designs and complex building 
block structures.

● Batch normalization to enable faster training 
via stochastic gradient descent.

● Factorization of convolutions in space and 
depth.

ResNet family 
Despite their better representational ability, deep-

er neural networks are hard to train due to the van-
ishing gradient problem. As a result, the network’s 
performance degrades dramatically as it becomes 
deeper. ResNet [22] was designed to facilitate training 
deeper neural networks and overcome the vanishing 
gradient problem. As shown in Figure 8, the primary 
idea of ResNet is to introduce an “identity shortcut 
link” that bypasses one or more layers (see Figure 
8a). ResNet adheres to the VGG design principles 
while adding an identity shortcut in the residual 
module. Tuning a hyper-parameter is pointless be-
cause there isn’t one. The pros of ResNet [23] include 
a) Training speed up, b) Improving the performance 
of classification. c) Release the power of a deeper 
neural network.

                                  a)                                                                      b)                                                                   c)

Figure 6. Conceptual overview of the three Vintage Architectures: a) AlexNet [15], b) ZFNet [17], c) VGG-16 [18].

                            a)                                                                                          b)

Figure 7. Conceptual overview of a) Inception module and b) Inception V-1 architecture.
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The architecture of ResNet has been widely in-
vestigated due to its popularity among researchers. 
A slew of innovative ResNet-based architectures 
has been revealed such as ResNeXt [23], SENet [24], 
SKNet [25] and ResNeSt [26].

Recent convolutions architecture
Despite their computational overhead, Vintage 

CNNs have shown exceptional performance in RS 
applications [19]. CSPNet was developed by Wang 
et al. [27] to reduce duplicate gradient information in 
the network and hence reduce inference costs. The 
CSPNet design reduces parameter count, increases 
CPU use, and reduces memory footprint [20]. CSPNet 
was adopted in many generic architectures such as 
ResNet [21], ResNeXt [24], DenseNet [23], and Scaled-
YOLOv4 [26]. The CSPNet network reduces compu-
tations by 10%-20% while preserving or boosting 
accuracy in various recent detector types, mobile and 
edge devices.

Typically, the modification of the network in any of 
the three dimensions (depth, width, and resolution) im-
pacted its performance. For example, increasing model 
depth helps capture more complex characteristics, but 
the model tends to become harder to train. Similarly, 
increasing network width captures fine-grained data but 

not high-level information. EfficientNet [28] is a simple 
architecture that uses a compound coefficient to uni-
formly scale all three dimensions. Table 2 compares 
different deep learning models in terms of a number of 
parameters, accuracy.

3.2 Recurrent Neural Networks (RNNs) and 
Long Short-Term Memory (LSTM)

Recurrent Neural Networks (RNNs) [29] are exten-
sively employed to process temporal data (speech, 
text, and videos) where data at each time is depend-
ent on prior data. While CNNs were a natural fit for 
2D images, RNNs are very effective for modeling 
short/long-term pixel dependencies to enhance fea-
ture map estimation. Using RNNs, pixels may be 
linked together and processed sequentially to model 
global contexts and improve classification and seg-
mentation. RNNs are unable to connect the relevant 
information. To handle the “long-term dependencies, 
Long Short-Term Memory (LSTM) [30,31] was pro-
posed, an end-to-end Attention Recurrent Convolu-
tional Network (ARCNet) was introduced to help 
focus on important high-level features in order to 
improve classification results. 

A cascaded RNN [32] model was proposed using 

                                    a)                                                                                                                    b)

Figure 8. Conceptual overview of a) residual module and b) ResNet-50 architecture.

Table 2. A comparison of CNN architectures.

Year Model Layers Top-1 acc% Parameters (Millions)
2012 AlexNet 7 63.3 62.4
2014 VGG-16 16 73 138.4
2014 GoogLeNet 22 - 6.7
2015 ResNet-50 50 76 25.6
2016 ResNeXt-50 50 77.8 25
2019 CSPResNeXt-50 [27] 59 78.2 20.5
2019 EfficientNet-B4 160 83 19
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gated recurrent units to explore discriminative fea-
tures from Hyperspectral Images (HSIs). The RNN 
layers help in eliminating redundant information 
between adjacent spectral bands and learning com-
plementary information from nonadjacent spectral 
bands. An end-to-end trainable Recurrent Convo-
lutional Neural Network (ReCNN) [33], architecture 
was introduced for change detection in multispectral 
images. The proposed architecture combined convo-
lutional and recurrent neural networks to extract rich 
spectral-spatial feature representations and evaluate 
temporal dependency. A Siamese network based on 
a multi-layer Recurrent Neural Network (RNN) (Si-
amCRNN) [34], was designed to handle multisource 
multitemporal images to detect changes. SiamCRNN 
is an integration of three subnetworks: Deep Siamese 
Convolutional Neural Network (DSCNN), multi-
ple-layers RNN (MRNN), and Fully Connected (FC) 
layers.

A Gated Recurrent Multi-Attention Neural Net-
work (GRMA-Net) [35], was proposed to collect spa-
tial informative features sequences from multi-spec-
tral images afterward fed to a Deep-Gated Recurrent 
Unit (GRU) to capture long-range dependency and 
contextual relationship.

3.3 Fully convolutional neural network

To achieve a pixel-based classification, segmen-
tation approaches based on a Fully Convolutional 
Network (FCN) were proposed [36]. FCN, inspired 
by VGG architecture (see Figure 9a), contains three 
fundamental layers: Multi-layer convolution, decon-
volution, and fusion. The fully connected layer in 
VGG was replaced by Convolutional layers. To com-
pute a score for each class, a 1 × 1 convolution is 
adopted. The output is smaller than the input image 
due to pooling procedures after the convolutional 
layers. Deconvolution is used to bilinearly upsam-
ple these coarse outputs to regain the original image 
size. It works similarly to convolution but “enlarges” 
the input by padding the matrix and combining parts 
within a deconvolution filter. The deconvolution 
stride is inversely proportional to the upsampling 
factor. Deconvolution produces a scaled label seg-

mented image. Although deconvolution recovers the 
original image’s size, the class scores are diluted, 
and features are lost. To create the final segmenta-
tion, a skip architecture combines semantic informa-
tion collected from a deep layer with location details 
from its preceding levels. The upsampled deep layer 
is added element-by-element to the shallow layer 
output. 

