
15

Journal of Environmental & Earth Sciences | Volume 05 | Issue 02 | October 2023

Journal of Environmental & Earth Sciences
https://journals.bilpubgroup.com/index.php/jees

*CORRESPONDING AUTHOR:
Qingqing Gui, School of Management, Chongqing University of Technology, Chongqing, 400054, China; Rural Revitalization and Regional 
High-quality Development Research Center, Chongqing University of Technology, Chongqing, 400054, China; Email: guiqingqing@stu.cqut.edu.
cn

ARTICLE INFO
Received: 28 May 2023 | Revised: 2 September 2023 | Accepted: 5 September 2023 | Published Online: 14 September 2023
DOI: https://doi.org/10.30564/jees.v5i2.5745

CITATION
Yang, G.M., Gui, Q.Q., Liu, J.Y., et al., 2023. The Relationship between Water Resources Use Efficiency and Scientific and Technological Innova-
tion Level: Case Study of Yangtze River Basin in China. Journal of Environmental & Earth Sciences. 5(2): 15-35. DOI: https://doi.org/10.30564/
jees.v5i2.5745

COPYRIGHT
Copyright © 2023 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons Attribu-
tion-NonCommercial 4.0 International (CC BY-NC 4.0) License. (https://creativecommons.org/licenses/by-nc/4.0/).

ARTICLE

The Relationship between Water Resources Use Efficiency and 
Scientific and Technological Innovation Level: Case Study of Yangtze 
River Basin in China

Guangming Yang1,2
 

, Qingqing Gui1,2*, Junyue Liu1, Fengtai Zhang1,2, Siyi Cheng1,2

1 School of Management, Chongqing University of Technology, Chongqing, 400054, China 
2 Rural Revitalization and Regional High-quality Development Research Center, Chongqing University of Technology, 
Chongqing, 400054, China

ABSTRACT
The Yangtze River Basin’s water resource utilization efficiency (WUE) and scientific and technological innovation level 

(STI) are closely connected, and the comprehension of these relationships will help to improve WUE and promote local 
economic growth and conservation of water. This study uses 19 provinces and regions along the Yangtze River’s mainstream 
from 2009 to 2019 as its research objects and uses a Vector Auto Regression (VAR) model to quantitatively evaluate 
the spatiotemporal evolution of the coupling coordination degree (CCD) between the two subsystems of WUE and STI. 
The findings show that: (1) Both the WUE and STI in the Yangtze River Basin showed an upward trend during the study 
period, but the STI effectively lagged behind the WUE; (2) The CCD of the two subsystems generally showed an upward 
trend, and the CCD of each province was improved to varying degrees, but the majority of regions did not develop a high-
quality coordination stage; (3) The CCD of the two systems displayed apparent positive spatial autocorrelation in the spatial 
correlation pattern, and there were only two types: high-high (H-H) urbanization areas and low-low (L-L) urbanization areas; 
(4) The STI showed no obvious response to the impact of the WUE, while the WUE responded greatly to the STI, and both 
of them were highly dependent on themselves. Optimizing their interaction mechanisms should be the primary focus of high-
quality development in the basin of the Yangtze River in the future. These results give the government an empirical basis to 
enhance the WUE and promote regional sustainable development.
Keywords: Water resource utilization efficiency (WUE); Scientific and technological innovation level (STI); Coupling 
coordination; Interactive response; Yangtze River Basin
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1. Introduction
Water, as established by UN-Water (2021), serves 

as the fundamental element for all developmental 
processes [1]. It holds significance as both a funda-
mental natural resource and a strategic economic 
asset, playing a vital function in human life, society 
development, and the sustainable advancement of the 
ecological environment [2]. However, the progression 
of social and economic development has resulted in 
a growing universal demand for water resources at 
an approximate rate of 1% per year [3]. Furthermore, 
alongside the vulnerable natural ecological environ-
ment and the utilization of unsound development 
approaches, the issue of water scarcity is becoming 
increasingly evident. Despite China’s position as the 
sixth-largest global holder of water resources, its per 
capita allocation is merely 25% of the global aver-
age level. As a result, China is among the countries 
confronting severe water shortages [4]. It is expected 
that with further expansion of urbanization and eco-
nomic growth, water scarcity will become even more 
severe. This may ultimately hinder the sustainable 
development of regional areas, but the total usable 
water resources cannot be expanded due to economic 
and technical constraints [5]. In this case, improving 
water resource utilization efficiency (WUE) and re-
ducing pollutant discharge are considered two meth-
ods to alleviate the current water resource crisis [6].  
Therefore, scientific evaluation of WUE based on 
consideration of water pollution is of considerable 
significance for improving WUE and optimizing wa-
ter resource allocation [7].

Enhancing WUE stands as a reliable and assured 
approach for China to attain green and sustainable 
development. Therefore, the Chinese government 
has started several reform measures. For instance, 
in 2011, the Chinese government issued a document 
specifically aimed at expediting water conservation 
reforms within the country. This document unambig-
uously emphasized the imperative of strengthening 
water resource management and enhancing compre-
hensive WUE [8]. In the year 2012, the Chinese au-
thorities declared their stance on enforcing a rigorous 
system for managing water resources. They also set 

up three primary goals known as “three red lines”. 
These objectives are controlling water resource de-
velopment and usage, managing water efficiency, 
and reducing pollution in water function areas [9]. 
China has also piloted innovative economic meas-
ures, including water rights and emissions trading. 
For the purpose of prompting sustainable develop-
ment and alleviating the shortage of water resources, 
future development must adhere to these reforms, 
effectively utilize resources, and strictly protect the 
ecological environment. Technological innovation 
has changed the input–output proportion of produc-
tive factors and is the core power in improving the 
WUE [10]. Consequently, it becomes imperative to 
coordinate the Scientific and Technological Inno-
vation (STI) and the water resource capacity. Such 
integration will ultimately lead to the harmonious 
convergence of STI and water resource management, 
culminating in the desired outcomes.

The Yangtze River Basin covers a large portion 
of China and is home to over 40% of the country’s 
population, making its economic growth crucial. 
Despite abundant water resources, the basin’s inten-
sive production activities have led to water shortages 
and pollution. This paper focuses on the harmonious 
relationship between WUE and STI in the Yangtze 
River Basin through a coupling coordination model 
and panel VAR model, aimed at offering recom-
mendations for resolving water resource problems 
and advancing economic development. The paper’s 
structure consists of a literature review of current 
research, a case study introduction, the methodology 
of this paper, results, conclusions, and policy recom-
mendations.

2. Literature review
WUE serves as a significant metric for assessing 

sustainable development at a regional level. At its 
essence, WUE aims to achieve maximum economic 
and social benefits while minimizing water loss and 
environmental pollution. This topic has garnered 
considerable attention among scholars in recent 
years. Scientific evaluation of WUE constitutes the 
initial step towards exploring strategies for balanced 
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development and water resource utilization, and cur-
rently stands as a focal point of research.

Evaluation methods for WUE can generally be 
categorized into two approaches: single-factor eval-
uation and total-factor evaluation. Among them, 
single-factor evaluation methods primarily include 
the index system method [11] and the ratio analysis 
method [12]. For example, Gregg et al. take the ratio 
of agricultural water resources input to agricultur-
al output as an index to measure the WUE [13]. The 
total-factor evaluation methods generally include 
Stochastic Frontier Analysis (SFA) [14,15] and Data 
Envelopment Analysis (DEA) [16,17]. In the research 
on the utilization of total-factor water resources, Car-
valho and Marques explore the scale economy and 
scope economy of the Portuguese water industry by 
using Bayesian SFA [18]. Hong and Yabe applied SFA 
to determine irrigation water efficiency and its effect 
on small tea plantations in Vietnam and found that 
there is a large amount of water resource waste un-
der the condition of diminishing rebound to scale [19]. 
Zhang et al. use DEA based on the relaxation model 
to calculate the utilization ratio of interprovincial ag-
ricultural water resources capacity in China [20]. Gau-
tam et al. use the smooth heterogeneous bootstrap 
program in the DEA method to evaluate irrigation 
water usage efficiency in crop productive efficiency 
in Louisiana, USA [21].

The majority of studies concerning WUE have 
focused on agriculture and industry, focusing on 
the evaluation of WUE as their primary research 
object. This scholarly attention has spurred research 
investigating the driving factors and mechanisms 
that influence WUE. For instance, Segovia-Cardozo  
et al. employed satellite images to estimate crop co-
efficients and evaluated the WUE of major crops in 
four irrigated areas in Spain [22]. Geng et al. utilized 
DEA to assess the water usage efficiency in agricul-
ture across 31 provinces in China from 2003 to 2013, 
revealing a noteworthy improvement post-2008 [23]. 
Chen et al. assessed the industrial WUE in China 
from 2005 to 2015, exploring provincial variations 
and spatial spill-over effects through bootstrap DEA 
analysis [24]. Oulmane et al. calculated the WUE of 

a small horticultural farm in Algeria and employed 
a Tobit model to identify determinants of WUE, 
encompassing factors such as total crop and water 
source count, greenhouse gas emissions percentage, 
level of educational and technical support, and credit 
opportunities for farmers [25]. Wang argued that fac-
tors such as age, gender, education level, and farm-
ers’ awareness of water scarcity impact the irrigation 
efficiency of water resources [26].

The STI serves as a crucial metric for assessing a 
country’s high-quality development. Advancements 
in STI facilitate the development of environmental 
protection technologies, which profoundly influence 
the utilization efficiency of biological resources [27]. 
In recent years, scholars have made notable strides in 
researching the relationship between WUE and STI. 
Kang et al. posit that enhancing water-saving irriga-
tion technology contributes to improved WUE [28]. 
Through empirical research, Miao et al. employ the 
random frontier analysis method and demonstrate 
that technological innovation exhibits a vital positive 
effect on the energy usage efficiency of industries 
between 2000 and 2015, exhibiting a consistent 
upward trend [29]. Wang and Wang, utilizing the gen-
eralized method of moments system regression anal-
ysis, discover that technological development had a 
substantial and positive influence on national-level 
total-factor energy efficiency from 2001 to 2013 [30]. 
However, they also found that technological inno-
vation in central China impeded the advancement of 
total-factor energy efficiency.

Recently, the coupling coordination model has 
gained widespread recognition as an effective tool 
for evaluating the overall development of research  
areas [31]. Prior studies by Xu et al. and Zhang et al. 
have used this method to study the relationship 
between WUE and economic development, as well 
as economic development and the water environ-
ment [32,33]. However, there is little research that has 
utilized this method to study the mutual relationship 
between WUE and STI. Most existing research pri-
marily focuses on the one-way impact of STI on 
WUE, with less attention given to the factors that 
impede the coordinated development of these two 
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systems. To facilitate their harmonized development, 
it is crucial to conduct a systematic evaluation of 
their spatial and temporal characteristics and identify 
the factors influencing their development.

This paper aims to utilize the coupling coordina-
tion model to assess the relationship between WUE 
and STI in the Yangtze River Basin. By establishing 
an overall evaluation index system and measuring 
both WUE and STI, we will analyze the temporal 
and spatial characteristics of their coordinated de-
velopment using a panel VAR model. This empirical 
analysis will provide valuable insights into the posi-
tive interaction between the two systems, ultimately 
supporting the promotion of their coordinated devel-
opment.

3. Methodology and data

3.1 Study area

This study focuses on the research conducted in 
the Yangtze River Basin, which includes its tributar-
ies. The basin boasts a well-developed water system, 
encompassing a water supply and drainage area of 
1.8 million square kilometers, approximately one-
fifth of the total area [34]. Geographically, it spans the 
eastern, central, and western economic zones of Chi-
na, covering 19 provinces, autonomous regions, and 
centrally-administered municipalities. However, the 

region grapples with significant resource imbalances, 
environmental challenges, economic disparities, and 
unbalanced distribution of water resources, which 
hinder the development of the Yangtze River Basin. 
The Yangtze River is categorized into three parts: the 
upper, middle, and lower reaches, with 19 provinces 
allocated to each section accordingly (Figure 1). Hu-
bei and Jiangxi provinces are designated as part of 
the middle reaches, based on both geographical and 
economic regional divisions.