3.4 Encoder-decoder and auto-encoder models

U-Net [37] (see Figure 9b) was originally designed 
to segment biological images. It consists of two 
symmetric blocks namely: the encoder and decoder. 
The encoder network is constructed on the basis of 
the FCN architecture to capture image features map. 
The decoder network, on the other hand, upsampled 
the derived feature map while lowering the number 
of filters. The encoder block of the original U-Net 
design comprises two 3 × 3 convolutions and a 2 × 
2 max pooling operation with stride 2 in the encod-
er block. As a result, the feature map is gradually 
downsampled while the number of feature channels 
is increased. Correspondingly, the decoder block 
gradually raises the spatial resolution by up-sampling 
the feature map at each step, and then applies 2 × 2 
convolution (“up-convolution”) to lower the number 
of feature channels. To further reduce information 
loss, at each step of the decoder, the up-sampled 
feature map is concatenated with high-resolution 
features from the corresponding step of the encoder 
to avoid information loss. This is followed by two 
consecutive 3 × 3 convolutions that halve the feature 
map channel dimension. Finally, a 1 × 1 convolution 
is employed in the decoder’s output to map the fea-
ture vector of each pixel to the appropriate number 
of classes, producing a pixel-wise mask. 

SegNet [38] (see Figure 9c) incorporates two 
sub-networks: encoder and decoder. The encoder 
network uses convolution and max pooling to extract 
features, similar to FCNs. This network’s deeper 
layer extracts semantic meanings. SegNet maintains 
the element index (i.e., the location of an element 
within the filter window) and uses it in the decoder 
network’s upsampling process. Like the encoder net-
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work, the decoder network is symmetric. It translates 
low-resolution features to higher-resolution ones 
using convolutions and guided upsampling with the 
encoder network’s pooling index. For example, a 
2 × 2 low-resolution feature map becomes a 4 × 4 
zero-filled matrix. This reuse of the pooling index 
improves boundary precision and recovers spatial 
information. Unlike U-Net, SegNet does not feed ex-
tracted features to decoders, which are then concate-
nated into upsampled feature maps.

DeepLab [39] (see Figure 9d) applies “Atrous 
convolution” with upsampled filters for dense fea-
ture extraction. Furthermore, Atrous spatial pyramid 
pooling encodes objects and visual context at many 
scales. The authors used deep convolutional neural 
networks and fully connected conditional random 
fields to yield semantically correct predictions and 
comprehensive object segmentation maps.

3.5 Deep belief network

The Deep Belief Network (DBN) [40], shown in 
Figure 10, is a subtype of Deep Neural Network 
made up of stacked layers of Restricted Boltzmann 
Machines (RBMs). It is a generative model that 
Geoffrey Hinton introduced in 2006 [41]. DBN may 
be used to solve unsupervised learning problems in 
order to reduce the dimension of features, as well 
as supervised learning tasks in order to construct 
classification or regression models. Two phases are 
required to train a DBN: Layer-by-layer training 
and fine-tuning. The terms “layer-by-layer training” 
relate to the unsupervised training of each RBM, 
while “fine-tuning” refers to the employment of error 
back-propagation techniques to fine-tune the parame-
ters of the DBN following the unsupervised training. 

Hinton suggested stacking RBMs on top of each 
other to train DBN quickly. During training, the low-
est level RBM learns the data distribution. By sam-
pling the previous hidden layer’s hidden units, the 
following RBM block learns high-order correlation 
between them. This is done for each concealed layer 
up to the top. 

a)

b)

c)

d)

Figure 9. Fully CNN architecture a) FCN-8, b) UNet, c) SgNet, 
and d) DeepLab.

Figure 10. Graphical abstract of deep belief neural network.
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3.6 Graph	Neural	Network	(GNNs)

Graph, a data structure, represents a set of objects 
(nodes) and their connections (edges). Recent studies 
on graphs with machine learning have gained popu-
larity due to their ability to represent a wide range of 
systems in different fields such as social science, nat-
ural science (physical systems) and protein-protein 
interaction networks [42]. Graph analysis is adopted 
for non-Euclidean data format in machine learning. 
Typical CNNs operate only with standard Euclidean 
data like images (2-D grids) and text (1-D sequenc-
es). Therefore, Geometric DL is the extension of 
deep neural models to the non-Euclidean setting. Re-
cently, Graph Neural Network (GNNs) has recently 
gained popularity due to their superior performance.

Conventional CNNs are inefficient at handling 
spatial vectors. However, it can only be modeled as 
graph structures. First graph Fourier transform and 
convolution theorem [43], were adopted to convert 
vector data from the vertex domain into a point-
wise product in the Fourier domain. Then, a Graph 
Convolutional Neural Network (GCNN) model was 
introduced for building pattern classification. The 
obtained results confirmed a satisfactory result in 
identifying regular and irregular building patterns. 
A further improvement could be considered in the 
potential analysis of graph-structured spatial vector 
data. In their pioneer work [44], a novel two-stream ar-
chitecture combining global visual and object-based 
location features is established to enhance feature 
representation capabilities. First, CNN was used to 
extract visual features from a scene image. To learn 
spatial position attributes of ground objects based on 
GCN. The proposed architecture examines object de-
pendencies in remote sensing scene classification for 
hyperspectral data. 

An attempt to tackle multi-label RS image classi-
fication. This research provides a revolutionary DL-
based framework called MLRSSC-CNN-GNN [45]. 
Basically, CNN is used to learn visual perception and 
create high-level appearance attributes. Each scene 
graph is built using the trained CNN, with nodes rep-
resenting super-pixel portions of the scene. The mul-
ti-layer-integration Graph Attention Network (GAT) 
model is proposed to handle Multi-Label Remote 
Sensing Image Scene Classification (MLRSSC), 
where the GAT is one of the latest advancements in 
GNN. Extensive trials on two public MLRSSC da-
tasets show that the proposed approach outperforms 
other approaches. 

Several Graph Convolutional Networks (GCNs) [46], 
were investigated to analyze RS images to better 
understand their semantics which could be effective 
in land cover mapping. The simplification of the 
complexity, and the optimal control of the number of 
influential neighbors of the nodes were serious chal-
lenges. 

High-order graph convolutional network was 
adopted for remote sensing scene categorization 
(H-GCN) [47]. During CNN feature learning, the pro-
posed method incorporates an attention mechanism 
to focus on critical image components. An advanced 
graph convolutional network is used to analyze class 
dependencies (see Figure 11). An attentive CNN 
feature from each semantic class describes each node 
in the graph. It is possible to obtain a more inform-
ative representation of nodes by blending neighbour 
information of nodes in different orders. The dis-
criminative feature representation for scene classi-
fication eventually combines H-GCN and attention 
CNN node representations. A summary of the current 
application of GNN in the RS domain is illustrated 
in Table 3.

Table 3. A summary of GNN for image analysis applications.

ApplicationArchitectureSummary

Object detectionGraph Attention NetworkIn object detection, and region classification. GNNs are used 
to calculate interested features, and region classification 
respectively.