3.2 Methodology

Calculation of ash water footprint
According to the literature [35-37], the gray water 

footprint (TWFɡrey) includes agricultural grey water 
footprint (AWFɡrey), industrial grey water footprint (IW-
Fɡrey), and domestic grey water footprint (DWFɡrey). As 
there are many kinds of water pollutants and the con-
centration difference is large, only the most important 
pollutants are considered when calculating the grey 
water footprint. The specific calculation formula can be 
represented as follows:
TWFɡrey = AWFɡrey + IWFɡrey + DWFɡrey� (1)

Agricultural grey water footprint (AWFɡrey) in-
cludes planting grey water footprint (AWFpla) and aq-
uaculture grey water footprint (AWFbre). Nitrogen in 
the fertilization is the largest origin of aquatic pollu-
tion in the farming industry. The chemical oxygen de-

Figure 1. Study area.
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mand (COD) and total nitrogen in the feces of cattle, 
sheep, pigs, and poultry are the main source factors 
of water deterioration in the breeding industry [37,38].  
For calculating grey water footprint, the grey wa-
ter footprints originating from the same categories 
of pollutants are summed up, and the grey water 
footprints originating from different categories of 
pollutants take the maximum value. The calculation 
formula is as follows:

Figure 1. Study area.
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(3)

A =  A(), A() (4)
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4 ℎ ℎ ℎℎℎ + ℎℎℎ (5)

In the above formula:  is the leaching rate of nitrogen fertilizer;  is the total amount
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quality; ， is the natural local concentration of total nitrogen; () is the grey water
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 and ammonia nitrogen emissions (3 −  ) are the main pollutants in industrial

wastewater [39,40], and the calculation formula of  is as follows:
 =  ()， 3 − (6)
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In the above formula: α is the leaching rate of ni-
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application; CTN, max is the standard concentration of 
total nitrogen concerning water quality; CTN, nax is the 
natural local concentration of total nitrogen; AWFbre(i) 
is the grey water footprint of the aquaculture industry 
of category i pollutants; Lbre(i) is the emission of class 
i pollutants; i is total nitrogen or COD; h refers to 
cattle, sheep, pigs, and poultry; Nh, Dh, fh, uh, Phf, βhf,  
βhu, are the quantity of h, feeding cycle, daily urine 
output, pollutant content per unit of urine, pollutant 
content per unit of faeces, pollutant flow loss rate per 
unit of faeces, and pollutant flow loss rate per unit of 
urine, respectively.

COD and ammonia nitrogen emissions (NH3 – N) 
are the main pollutants in industrial wastewater [39,40], 
and the calculation formula of IWFɡrey is as follows:

 =  ()， 3 − (6)

() =
()

， − ，
(7)

In the formula: () is the industrial grey water footprint of class  pollutants;

() is the discharge amount of class  pollutants in industrial wastewater;  is the pollutant

 or 3 − .

Domestic and industrial sewage belong to point source pollution, and the main pollutants are

 and 3 −  [20,41]. The calculation formula of 3 −  is as follows:
 =  ()，(3−) (8)

  =
 

， − ，
(9)

Method for estimating WUE

In order to ensure objectivity and minimize deviation in efficiency measurement, this paper

employs DEA, a nonparametric frontier approach. DEA is used as the evaluation method for

assessing WUE in this study. Unlike traditional DEA models that do not account for input or

output relaxation, the calculation model [42], addresses this limitation and offers a solution to

overcome this issue.
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where τ is the efficiency value (equal to ρ),  = , − = −, 
 = 

,  = ．

Evaluation model for the comprehensive development level

First, the indicators are dimensionless to eliminate the dimensional difference of the indicator

system, specifically:

' = ( − .)/(. − .) (12)

' = (. − )/(. − .) (13)

where Equation (12) is a positive indicator normalization process, and Equation (13) is a negative

indicator normalization process.

To mitigate potential measurement biases stemming from subjective weighting, this paper

utilizes the entropy weight method. This method is selected due to its strong objectivity,

practicality, and widespread applicability in determining the weights of different indicators. By

employing this method, the study aims to enhance the objectivity and reliability of the weight

allocation process for various indicators [43]:
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Finally, according to the weights of the different indicators, the comprehensive evaluation

indexes of the STI are further calculated:

 = =1
  × ' (15) (15)

CCD model
The CCD model comprises two distinct compo-

nents, namely the coupling degree model and the 
coordination degree model. While the former is re-
sponsible for delineating the extent of system inter-

action, it falls short of capturing the comprehensive 
potency and collaborative impact thereof [44]. Thus, 
the coordination degree model has been introduced 
to encompass both the level of inter-system interac-
tion and the degree of coordinated development. The 
formula for calculating the coupling degree is:
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 is the coupling degree, in which the value is [0, 1]. When  gets smaller, the correlation

and coupling relationship between the two subsystems gets smaller. Otherwise correlation and

coupling relationship between the two subsystems gets larger. The calculation formula for the

degree of coordination is as follows:

 =  ×
 =  +  (17)

where D is the CCD, and the value is (0, 1);  is the overall coordination index of WUE and the

STI, and the value is (0, 1);  and  are undetermined parameters, indicating the weight of the

two subsystems to the overall system. In this paper, both  and  are considered equally

important, so  =  = 0.5.

There is no unified standard for the division of coupled cooperative scheduling in the

academic community. According to the existing research and the actual coupling coordination

value calculated in this paper, the CCD of the two systems is divided into five levels [45], as shown

in Table 1.

Table 1. Coupling coordination level.
D Level

0.0-0.20 Low coordination

0.20-0.40 Basic coordination

0.40-0.50 Moderate coordination

0.50-0.80 Highly coordinated

0.80-1.00 Excellent coordination

Spatial autocorrelation

Spatial autocorrelation is a valuable approach capable of examining the spatial relationships

within data. It helps elucidate the interrelationship patterns and spatial clustering characteristics of

spatial attribute data [44]. Moran’s I is a commonly utilized measure for such analysis, and it

encompasses both global Moran’s I and local Moran’s I. Global spatial autocorrelation is

employed to describe the overall degree of spatial correlation among attribute values within the
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where D is the CCD, and the value is (0, 1); T is the 
overall coordination index of WUE and the STI, and 
the value is (0, 1); α and β are undetermined param-
eters, indicating the weight of the two subsystems 
to the overall system. In this paper, both α and β are 
considered equally important, so α =�β�=�0.5.

There is no unified standard for the division of 
coupled cooperative scheduling in the academic 
community. According to the existing research and 
the actual coupling coordination value calculated in 
this paper, the CCD of the two systems is divided 
into five levels [45], as shown in Table 1.

Table 1. Coupling coordination level.

D Level
0.0-0.20 Low coordination
0.20-0.40 Basic coordination
0.40-0.50 Moderate coordination
0.50-0.80 Highly coordinated
0.80-1.00 Excellent coordination

Spatial autocorrelation
Spatial autocorrelation is a valuable approach 

capable of examining the spatial relationships within 
data. It helps elucidate the interrelationship patterns 
and spatial clustering characteristics of spatial at-
tribute data [44]. Moran’s I is a commonly utilized 
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measure for such analysis, and it encompasses both 
global Moran’s I and local Moran’s I. Global spatial 
autocorrelation is employed to describe the overall 
degree of spatial correlation among attribute values 
within the study area. The specific formula is as fol-
lows:

study area. The specific formula is as follows:

 =
× =1


≠1
 (−)(− )

( =1


=1
  ) × =1

 (−)2
(18)

The above formula  represents Moran’s I,  represents the number of provinces and cities,

 and  represent the CCD at the  and  locations of provinces and cities, respectively, and

 represents the average value of the CCD;  represents the neighborhood relationship

between  and . When  and  are adjacent,  = 1; otherwise, it is 0. The value of global

Moran’s I is in the interval of [–1, 1]. If it is greater than 0, it indicates a positive spatial

correlation. The larger value means an evident spatial correlation. Less than 0 indicates a negative

spatial correlation, and a smaller value means greater spatial difference. The space equal to 0

presents randomness.

Local spatial autocorrelation can be a useful method to further measure the specific location

of the coupling coordination between WUE and STI in local space and then analyze the imbalance

in local space and find the spatial heterogeneity of the coupling coordination. The calculation

formula of local Moran’s I is as follows:

 =
(−)
0  ( − ) (19)

The above formula  represents the CCD value of province and city  ,  represents the

average value of CCD of all provinces and cities,  > 0 represents the spatial clustering

(high-high [H-H] or low-low [L-L]) of observation values similar to the CCD value of a province

and city, and  < 0 represents the spatial clustering (L-H or H-L) of observation values not

similar to the CCD value of a province.

VAR model

The intricate mechanisms of interaction and causality between WUE and STI call for the

adoption of a panel VAR (Vector Autoregression) model. By combining panel data and modeling

techniques, the panel VAR model leverages the strengths of both approaches, enabling the

prediction of the influence of random disturbances on the variables of interest. Thus, the panel

VAR model proves to be a suitable analytical tool for examining the interactive responses between

WUE and STI within the context of the Yangtze River Basin.

3.3 Indicator selection and data sources

Indicator selection

Based on the connotation and characteristics of WUE and STI, with reference to existing

research results, and following the fundamentals of scientificity, comparability, and

representativeness of index selection, select indicators can reflect WUE and STI to a large extent

and build an overall evaluation index system. This is shown in Table 2. When constructing the

evaluation index model of WUE, this paper builds the input and output required by WUE based on

 (18)

The above formulaI represents Moran’s I, n rep-
resents the number of provinces and cities, xi and xj 
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The above formula xi represents the CCD value of 
province and city i,  represents the average value 
of CCD of all provinces and cities, Ii＞ 0 represents 
the spatial clustering (high-high [H-H] or low-low 
[L-L]) of observation values similar to the CCD val-
ue of a province and city, and Ii ＜ 0 represents the 
spatial clustering (L-H or H-L) of observation values 
not similar to the CCD value of a province.
VAR model

The intricate mechanisms of interaction and cau-
sality between WUE and STI call for the adoption 
of a panel VAR (Vector Autoregression) model. By 

combining panel data and modeling techniques, the 
panel VAR model leverages the strengths of both 
approaches, enabling the prediction of the influence 
of random disturbances on the variables of interest. 
Thus, the panel VAR model proves to be a suitable 
analytical tool for examining the interactive respons-
es between WUE and STI within the context of the 
Yangtze River Basin.

3.3 Indicator selection and data sources

Indicator selection
Based on the connotation and characteristics of 

WUE and STI, with reference to existing research 
results, and following the fundamentals of scienti-
ficity, comparability, and representativeness of index 
selection, select indicators can reflect WUE and 
STI to a large extent and build an overall evaluation 
index system. This is shown in Table 2. When con-
structing the evaluation index model of WUE, this 
paper builds the input and output required by WUE 
based on the neoclassical growth theory and previous 
studies [5,36]. As for the input indicators, the number 
of employees, fixed assets, and total regional water 
consumption are selected to reflect this indicator. 
In terms of output indicators, regional GDP (based 
on 2009) and gray water footprint are selected to 
represent both the expected and unexpected output, 
respectively.

The STI evaluation index system comprises two 
standard levels, namely STI input and STI output, 
each consisting of seven indexes. This study has 
opted for three input indicators, namely the full-time 
equivalent of research and development (R & D) 
personnel, the internal expenditure of R & D funds, 
and the number of R & D institutions. As for output 
indicators, four have been chosen, comprising the 
number of patent authorizations, the number of R & 
D projects, the sales profit of new commodities in 
high-tech industries, and the number of advanced de-
velopment projects in high-tech industries.