Object detectionGraph Neural Network
ClassificationGraph CNN
Semantic 
Segmentation

Graph LSTM/Gated Graph Neural Network /
Graph CNN/Graph Neural Network

In Semantic segmentation, GNN is utilized to handle regions in 
images which are often not grid-like and need non-local information

https://www.sciencedirect.com/topics/computer-science/convolution-theorem


43

Journal of Environmental & Earth Sciences | Volume 05 | Issue 01 | April 2023

3.7 Generative	Adversarial	Networks	(GANs)

Generative adversarial networks (GANs) [48], 
were presented as a novel technique for general 
data samples that simulate the original data distribu-
tion. Typically, GAN network is comprised of two 
sub-networks: Generative (G) and Discriminative 
(D). The Generative Network (G) maps a nonlinear 
function between random vectors and the desired 
image space. Under other conditions, the Discrimi-
native Network (D) differentiates whether the pro-
duced data belong to the probability distribution of 
real data. Theoretically, GANs are built upon a game 
theoretical scenario whereas the generator had to 
compete against a discriminator [40].

Figure 12 depicts a GAN general structure. The 
generator network (G) directly generates samples 
shares training data distribution using random noise 
(v). The discriminator network (D) seeks to distin-
guish between samples from the training data and 
those from the generator. While the discriminator D is 
taught to maximize 
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Figure 12. A typical GAN architecture in classification context.

To tackle hyperspectral challenges, the authors 
presented the Caps-TripleGAN framework [49], that 
integrated generative adversarial and CapsNet. The 
proposed end-to-end framework utilized a 1-D struc-
ture for sample generation. Another work introduced 
adversarial learning and the Variational Autoencoder 
(VAE) [50] was integrated to effectively classify hy-
perspectral imagery. The proposed method employed 
a conditional variational autoencoder with an adver-
sarial training process to produce a spectral sample.

Since the introduction of GANs different types 
had been proposed such as conditional GAN. The 

Figure 11. Scene classification framework of [47] method.
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authors offer new sample weighting and class adver-
sarial training algorithms that combine SAR comple-
mentary characteristics [51]. A distribution and struc-
ture match auxiliary classifier generative adversarial 
network (DSM-ACGAN) was built. In DSM-AC-
GAN class adversarial training, statistical distribu-
tion and spatial structure are concurrently explored. 
DSM-ACGAN, on the other hand, uses real SAR 
image features to train generative models for each 
category. However, it also instructs the discrimina-
tor to capture both statistical and structural aspects. 
Class adversarial processing increases discriminative 
feature learning and adds to classification. It is also 
possible to generate class-balanced samples.

An improved GAN framework incorporated 
with Autoencoder (AE) to extract features advances 
semi-supervised and unsupervised learning [52]. The 
extracted features are combined with Multi-Clas-
sifier (MC) for better context classification. SAR 
multi frequency bands (L, C and X-bands) were ef-
fectively classified demonstrating the superiority of 
the proposed framework in terms of training stability 
and mode preservation. The authors presented GAN 
for land cover classification for different sources. 
The proposed GAN utilized FCN network for pixel 
classification of land covers [53]. A sea fog detection 
approach using Super-Pixel-Based Fully Convolu-
tional Network (SFCNet) [54], named SFCNet was 
introduced. A fully connected Conditional Random 
Field (CRF) model was integrated to map the pixels’ 
dependencies. 

3.8 Attention-based models

Recently, attention has become a key term in DL 

architectures thanks to its ability to simulate human 
biological systems by focusing on distinct sections 
when processing enormous volumes of data. This 
section provides an overview of recent attention 
models. So far, DL has been difficult to interpret due 
to the lack of interpretability in practical and ethical 
concerns. The attention mechanism [55,56] helps to 
give distinct information with varying weights. Giv-
ing larger weights to important data draws the DL 
model’s attention to it. Typically, existing attention 
models can be categorized based on four criteria: 
Softness of attention, input feature types, input rep-
resentation, and output representation (see Figure 
13). 

Accordingly, attentions are grouped in the RS 
domain [57] into two main types namely: Channel and 
spatial, as shown in Figure 14. A new deep learning 
framework, named aTtentive weAkly Supervised 
Satellite image time sEries cLassifier (TASSEL) [58], 
was introduced to tackle time series land cover map-
ping. The proposed framework utilizes multifarious 
information instead of aggregating item statistics 
via the integration of graph attention mechanism 
and self-attention mechanism. A Spectral-Spatial 
Self-Attention Network (SSSAN) for HSI classifi-
cation was proposed [59]. The proposed architecture 
is composed of two subnetworks namely spatial and 
spectral. The spatial self-attention module is integrat-
ed into the spatial subnetwork to enrich patch-based 
contextual information about the center pixel. On 
the other hand, a spectral self-attention module was 
integrated into the spectral subnetwork to take use 
of long-range spectral correlation over local spectral 
features. 

Figure 13. Several typical approaches of attention mechanisms [56].



45

Journal of Environmental & Earth Sciences | Volume 05 | Issue 01 | April 2023

Figure 14. A simple illustration of the channel and spatial atten-
tion types/networks, and their effects on the feature maps [57].

3.9 Deep learning optimization techniques

Traditional machine learning has traditionally 
avoided the general optimization complexity by 
carefully crafting the objective function and con-
straints to ensure the convexity of the problem of 
optimization. In training neural networks, the gener-
al no-convex situation had to be addressed. This sec-
tion outlines the most influential challenges involved 
in optimizing deep model learning such as:

Local Minima: The grandfather of all optimi-
zation problems. The local minima is a permanent 
challenge in the optimization of any deep learning 
algorithm. The local minima problem arises when 
the gradient encounters many local minimums that 
are different and not correlated to a global minimum 
for the cost function. 

Inexact Gradients: Many deep learning models in 
which the cost function is intractable force an inexact 
estimation of the gradient. In these cases, the inexact 
gradients introduce a second layer of uncertainty in 
the model.

Flat Regions: In deep learning optimization mod-
els, flat regions are common areas that represent 
both a local minimum for a sub-region and a local 
maximum for another. That duality often causes the 
gradient to get stuck.

Local vs. Global Structures: Another very com-
mon challenge in the optimization of deep learning 

models is that local regions of the cost function don’t 
correspond with its global structure producing a mis-
leading gradient.

The most popular optimization method for deep 
learning is Stochastic Gradient Descent (SGD) [60]. 
The gradient estimates downwards. The learning rate 
is an important element in SGD. The learning rate 
must be decreased gradually in practice. The learn-
ing rate is one of the most difficult hyperparameters 
to establish in neural networks since it affects model 
performance. It uses a heuristic method to modify in-
dividual model parameter learning rates during train-
ing [61]. The concept is simple: If the partial deriva-
tive of the loss is positive, the learning rate should 
be positive. This should slow learning if the partial 
derivative changes sign. Examples include Adaptive 
Gradient Algorithm (AdaGrad), Root Mean Square 
Propagation (RMSProp), and Adaptive Moment Es-
timation (Adam). 