Based on the above indicators and methods, the 
framework of this research is established in Figure 2.
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Data source
All the information and data utilized in this ac-

ademic article have been sourced exclusively from 

reliable and authoritative references. These include 
the China Statistical Yearbook, various provincial 
and city Statistical Yearbooks, China Science and 

SBM-DEA
Model

Comprehensive 
evaluation index

Water resource 
utilization efficiency

Scientific and 
technological 

innovation level

Span of time:2009-
2019

Coupled 
coordination model

Spatial auto-
correlation model VAR model

Coupling 
coordination degree Moran’s I  Interactive 

Response

Conclusion and 
suggesstion 

WUE-STI
evaluation

system

Figure 2. Research framework.

Table 2. Evaluation index system of WUE and STI.

Target level Criterion level Indicator level Unit

WUE

Input indicators

Number of employees Ten thousand people

Fixed assets RMB100 mil

Total regional water consumption 100 million m3

Desirable output indicators GDP RMB100 mil

Undesirable output indicators Gray water footprint 10,000 t

STI

Investment in scientific and 
technological innovation

Number of R & D institutions Individual
R & D personnel full-time equivalent Man year

Internal expenditure of R & D funds CNY10 thousand

Scientific and technological 
innovation output

Number of patent authorizations Piece
Number of R & D projects (subjects) Term
Sales revenue of new products of high-tech 
industry CNY10 thousand

Number of new product development projects 
in high-tech industry Term
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Technology Statistical Yearbook (covering the pe-
riod from 2009 to 2019), Science and Technology 
Statistical Yearbook, Education Statistical Yearbook, 
Water Conservancy Statistical Yearbook, Water Re-
sources Bulletin, and National Economic and Social 
Development Statistical Bulletin.

In cases where specific data points were una-
vailable, they have been estimated employing the 
average growth rate over the successive three-year 
period. This approach ensures a consistent and reli-
able analysis throughout the study. It is important to 
note that the scope of this analysis encompasses the 
19 provinces located within the Yangtze River Basin, 
providing a comprehensive understanding of the re-
gion’s dynamics and trends.

4. Result analysis

4.1 Spatial and temporal evolution character-
istics of WUE and STI

Using the aforementioned methodologies, we 
have calculated the WUE index and STI index for 
the nineteen provinces located within the Yangtze 
River Basin from 2009 to 2019. Additionally, we 
have summarized the average values of each year for 
both indices and examined the CCD of the two sys-
tems. Upon careful analysis of Figure 3, it becomes 
evident that there is a consistent upward trend in the 
average values of WUE and STI within the Yangtze 
River Basin from 2009 to 2019. Furthermore, the 
time characteristics of the two indices exhibit a clear 
positive correlation. This correlation suggests a mu-
tually reinforcing relationship between WUE and 
STI within the region.
Spatial and temporal distribution of WUE

(1) Temporal characteristics. In terms of temporal 
analysis, the average rate of the WUE index for the 
19 provinces (autonomous regions) within the Yang-
tze River Basin exhibited a positive trend from 2009 
to 2019. The average WUE index rose from 0.3041 
in 2009 to 0.3800 in 2019, indicating a stable overall 
development and a favorable growth trajectory (Fig-
ure 3). These findings highlight the achievements 
made in water pollution prevention, energy conser-

vation, emission cutback, and ecological control 
within the Yangtze River Basin in recent decades. 
The positive trend in WUE demonstrates the region’s 
progress in the sustainable utilization of water re-
sources.

Figure 3. Time series change of WUE and STI in the Yangtze 
River Basin.

(2) This study employs the DEA model to com-
pute the WUE of 19 provinces and regions located 
in the Yangtze River Basin from 2009 to 2019, and 
utilizes the initial, final, and middle years of the re-
search period to investigate the findings within the 
study area. To better illustrate the dissimilarities in 
the spatial distribution of WUE in the Yangtze River 
Basin, ArcGIS10.2 software is employed to visualize 
the same in 2009, 2013, 2016, and 2019 (Figure 4), 
and subsequently assess the disparity in WUE among 
different regions. Based on the obtained results, the 
efficiency index is classified into five ranges using 
the natural breakpoint method (Jenks), whereby the 
higher the efficiency value, the darker the shade.

On the whole, the WUE of the Yangtze River 
Basin changes significantly from 2009 to 2019, and 
the efficiency value shows an upward trend. From a 
regional perspective, from 2009 to 2019, the WUE 
showed an overall development trend higher in the 
lower reaches and lower in the middle and upper 
reaches. The efficiency value of the upstream region 
changes obviously. Excluding that the efficiency 
value of Tibet remains at the low level of 0.2235, 
the efficiency value of other upstream provinces and 
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regions fluctuates to varying degrees, and the spatial 
pattern changes obviously. In the middle reaches, the 
efficiency values of Jiangxi and Hubei increased to 
varying degrees in the four periods, while the effi-
ciency values of Hebei and Hunan both decreased in 
2016 after experiencing increases in 2009 and 2013; 
they increased again in 2019. There is no obvious 
fluctuation in the WUE in the downstream areas, 
showing a stable trend. Excluding that the WUE 
of Anhui remains at the low efficiency level of 0.2 
to 0.3, the WUE of Guangdong, Fujian, Zhejiang, 
Shanghai, and Jiangsu is generally at a high efficien-
cy level of 0.5 to 1.
Spatial and temporal distribution of STI

(1) Temporal characteristics. The temporal analy-
sis reveals that the average value of the STI index for 
the 19 provinces and regions demonstrates a consist-
ent upward trend, as depicted in Figure 3. This trend 
signifies that the STI of each province and region 
within the Yangtze River Basin is in a positive state 

and is progressing in a favorable direction. Over the 
period from 2009 to 2019, the overall evaluation in-
dex of STI in the Yangtze River Basin experienced 
a gradual increase, rising from 0.0735 in 2009 to 
0.2030 in 2019. Notably, between 2013 and 2019, 
the comprehensive evaluation index of STI ranged 
between 0.1 and 0.2, indicating a moderate level of 
overall technological advancement within the region.

(2) Spatial features. To analyze the spatial distri-
bution of STI, the comprehensive evaluation index 
value of STI is calculated by employing the overall 
entropy weight method. Additionally, ArcGIS 10.2 
software is employed to visualize the STI in the 
years 2009, 2013, 2016, and 2019 (Figure 5). At the 
regional level, a consistent pattern of “downstream >  
midstream > upstream” is observed in the STI of the 
Yangtze River Basin across the four periods. The 
spatial pattern of the STI system remains relatively 
stable. At the provincial level, the STI of the prov-
inces and regions within the Yangtze River Basin 

the WUE showed an overall development trend higher in the lower reaches and lower in the

middle and upper reaches. The efficiency value of the upstream region changes obviously.

Excluding that the efficiency value of Tibet remains at the low level of 0.2235, the efficiency

value of other upstream provinces and regions fluctuates to varying degrees, and the spatial

pattern changes obviously. In the middle reaches, the efficiency values of Jiangxi and Hubei

increased to varying degrees in the four periods, while the efficiency values of Hebei and Hunan

both decreased in 2016 after experiencing increases in 2009 and 2013; they increased again in

2019. There is no obvious fluctuation in the WUE in the downstream areas, showing a stable trend.

Excluding that the WUE of Anhui remains at the low efficiency level of 0.2 to 0.3, the WUE of

Guangdong, Fujian, Zhejiang, Shanghai, and Jiangsu is generally at a high efficiency level of 0.5

to 1.

Figure 4. Spatial distribution of WUE of each province in the Yangtze River Basin.

Spatial and temporal distribution of STI

(1) Temporal characteristics. The temporal analysis reveals that the average value of the STI

index for the 19 provinces and regions demonstrates a consistent upward trend, as depicted in

Figure 3. This trend signifies that the STI of each province and region within the Yangtze River

Basin is in a positive state and is progressing in a favorable direction. Over the period from 2009

to 2019, the overall evaluation index of STI in the Yangtze River Basin experienced a gradual

increase, rising from 0.0735 in 2009 to 0.2030 in 2019. Notably, between 2013 and 2019, the

comprehensive evaluation index of STI ranged between 0.1 and 0.2, indicating a moderate level of

Figure 4. Spatial distribution of WUE of each province in the Yangtze River Basin.
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exhibits varying degrees of improvement. There is a 
notable gap between the upper and middle reaches. 
On the contrary, the gap between the lower reaches is 
relatively small. Guangdong and Jiangsu consistently 
exhibit high STI indices across the four periods, con-
sistently ranking in the top three and representing re-
gions with a high level of STI. Conversely, Tibet and 
Qinghai consistently demonstrate lower STI indices, 
consistently ranking in the last three, indicating 
lower STI levels compared to other provinces and 
regions during the same period. These findings high-
light the close relationship between STI and regional 
economic development. Provinces and regions with 
high economic development exhibit stronger human 
resource capabilities and other factors that contribute 
to the enhancement of regional STI.

4.2 Spatial and temporal distribution charac-
teristics of CCD 

Time characteristics
From the time series changes, the mean value of 

CCD of the two subsystems showed an increasing 
trend from 2009 to 2019 (Figure 6a). This trend 
suggests that there was an enhancement in the in-
teraction between WUE and STI. Specifically, the 
coupling coordination level between WUE and STI 
during the study duration was within the basic co-
ordination stage from 2009 to 2011, and progressed 
to the moderate coordination stage from 2012 to 
2019. It is noteworthy that the stable improvement 
of the coupling coordination level throughout the 
research period was due to the common progress 
of both subsystems. Improvement in STI provided 
impetus for WUE, while the progress in WUE in 
turn facilitated STI improvement, leading to a joint 
promotion of the coupling coordination level from 
the basic coordination stage to the intermediate co-
ordination stage. Overall, the coupling coordination 
level between WUE and STI in the Yangtze River 
Basin exhibited a positive trend; however, there is 
still room for further advancement in the overall 
coordination level.

From the perspective of basin division (Figure 
6b), the mean CCD of the lower reaches of the 

Yangtze River Basin is higher than that of the upper 
reaches. There are significant differences among dif-
ferent river basins. The average value of the upper 
reaches of the Yangtze River Basin is between 0.2-
0.4, which belongs to the basic coordination stage; 
the average value of the middle reaches is between 
0.4-0.5, which belongs to the moderate coordination 
stage; while the average value of the lower reaches 
is between 0.4-0.7, which is mostly in the highly 
coordinated stage. Mainly due to the influence of ge-
ographical factors and regional economic conditions 
among regions, the eastern coastal areas are relative-
ly developed economically and have higher invest-
ment in scientific and technological innovation, so 
the CCD of STI and WUE is better.
Spatial distribution characteristics

To evaluate the spatial distribution characteristics 
of the CCD of the two subsystems, the provinces and 
regions are taken as the basic units, and 2009, 2013, 
2016, and 2019 are selected as the representative 
years. The CCD is visualized using ArcGIS10.2 soft-
ware, and the spatial distribution map of the CCD is 
drawn. The results are shown in Figure 7.