The AdaGrad algorithm individually adapts all 
model parameters to their learning rates by inversely 
proportionally scaling them to the square root of the 
sum of all the squared historical gradient values [62].  
The parameters with the largest partial derivatives 
of the loss decreased their learning rate rapidly 
while the parameters with small partial derivatives 
decreased their learning rate slowly. The RMSProp 
algorithm [63] modifies AdaGrad to improve non-
convex performance by changing the accumulation 
of gradients to an exponentially weighted moving 
average. In a convex function, AdaGrad is designed 
to converge rapidly. Empirically, RMSProp has been 
shown to be an efficient and practical optimization 
algorithm for deep neural networks. Another adap-
tive algorithm for optimizing the learning rate is 
Adam [64].

4. Deep learning in remote sensing
As mentioned before, RS image classification is 

not limited to classification approaches, but extended 
to image segmentation, and object detection. This 
section discusses the recent efforts introduced by RS 
scientists.
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4.1 Image classification

Recent efforts had successfully generalized to 
boost the performance of vintage CNNs in remote 
sensing classification problems. However, the insuf-
ficient number of labelled remote sensing and the 
complex nature of remote sensing imageries are still 
considered a limitation to supers the CNN perfor-
mance in the remote sensing domain. Transfer learn-
ing, fine-tuning and ensemble learning were popular 
strategies to alleviate this limitation. 

Xie et al. presented a scale-free CNN (SF-CNN) 
model for remote sensing scene classification [65]. 
The proposed architecture effectively overcomes the 
problem of fixed-size input images for pre-trained 
CNN architecture. The proposed model contains two 
main components: Fully Convolution Layers (FCLs) 
and an extra Global Average Pooling (GAP) layer. 
Experiments conducted on real data sets showed the 
superior performance of the proposed model com-
pared with other classification methods. 

In an end-to-end Feature Aggregation CNN 
(FACNN) was presented that utilized the interme-
diate features. The pre-trained VGG-16 model was 
adopted as a backbone to extract the intermediate 
features and then fed to the feature encoding module. 
To obtain discriminative scene representation, the 
classic SoftMax classifier is employed to obtain the 
semantic labels from the scene representations. An 
end-to-end learning model called Skip-Connected 
Covariance (SCCov) network was introduced for 
scene classification [66]. Skip connections and covari-
ance pooling are embedded into the traditional CNN 
model. To achieve a more representative feature, 
skip connections architecture allows multi-resolution 
feature maps to combine together, and the covariance 
pooling to fully exploit the second-order information 
contained in such multi-resolution feature maps. The 
proposed architecture has only 10% of the param-
eters used by its counterparts. Experimental results 
demonstrate the effectiveness of the proposed model 
compared with the state-of-the-art techniques. 

Fang et al. [67] introduced a feature representation 
method that incorporates frequency domain with 
traditional space domain. A weight spatial pyramid 

matching scheme was investigated to improve the 
performance of classification [68]. Several experi-
ments on benchmark datasets demonstrate the superior 
performance of the proposed algorithm. Liu et al. intro-
duced Siamese CNN, which combined the identifi-
cation and verification models of CNNs. In addition 
to a metric learning regularization term imposed 
through CNNs to enforce more robust with the Sia-
mese networks [69]. 

A bidirectional adaptive feature fusion strategy 
was investigated [70]. Deep features and the SIFT fea-
tures were extracted using CNN and SIFT filters re-
spectively, then fused both features to obtain a more 
discriminative representation and overcome the scale 
and rotation variability with the usage of the SIFT 
feature. Zhang et al. [71] proposed a new architecture 
named CNN-Caps Net. The proposed architecture 
has two parts. The first part is a pre-trained VGG-16 
whose intermediate convolutional layer is utilized as 
a primary feature extractor. In the second part, the 
extracted features are fed into CapsNet. To overcome 
the scarcity of labelled samples, unsupervised learn-
ing-based generative adversarial networks [72] were 
introduced to generate training samples instead of 
augmentation techniques.

4.2 Image segmentation

Various efforts had been conducted to integrate 
the recent DL semantic segmentation techniques in 
the RS domain. DL image segmentation models in 
computer vision have been on the rise since 2014, as 
seen in Figure 15. An adaptive mask Region-based 
Convolutional Network (Mask-RCNN) [73] is devel-
oped for multi-class object detection in remote sens-
ing images. Data augmentation, and transfer learning 
were used to address a variety of scales, sizes, and 
densities of remote-sensing objects. Another effort 
was developed [74], to extract crops from satellite im-
ageries based on Mask RCNN. A road segmentation 
approach based on DeepLab v3 [75] was proposed by 
incorporating Squeeze-and-Excitation (SE) module 
in order to apply weights to different feature chan-
nels and performs multi-scale upsampling to pre-
serve and fuse shallow and deep information. Unbal-
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anced road samples problem in RS images, different 
loss functions and backbone network modules were 
evaluated during training. 

Acone karst landscape identification based on 
DeepLab V3+ network [76] was proposed for mul-
ti-source data. Optical images and DEM data were 
used to generate the training samples. The input 
module of DeepLab V3+ network was altered in or-
der to handle a four-channel image. 

4.3 Object detection

Extensive studies have been devoted to studying 
object detection in optical and SAR images [79]. Figure 
16 illustrated the history of DL image object detection 
models in computer vision since 2014. Many research-
ers in the RS domain are using the R-CNN pipeline to 
recognize various geographical items in remote sensing 
imageries due to its superior performance in detecting 
natural scene image objects [77-79]. 

The authors [66,80] integrated a rotation-invariant 
CNN within the R-CNN framework for effective 
multi-class geospatial object detection. To further boost 
state-of-the-art of object detection. A novel strategy 
to train the CNN model called (RIFD-CNN) [81], was 
proposed by applying a rotation-invariant regularizer 
and a fisher discrimination regularizer. To accom-

plish precise localization of geospatial objects in HR 
images. Long et al. proposed an RCNN-based Un-
supervised Score-Based Bounding Box Regression 
(USB-BBR) technique [78]. Despite the fact that the 
aforementioned strategies have shown to be effective 
in the RS community, they are nonetheless time-con-
suming since these methods rely on human-designed 
object  proposal-generating methods, which con-
sume the majority of running time. Furthermore, the 
quality of region suggestions developed based on 
hand-engineered low-level characteristics is poor, 
resulting in poor object identification performance.

Several studies extended the architecture of Fast-
er R-CNN to the earth observation community [82-88]. 
For instance, Li et al. [84] developed a rotation-insen-
sitive Region Proposal Network (RPN) by inserting 
multi-angle anchors into the existing RPN based on 
the Faster RCNN pipeline.

A double-channel feature combination network 
is also meant to learn local and contextual properties 
to address appearance uncertainty. Zhong et al. [85] 
used PSB to improve the quality of generated region 
proposals. For object detection, the suggested PSB 
framework featured FCN [36] based on the residual 
network [22]. The authors proposed a deformable 
CNN to model object changes in which non-maxi-
mum suppression [88,89] bound was established by as-

Figure 15. Timeline of representative DL-based image segmentation algorithms.
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pect ratio to eliminate misleading region proposals. 
To increase vehicle detection accuracy, the au-

thors presented a Hyper Region Proposal Network 
(HRPN) to locate vehicle-like regions [90]. Although 
applying region proposal-based methods such as 
R-CNN, Faster R-CNN, and its variations to rec-
ognize geographical objects in Earth observation 
photos shows tremendous promise, amazing efforts 
have been made to explore other deep learning-based 
methods [91-95]. To determine object centroids, a ro-
tation-invariant method [95] was employed based on 
super-pixel segmentation to build local patches, deep 
Boltzmann machines to construct high-level feature 
representations of local patches, and finally a series 
of multi-scale Hough forests to cast rotation-invari-
ant votes. To detect ships, Zou and Shi [96] employed 
a singular value decompensation network to create 
ship-like regions, followed by feature pooling and a 
linear support vector machine classifier. While this 
detection approach is intriguing, the training method 
is cumbersome and slow. 

Recently, some studies have attempted to trans-
late regression-based object detection approaches de-
veloped for natural scene images to remote sensing 
images. Tang et al. [94] used a regression-based object 
detector to detect vehicle targets. Specifically, the de-
tection bounding boxes are generated by adopting a 
set of default boxes with different scales per feature 
map location. Moreover, for each default box the 
offsets are predicted to better fit the object shape. Liu  
et al. [92] adopted a single-shot multi-box detector 

(SSD) framework but replaced the traditional bound-
ing box with a rotatable bounding box from [97], in 
order to help to estimate objects despite their orien-
tation angles. Liu et al. [93] developed an effective 
approach to detect arbitrary-oriented ships based on 
YOLOv2 architecture. 

In addition, hard example mining [90,94], transfer 
learning [83], multi-feature fusion [98], and non-maxi-
mum suppression [89] are widely designed for geospa-
tial object detection and enhance the performance of 
computer vision deep learning-based approaches [82]. 
The current stream of deep learning-based methods 
(e.g., R-CNN, Faster R-CNN, SSD, etc.) has prov-
en substantial achievement in detecting geospatial 
objects. Earth observation photographs vary con-
siderably from natural scene images, particularly in 
terms of rotation, scale variation, and complex and 
cluttered backgrounds [87]. 

4.4 Training strategies 

A deep Convolutional Neural Network (CNN) 
can be challenging to train from scratch since it 
requires a significant quantity of labelled training 
data and much skill to guarantee that the network 
converges properly. Typically, feature extraction and 
fine-tuning of an already pre-trained network are po-
tential options to be considered in RS (Figure 17).

Feature Extraction: The pre-trained CNN is em-
ployed as a feature generator. Specifically, an input 
image is fed to the pre-trained CNN, which then ex-

Figure 16. Timeline of progress of deep learning object detection methods.
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tracts features from a specific layer of the network. 
The features are utilized to train a new pattern clas-
sifier. In another word, to transfer knowledge from 
one model to another with no training involved, the 
feature extraction technique is considered the key to 
learning features from a pre-trained model and train-
ing another (much smaller model) in order to achieve 
an outstanding result in a short amount of time.

Fine-Tuning: The weights of the early convolu-
tion layers are freezing while fully connected layers 
may be replaced with a new logistic layer relative to 
the application in hand. A labeled dataset is adopted 
to train the model while lowering the learning rate.

Figure 17. A comparison between feature extraction and 
fine-tuning training strategies.

4.5 Loss functions

Typically, the loss functions applied in image 
classification problems are categorized into distribu-
tion-based losses (minimize dissimilarity between 
two distributions), and region-based losses (minimize 
the mismatch or maximize the overlap regions be-
tween the two images) [99,100]. A common practice is 
to evaluate a small subset of the available loss func-
tion to avoid the impracticability of experimenting 
with all available loss functions. 

Several studies compared the performance of 
different loss functions namely: Cross-entropy loss, 
focal loss, Tversky loss, dice loss, and contrastive 
loss to evaluate their performance in RS datasets. 
One can conclude that contrastive loss and weighted 
combined loss are widely used in RS applications 
due to the complex distribution of objects and their 
imbalance nature. Figure 18 depicted the famous 

distribution-based, region-based, and compound loss 
functions adopted in DL for the RS domain.

Figure 18. The famous distribution-based, region based, and 
compound loss functions.

4.6 Performance evaluation

Typically, the preparation of training examples 
is generally challenging as it requires significant 
labor and time to evaluate the DL performance mod-
el. Various evaluation metrics were employed that 
are commonly used in classification problems as 
described in Table 4. Typically, True positive (TP), 
False Negative (FN), False Positive (FP) and True 
Negative (TN).

Table 4. Classification evaluation metrics.

Evaluation metric Value
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5. Deep learning challenges in remote 
sensing domain

Undoubtedly, RS image classification has bene-
fited tremendously from DL models. DL approaches 
have suppressed human-level accuracy. This section 
discusses the exciting challenges to tackle.
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5.1 Uncertainty	and	balance between accuracy 
and efficiency

Models should establish their trustworthiness. The 
proposed models in the RS domain should utilize 
Bayesian/probabilistic inference to explicitly describe 
and propagate uncertainty. Identifying and treating ex-
trapolation is also important. The contradiction between 
the accuracy and efficiency obtained from the models 
is considered a major challenge. The models with good 
efficiency (e.g., SegNet and ENet) fail to provide suffi-
ciently accurate results in the RS domain. 

5.2 Dependency on high-quality training data

To achieve acceptable accuracy, high-quality 
training datasets are required. However, collecting 
high-quality training data (sufficiently labeled on 
pixel-level annotation) is considered a hard and 
time-consuming task that depends on human labor.

5.3 Domain gap across different datasets

A domain gap is derived from the fact that typi-
cal deep learning models were introduced for vision 
tasks. The complexity of RS data impacts model per-
formance in almost all RS applications. Since differ-
ent datasets are created for different RS applications, 
they may differ in class number, scene look, dataset 
size, object size, etc. In this case, the discrepancies 
widen the distance between heterogeneous areas. 
Therefore, RS are encouraged to consider different 
techniques (transfer learning, data augmentation, 
etc.) to overcome the domain gap issue when apply-
ing DL models in their applications.

6. Recent deep learning advances in 
remote sensing domain

This section introduces several promising re-
search directions to advance RS image classification 
algorithms.