During the study period, the CCD of all prov-
inces is generally not high, and most provinces and 
regions are in the basic coordination stage in the 
early stage. Thanks to the continuous progress of 
WUE and STI, the CCD of all provinces and regions 
shows an upward trend. From the regional aspect, 
the CCD of the two systems in the lower reaches is 
significantly higher than that in the upper and middle 
reaches of the Yangtze River Basin. Specifically, in 
2009, the two regions of Guangdong and Jiangsu 
were highly coordinated, the two regions of Tibet 
and Qinghai were loosely coordinated, and the oth-
er regions were in moderate coordination. In 2016, 
highly coordinated provinces and cities began to 
appear in Guangdong, and then in 2019, highly coor-
dinated provinces and cities were added in Jiangsu. 
The CCD of the two subsystems in Anhui, Fujian, 
and Hebei provinces, in the lower reaches of the 
Yangtze River, changed from basic coordination in 
2009 to high coordination in 2019 after experiencing 
moderate coordination in 2013 and 2016. The CCD 
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of Shanghai, Hubei, and Sichuan subsystems experi-
enced three periods of moderate coordination, after 
that is then rose to high coordination in 2019. In 
the three periods of 2009, 2013, and 2016, the CCD 
of the two subsystems in Jiangxi, Chongqing, and 
Shaanxi had been in the basic coordination stage, 
but in 2019, they entered the medium coordination 
stage. Between 2009 and 2019, there was a decrease 
in the number of provinces and regions that of basic 
coordination, while the number of highly coordinat-

ed provinces and regions showed an increase. This 
trend indicates an enhanced coordination between 
WUE and STI during the coupling process. Notably, 
the CCD of the two subsystems remains the most 
stable in Guangxi, Guizhou, Yunnan, Tibet, Gansu, 
and Qinghai, which are adjacent to the lower reaches 
of the Yangtze River Basin. However, these regions 
have predominantly remained in the basic coordina-
tion or low-level coordination stage, and the rate of 
improvement has been relatively slow. 

overall technological advancement within the region.

(2) Spatial features. To analyze the spatial distribution of STI, the comprehensive evaluation

index value of STI is calculated by employing the overall entropy weight method. Additionally,

ArcGIS 10.2 software is employed to visualize the STI in the years 2009, 2013, 2016, and 2019

(Figure 5). At the regional level, a consistent pattern of “downstream > midstream > upstream” is

observed in the STI of the Yangtze River Basin across the four periods. The spatial pattern of the

STI system remains relatively stable. At the provincial level, the STI of the provinces and regions

within the Yangtze River Basin exhibits varying degrees of improvement. There is a notable gap

between the upper and middle reaches. On the contrary, the gap between the lower reaches is

relatively small. Guangdong and Jiangsu consistently exhibit high STI indices across the four

periods, consistently ranking in the top three and representing regions with a high level of STI.

Conversely, Tibet and Qinghai consistently demonstrate lower STI indices, consistently ranking in

the last three, indicating lower STI levels compared to other provinces and regions during the

same period. These findings highlight the close relationship between STI and regional economic

development. Provinces and regions with high economic development exhibit stronger human

resource capabilities and other factors that contribute to the enhancement of regional STI.

Figure 5. Spatial distribution of STI of each province in the Yangtze River Basin.

4.2 Spatial and temporal distribution characteristics of CCD

Time characteristics

Figure 5. Spatial distribution of STI of each province in the Yangtze River Basin.

From the time series changes, the mean value of CCD of the two subsystems showed an

increasing trend from 2009 to 2019 (Figure 6a). This trend suggests that there was an

enhancement in the interaction between WUE and STI. Specifically, the coupling coordination

level between WUE and STI during the study duration was within the basic coordination stage

from 2009 to 2011, and progressed to the moderate coordination stage from 2012 to 2019. It is

noteworthy that the stable improvement of the coupling coordination level throughout the research

period was due to the common progress of both subsystems. Improvement in STI provided

impetus for WUE, while the progress in WUE in turn facilitated STI improvement, leading to a

joint promotion of the coupling coordination level from the basic coordination stage to the

intermediate coordination stage. Overall, the coupling coordination level between WUE and STI

in the Yangtze River Basin exhibited a positive trend; however, there is still room for further

advancement in the overall coordination level.

From the perspective of basin division (Figure 6b), the mean CCD of the lower reaches of

the Yangtze River Basin is higher than that of the upper reaches. There are significant differences

among different river basins. The average value of the upper reaches of the Yangtze River Basin is

between 0.2-0.4, which belongs to the basic coordination stage; the average value of the middle

reaches is between 0.4-0.5, which belongs to the moderate coordination stage; while the average

value of the lower reaches is between 0.4-0.7, which is mostly in the highly coordinated stage.

Mainly due to the influence of geographical factors and regional economic conditions among

regions, the eastern coastal areas are relatively developed economically and have higher

investment in scientific and technological innovation, so the CCD of STI and WUE is better.

Figure 6. CCD mean time series change.

Spatial distribution characteristics

To evaluate the spatial distribution characteristics of the CCD of the two subsystems, the

provinces and regions are taken as the basic units, and 2009, 2013, 2016, and 2019 are selected as

Figure 6. CCD mean time series change.
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4.3 Spatial correlation pattern analysis of 
CCD

The geographical spatial relationship among the 
19 provinces in the Yangtze River Basin was taken 
into account by using distance spatial weight. GeoDa 
software was utilized to calculate the global Moran’s 
I value. The results of this analysis are summarized 
in Table 3. The findings reveal a significant positive 
spatial correlation between the coupling coordina-
tion level of WUE and STI during the investigation 
period. This conclusion is supported by statistical 
indicators such as Moran’s I, Z, and P values, which 
indicate a clear positive spatial autocorrelation.

Table 3. Global Moran’s I of CCD.

Year Moran’s I Z value P value
2009-2013 0.2873 2.7935 0.0052
2013-2016 0.2915 2.8605 0.0042
2016-2019 0.3080 2.9154 0.0036

The precise location of the provincial spatial 
cluster and the intensity of regional correlation were 
determined using the local spatial autocorrelation in-
dex. This analysis also characterized the local spatial 
agglomeration features of the CCD in WUE and STI 
for the years 2009, 2013, 2016, and 2019. ArcGIS 
10.2 software was employed to perform analytical 
processing on the spatial clustering results, result-
ing in the generation of a LISA clustering map for 
the CCD (Figure 8). This map provides a visually 
striking representation of the spatial heterogeneity 
of the CCD in the Yangtze River Basin. The local 
spatial correlation characteristics can be classified 
into two categories: High-High (H-H) concentration 
and Low-Low (L-L) concentration, observed in both 
subsystems of the Yangtze River Basin.