6.1 Reinforcement learning

Reinforcement learning (RL), is an area of Ma-

chine Learning, which involves taking suitable ac-
tion to maximize reward in a given scenario. It is 
employed by various software and machines to find 
the best possible behavior or path it should take in 
a specific situation. Reinforcement learning differs 
from supervised learning in a way that in supervised 
learning the training data has the answer key with 
it, so the model is trained with the correct answer 
itself whereas in reinforcement learning, there is no 
answer but the reinforcement agent decides what 
to do to perform the given task. In the absence of a 
training dataset, it is bound to learn from its expe-
rience. Combining HR images with machine learn-
ing [101], enables the scientist to address the poverty 
mapping problem. However, HR images come with 
costs and limits of scalability. RL may be utilized in 
combination with free low-resolution photography 
to dynamically identify where to gather expensive 
HR imagery, before doing deep learning on the HR 
images. Another work was introduced to utilize rein-
forcement learning in searching optimized parame-
ters of deep learning model [102].

6.2 Knowledge distillation

Deep neural network shows a staining perfor-
mance at the research level. However, its deploy-
ment is troublesome to utilize in limited hardware or 
in real-world environments due to the high computa-
tional cost and the required massive volumes of labe-
led data in training. To address the above problems, 
several model compression methods were studied 
to transfer the knowledge from complex architec-
ture neural networks to compact lightweight models 
while sustaining performance [103]. 

Neural network compression is categorized into 
four main groups: Pruning and quantization [104], 
low-rank factorization [105], compact convolution fil-
ters [106], and Knowledge Distillation (KD) (Hinton 
et al., 2015). Pruning demands a massive number of 
iterations to converge to eliminate the nonessential 
parameters of the performance. Low-rank factoriza-
tion utilized the matrix decomposition to estimate 
relevant parameters and remove the rest using tensor 
decomposition. Compact convolution filters sub-
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stitute extensive parameter convolution filters with 
lightweight blocks. Finally, KD [103] is a simple yet 
effective approach to transfer or distill the repre-
sentative knowledge from the large neural network 
(teacher) into the thin compressed network (student). 
The main objective of the KD is minimizing the di-
vergence of the probabilistic outputs of teacher and 
student networks. The student network is trained to 
capture the teacher network’s significant representa-
tion. Knowledge distillation [107] has been widely 
adopted by different architectures [108] and learn-
ing tasks [109]. Adversarial methods also have been 
utilized for modeling knowledge transfer between 
teacher and student [108]. 

6.3 More challenging datasets

Several large-scale RS image datasets have been 
created for object-based and pixel-based classifica-
tion. However, more challenging datasets for differ-
ent types of RS images are still required. Datasets 
containing a large number of overlapping objects of 
varying spatial resolutions would be very valuable. 
This can improve training models that are better at 
handling common scenarios in the real-world. Large-
scale 3D RS image collections are in high demand 
because of the increasing popularity of 3D RS image 
datasets. These datasets are more difficult to create 
and effectively annotated compared with their low-
er-dimensional counterparts. Most 3D datasets are 
typically too small, and some are synthetic, therefore 
larger, and more challenging 3D image datasets can 
be extremely valuable.

6.4 Interpretable deep models

Despite the encouraging performance of DL 
modes, several concerns remain. For example, how 
and what do deep models learn? What is a minimal 
neural architecture that can accurately classify da-
tasets? While methods exist to visualize the learned 
convolutional kernels, a detailed analysis of their be-
havior/dynamics is missing. A better understanding 
of the conceptual and theoretical aspects of the mod-
els may lead to improved models tailored to specific 

classification scenarios.

6.5 Weakly-supervised and unsupervised learning

Unsupervised learning and weakly supervised 
(few-shots) are currently hot research topics. Col-
lecting labelled samples for RS pixel-based classifi-
cation is difficult in many application areas. Transfer 
learning, which adopted a trained model on a large 
number of labelled examples (from a public bench-
mark), then fine-tuned on a few samples from a tar-
get application. Self-supervised learning is gaining 
popularity in several areas. Self-supervised learning 
can collect features to train efficient classification 
models with significantly fewer training data. Re-
inforcement learning models may potentially be a 
future approach for RS image classification. 

6.6 Real-time models

Accuracy is considered a significant factor in 
model performance, however many applications 
(autonomous driving, disaster management, and 
land cover mapping) require running in real or near 
real-time. Also, some applications may be installed 
in limited memory and processing setting (mobile 
applications), but to fit them into specific devices, 
such as mobile phones, the networks must be sim-
plified. Dilated convolution models, simpler models, 
and knowledge distillation approaches help speed up 
segmentation models, but there is always room for 
improvement.

6.7 Zero-shot learning

Zero-Shot Learning (ZSL) [110] uses the derived 
intermediate semantic knowledge to detect objects 
that have not been observed during training, which 
potentially extends the ability of machine learning 
algorithms in problem-solving skills. ZSL transmits 
semantic knowledge, making it an excellent comple-
ment to supervised learning. Thus, ZSL may learn to 
detect novel unseen classes that have no training ex-
amples by connecting them to see classes that were 
previously learnt. A Generalized Zero-Shot Learning 
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(GZSL)-based PolSAR land cover classification sys-
tem is proposed [111]. Initially, basic semantic features 
were gathered to define typical land cover categories 
in PolSAR images. In the training stage, latent em-
bedding may be used to get the projection between 
mid-level polarimetric information and semantic 
characteristics. Semantic relevance and mid-level 
polarimetric characteristics form the GZSL model 
for PolSAR data. Finally, the test instances’ labels 
may be anticipated for some unknown classes. 

6.8 UAVS,	drones, and LiDAR

UAVs, as well as drones, deliver images and 
videos with very high-resolution amenable to be uti-
lized in various applications [112] such as live-stock 
monitoring, crop production, yield prediction, and 
soil mapping [113]. Many sensors can be embedded in 
a UAV or drone, such as weather sensors, cameras, 
and LiDAR sensors. The obtained sensor data can be 
integrated into real-time decision-making in many 
fields [114]. LiDAR technology can create detailed 
topography maps and Digital Elevation Models 
(DEMs) necessary for land segmentation, and crop 
analysis field management. LiDAR technology is 
highly valuable in the geospatial community, with 
the massive data amounts amenable to utilization in 
a diversity of applications. Point clouds are 3D un-
structured data that present many challenges for clas-
sic CNN settings. Few studies have focused on 3D 
point clouds. However, the 3D point cloud is gaining 
popularity in many applications in 3D modelling 
(self-driving and building modelling). Graph-based 
deep models may be considered as a potential area 
for point-clouds classification.

7. Recent deep learning in remote 
sensing application

This article briefly compares different deep-learn-
ing methods in the field of RS. Typically, one can 
observe that CNN is the most popular DL model to 
study and spectral-spatial features of earth observa-
tion images in classification, and object detection. 
The following sections review the most frequent RS 

applications.

7.1 Agriculture applications

Agriculture researchers have introduced some ap-
proaches, such as Transformation Learning (TL) [26]  
and Low Batch Learning (FSL) [27], so that deep 
learning models are not dependent on datasets [115]. 
The TL has been successfully used to identify herbs 
and diseases [30]. Also, FSL was found to be use-
ful in identifying plant diseases [31-33]. The research 
estimates the growth stage of wheat and barley by 
classifying nearby images using Convolutional 
Neural Networks (ConvNets), and the classification 
was done using three different machine learning 
methodologies: A 5-layer ConvNet model, a transfer 
learning based on a VGG19 pre-trained network, and 
a support vector machine with conventional feature 
extraction [116]. Regarding the growth classification, 
the ConvNet learning transfer network has a much 
smaller training time than the built-in ConvNet mod-
el from scratch. The objectives of the research are to 
develop raw image-based deep learning methods for 
predicting the outcome in the field, and to study the 
sharing of multi-time images for grain quantities pro-
duced using handcrafted features and WorldView-3 
and PlanetScope images, respectively [117]. 

7.2 Oceanography and sea ice mapping

Ocean remote sensing has reached the five-V 
(volume, variety, value, velocity, and veracity) age 
with the continual advancement of space and sensor 
technology over the previous 40 years. Globally, 
ocean remote sensing data archives top tens of peta-
bytes, and satellite data is gathered regularly. It’s dif-
ficult to harvest meaningful information from ocean 
remote sensing data sets. Its advantage over tradi-
tional physical or statistical-based methods for im-
age extraction in several industrial fields has sparked 
interest in ocean remote-sensing applications. Two 
deep-learning frameworks were examined for the 
classification of ocean internal-wave/eddy/oil-spill/
coastal-inundation/sea-ice/green-algae, and ship/
coral-reef mapping [118]. SAR images were analyzed, 

https://www.mdpi.com/2072-4292/14/3/559/htm#B30-remotesensing-14-00559
https://www.mdpi.com/2072-4292/14/3/559/htm#B31-remotesensing-14-00559
https://www.mdpi.com/2072-4292/14/3/559/htm#B33-remotesensing-14-00559
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ice charts as labelled data, and neural networks could 
efficiently classify ice kinds [119]. The SAR pictures 
were cropped into sub-regions based on the Canadi-
an Ice Service (CIS) image analysis ice chart’s lati-
tude and longitude coordinates, and each sub-region 
was handled as an independent sample. Two neural 
networks namely: A modified U-Net and a DenseNet 
were adopted on the three-class dataset with dual-pol 
HH and HV setup, DenseNet obtained the greatest 
overall accuracy of 94.02 percent and ice accuracy 
of 91.75 percent. 

For sea-ice image classification, the architecture 
of the SAR & optical images deep learning network 
was designed by extracting features and merging het-
erogeneous data at the feature level [120]. For the SAR 
images, the enhanced Spatial Pyramid Pooling (SPP) 
network was used and texture information about sea 
ice was extracted at different scales depending on 
the depth. As for the optical data, multilevel feature 
information about sea ice such as spatial and spec-
tral information of different types of sea ice was 
extracted using Path Aggregation Network (PANet), 
which allowed the use of low-level features due to 
the feature of incremental extraction by the convo-
lutional neural network. An advanced deep learning 
(DL) model was introduced to classify sea ice and 
open water from synthetic aperture radar (SAR) 
images [121]. U-Net was used as a backbone model 
for pixel-level segmentation. A DL-based feature 
extraction model, ResNet-34, was used as an U-Net 
encoder. To increase the accuracy of classifications, 
the original U-Net is combined with the dual atten-
tion mechanism, so as to obtain a better representa-
tion of the features, and also to form a dual attention 
U-Net (DAU-Net) model. The MobileNetV3 deep 
learning model is used as the backbone network [122], 
and the input samples are multi-scales, and merge 
the backbone network with multiscale feature fusion 
methods to develop a deep learning model named 
Multiscale MobileNet (MSMN). The MSMN accu-
racy was about 95% classification using SAR sea ice 
images and results show that dual-polarization data 
achieve better classification accuracy. For compar-
ison, other classification models were trained using 

the training data of this paper, and the average ac-
curacy of MSMN was found to be higher than that 
obtained from the model made using Convolutional 
Neural Networks (CNNs) and ResNet18 models. To 
improve classification performance, a framework for 
raindrop removal was introduced [123]. Images of sea 
ice are categorized into ice, water, ship and sky [86], 
by training three deep learning semantic segmenta-
tion networks, they are VGG-16, FCN, and pyramid 
scene parsing network. To make the training process 
better, transfer learning is done in addition to data 
augmentation. The results showed that data augmen-
tation operations improved the performance of the 
three models. Also, the raindrop removal framework 
improves performance, the average intersection is 
higher than that of the VGG-16 Union.

7.3 Disaster and environmental monitoring

There is no doubt that the era of big data and 
deep learning has opened new options for disaster 
management, thanks to the diverse capabilities it 
provides in visualizing, analyzing, and predicting 
disasters. The integration of big data and DL has 
completely altered the strategies followed by human 
societies and disaster management agencies to re-
duce human suffering and economic losses resulting 
from disasters. In our world which is now mainly 
dependent on information technology, the main 
goal of computer experts and decision-makers is to 
make the best of model by gathering information 
from different sources and formats and storing it 
in effective ways to be used effectively in different 
stages of disaster management. The availability of 
various big data sources such as satellite imageries, 
Global Positioning System (GPS) traces, mobile Call 
Detail Records (CDRs), social media posts, etc., in 
conjunction with the enhancements in data analytic 
techniques (e.g., data mining, machine learning, and 
deep learning) can facilitate geospatial information 
extraction, that is crucial for immediate and effective 
disaster response. The research [124] introduced a deep 
neural network approach for detecting submerged 
stop signs in images of flooded roads and intersec-
tions, as well as detecting Canny and probabilistic 

https://www.sciencedirect.com/topics/social-sciences/neural-network
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Hough transform for estimating pole length and 
floodwater depth. They developed a classification 
model using deep neural networks that successfully 
identified affected areas using grounded images [125]. 
These areas were removed from social media plat-
forms that were downloaded immediately after the 
disaster. Thus, this can facilitate the acceleration of 
the recovery process, by marking the areas where the 
disaster has a greater impact than other areas.

7.4 Archaeology applications

Geospatial data and imageries are the most ac-
tive field for archaeologists utilizing deep learning. 
Rarely can archaeology create the vast volumes of 
systematically coded data required for ML [126]. As a 
result, the increased availability of large-scale lidar, 
satellite, and aerial photography is changing archae-
ology globally, notably the finding and mapping of 
ancient sites. DL algorithms can analyze geograph-
ical data to find locations in various contexts. This 
method can determine the contribution of different 
variables that predict where sites are found across 
landscapes. Its many sizes enable archaeologists to 
better manage and investigate heritage at a global 
level. These historic landscape ML methods can help 
mitigate some of the challenges of predictive model-
ling for cultural resource management. This covers 
ways to assess the ML predictions’ internal coher-
ence and to investigate the factors that influence 
the presence or absence of archaeological sites in a 
landscape. This is essential in places where archaeo-
logical sites are difficult to access [127]. Two artificial 
intelligence approaches are introduced [128] over two 
areas of interest in the image processing field. They 
implemented a random forest classifier in their paper 
using the cloud platform of the Google Earth Engine 
data and a Single Shot Detector neural network is de-
veloped too. The final results show that this approach 
can be used in the future to detect scattered pottery 
pieces during the pedestrian archaeological survey, 
even if there is a great spectral similarity between 
the pottery and the surface of the earth. The U-Net 
neural network has been made to perform semantic 
segmentation of the data derived from airborne laser 

scanning cameras for the extraction of archaeological 
features in the Białowieża Forest in Poland [129]. The 
evaluation of the U-Net segmentation model is done 
using a pixel-level similarity measure between the 
ground truth and the predicted segmentation masks. 
The results indicated that the U-Net deep learning 
model is very good at a semantic segmentation of 
images.

7.5 Interferometry applications

While CNNs have shown high object identifi-
cation accuracy in aerial pictures, few researchers 
have used deep-learning techniques and CNNs to 
identify landslides. Yu et al. [130] utilized a CNN and 
an enhanced region growth algorithm (RSG-R) to 
detect landslides. They used the RSG-R algorithm 
to extract discriminant information such as the area 
and border of landslides and determined that their 
CNN approach had excellent detection accuracy for 
detecting landslide features. Landslide identification 
using GF-1 images with four spectral bands and 8 
m spatial resolution for Shenzhen was assessed [131]. 
Their automated landslide detection technique has a 
72.5% detection rate, a 10.2% false positive rate, and 
a 67% overall accuracy. This review indicates the 
potential of employing CNNs for landslide detection 
has not yet been completely explored. CNN was 
adopted to identify landslides using optical satellite 
images from the Rapid Eye sensor (see Figure 19) 
then the obtained results were compared to state-of-
the-art ML techniques, ANN, and SVM [132].

In Wenchuan Baoxing in Sichuan Province, 
China, images of areas where the landslide disaster 
occurred are captured using low-altitude unmanned 
aerial vehicles (UAV) for research [133]. A landslide 
extraction approach based on Transfer Learning (TL) 
model and object-oriented image analysis (TLOEL) 
was introduced; the TLOEL results were compared 
with those of the object-oriented nearest neighbor 
classification (NNC). It is approved that the accu-
racy of the TLOEL method is better than the NNC 
method, which helps to detect and extract finely dis-
tributed medium and small landslides, not just large 
landslides.

https://www.sciencedirect.com/topics/computer-science/hough-transforms
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Another work introduced [134] for volcano defor-
mation detection. The CNN is trained on simulated 
data and is later used to detect phase gradients and 
a decorrelation mask from input-wrapped interfero-
grams to locate ground deformation caused by vol-
canoes. The paper [135] proposes the use of self-super-
vised contrastive learning to learn high-quality visual 
representations within interferometric synthetic 
aperture radar (InSAR) data. A SimCLR framework 
is achieved to find a solution based on a specialized 
architecture or a large classified or synthetic data-
set. The self-supervised pipeline has been shown to 
give higher accuracy compared to the state-of-the-

art methods and shows good generalization for the 
out-of-distribution test data also. The approach is 
approved for its high potential for detecting unrest 
episodes prior to the recent Icelandic volcanic erup-
tion.

7.6 Climate and environmental applications

The remarkable flexibility and adaptability of 
deep learning models enable scientists to identify, 
classify and localize extreme weather events under 
various climate change scenarios. Several attempts 
had been conducted to adopt DL models to study cli-
mate and environment. ClimateNet [136] is pioneer re-

Figure 19. Landslides identification using deep learning framework [132].
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search introduced to analyze a pixel-based detection 
for tropical cyclones (TCs) and atmospheric rivers 
(AC). Another study was conducted to develop the 
Optimized Ensemble Deep Learning (OEDL) frame-
work [137] to forecast waves. 

Reiersen et al. have developed a database named 
ReforesTree that includes data on carbon stocks in 
some forests in Ecuador [138]. The project aims to 
overcome the carbon deficiency in some interested 
forests. A comprehensive deep learning-based model 
that detects trees individually in RGB drone images 
has demonstrated that the forest carbon stocks can 
be professionally calculated according to the official 
standards of carbon offset certification. 

Researchers [139] proposed a deep learning-based 
approach (i.e., U-Net) using the landscape pattern 
using Sentinel-1 data to produce forest harvesting 
maps per month within three years. The variable har-
vest pattern was obtained from Sentinel-1 data using 
the U-Net bottleneck block as the integrated entities. 
This modern approach is an important step in the 
mapping of forest harvesting at monthly intervals of 
forest harvesting as well as in the development of a 
sustainable forest management strategy to assist the 
beneficiaries.

The collection of remote sensing and social sens-
ing data was studied [140] to make informational maps 
showing the extent of the flood. That is why deep 
learning methods are used to deal with heteroge-
neous data. Regarding remote sensing data, it turns 
out that the given deep learning models predict flood 
water much better. In the case of social sensing, two 
layers of data were used as related tweet text and 
images for the case study areas, thus heterogeneous 
data sources could be combined to complement each 
other. After analyzing the results of this study, three 
types of signals are defined: (1) definite signals from 
the two sources, which confirm that water has flood-
ed a specific area, (2) complementary signals that 
give multiple information in a context such as re-
quirements and needs, disaster outcomes or reports, 
and (3) New signals in the event that the two sources 
do not overlap and their information is not repeat-

ed. (4) Novel signals when both data sources do not 
overlap and provide unique information.

8. Conclusions
This article conducted a comparative review to 

inspect the recent cutting-edge research of DL in the 
remote sensing field. DL can help remote sensing 
scientists overcome several challenges in real-world 
applications, such as urban planning, natural hazards 
detection, environment monitoring, vegetation map-
ping, and geospatial object identification. However, 
it required a hefty investment to be integrated. This 
context introduced reviews in DL in RS classifica-
tion, indicating DL’s prominent role in tackling the 
RS challenges. Therefore, ample conclusions were 
drawn:

● The up-raising trend in adopting DL architec-
tures in different applications, the availability 
of free satellite imagery, and the massive com-
putational capabilities and efficient learning 
algorithms help researchers gain insights and 
recommend solutions to several modern chal-
lenges.

● Freely available satellite imageries were em-
ployed effectively in agriculture applications 
and change maps, especially Landsat and Sen-
tinel-2 imagery.

● Extensive studies adopted different machine 
learning methods for RS data processing. In 
the last five years, DL had been adopted in 
several studies, especially in crop mapping 
and Interferometry applications.

● The use of the recent CNN advances (attention, 
GNN, uncertainty) for various applications 
has significantly increased since 2018. This in-
creased rate in modern architectures in RS im-
age classification highlights its effectiveness 
and popularity.
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