The H-H concentration area refers to provinces 
or cities with a high CCD between WUE and STI. In 
2013 and 2016, Jiangsu was the only province in this 

Figure 7. Spatial distribution of CCD between WUE and STI in the Yangtze River Basin.

Figure 8. LISA concentration diagram of CCD.

Figure 7. Spatial distribution of CCD between WUE and STI in the Yangtze River Basin.
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category, and its spatial pattern remained unchanged. 
However, in 2019, influenced by the surrounding 
provinces and cities, Jiangsu withdrew from the H-H 
cluster, resulting in zero provinces in this category. 
Provinces and cities in the H-H concentration area 
play a crucial role in regional coordinated develop-
ment and are considered the weak points in provin-
cial development. It is challenging for these regions 
to improve WUE and STI solely based on their own 
resources. Therefore, it is crucial for them to en-
hance connections with surrounding provinces and 
formulate targeted development strategies to make 
breakthroughs and promote WUE and STI.

L-L concentration area. In the four periods of 

2009, 2013, 2016, and 2019, Tibet and Qinghai 
remained in the L-L concentration area, with no 
evident difference in their spatial distribution. The 
CCD of WUE and STI in this region is consistently 
low, indicating a need for improvement in regional 
coordinated development. The L-L agglomeration 
areas should be prioritized as the main focus for 
enhancing the level of coupling and coordination. 
To improve the coupling and coordination develop-
ment in these provinces, it is important to strength-
en exchanges and cooperation with surrounding 
provinces and cities, and formulate a development 
path that aligns with the specific circumstances of 
the region.

Figure 7. Spatial distribution of CCD between WUE and STI in the Yangtze River Basin.

Figure 8. LISA concentration diagram of CCD.
Figure 8. LISA concentration diagram of CCD. 
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4.4 Interactive response relationship between 
WUE and STI

Unit root inspection
The premise of the proposed VAR model is that 

the variables follow a single-order unit process. In 
this paper, ADF unit root test is performed on the 
level of each variable by using Eviews10.0 software 
(Table 4). There are three auxiliary equations for 
ADF test and three auxiliary equations for DF test:

(1) No intercept term and no trend term:
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 is n-distributed lag terms, ut is the 
stationary random error term, and k is the maximum 
lag for determining ut to satisfy the white noise. Ac-
cording to the calculation results of the three equa-
tions and the comparison of Akaike, the variables 
of WUE and STI are stable, with intercept term and 
time trend term.

According to the lag order information criterion, 
the optimal lag order is 8. Based on the criterion, 
the Granger causality test is performed on the above 
data. The results show that the P value of STI on 
WUE is 0.0000 (< 0.05), and the P value of WUE on 
STI is 0.0000 (< 0.05), which indicates that there is a 
two-way causal relationship between WUE and STI 
in each district and county, that is, WUE and STI are 
mutually endogenous variables.
Impulse response analysis based on panel VAR

In the Yangtze River Basin, it has been observed 
that the WUE and STI exhibit a notable positive 
response to the self-generated impulse in the first 
period, which gradually weakens until it is no longer 
significant. The study findings indicate that the 
self-enhancement mechanism of WUE persisted 
up to the fifth stage (Figure 9a), while that of STI 

continued up to the second stage (Figure 9d). These 
outcomes suggest that the different provinces and re-
gions have varying degrees of self-enhancement and 
path dependence for STI and WUE. Therefore, in 
addition to harnessing the self-enhancement mech-
anism, proactive measures must be implemented to 
avert any possible weakening of this mechanism.

Table 4. Inspection results of unit root.

Level T statistic P value

WUE

–12.0080

0.0000
1% –4.0061
5% –3.4332
10% –3.1404

STI

–10.5488

0.0000
1% –4.0060
5% –3.4332
10% –3.1404

With regard to the driving effect of STI on WUE 
(Figure 9c), it is evident that while the former has an 
effect on the latter, the impacts are not very strong. A 
crucial factor responsible for this limited effect is the 
presence of a technical support system that impedes 
technological innovation in WUE, given the high 
level of uncertainty involved. Furthermore, the spa-
tial accumulation effect of each district and county 
is not readily discernible, making it challengingly to 
pinpoint an overall effect. In response to WUE, the 
STI does not show an obvious impact, that is, the 
WUE has no significant encouraging effect on the 
STI (Figure 9b).
Prediction variance decomposition

The variance decomposition analysis provides 
insights into the cumulative contribution of one var-
iable to another variable over time. Table 5 presents 
the results of the variance decomposition, reveal-
ing important trends. The impact of WUE on itself 
shows a declining trend, decreasing from 100% in 
the first phase to 85.62% in the tenth phase. Con-
versely, the contribution of WUE to STI shows an 
increasing trend, starting from 0% in the first phase 
and reaching 14.38% in the twentieth phase. These 
findings indicate that WUE has a practical signifi-
cance in promoting STI, as it plays a role in positive-
ly influencing STI over time.
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The impact of STI on its own decreased first and 
then increased, but the overall increase, from 28.85% 
in the first stage to 30.40%, reflects the self-im-
provement of STI. This suggests that STI has been 
experiencing self-improvement and growth. Howev-
er, the impact of STI on WUE exhibits a declining 
trend, decreasing from 71.15% in the first phase to 
69.60% in the tenth phase, albeit at a slow rate. This 
indicates that STI has a strong and sustainable role in 
promoting WUE.

Table 5. Variance decomposition results estimated based on 
panel VAR model.

Number of 
periods/period

WUE STI
WUE STI WUE STI

1 100.00 0.00 71.15 28.85
2 99.94 0.06 76.33 23.67
3 97.56 2.44 76.52 23.48
4 96.75 3.25 75.19 24.81
5 96.75 3.25 74.16 25.84
6 96.75 3.25 75.10 24.90
7 95.43 4.56 74.90 25.10
8 86.03 13.97 67.37 32.63
9 86.03 13.97 69.55 30.44
10 85.62 14.38 69.60 30.40

5. Conclusions and suggestions

5.1 Conclusions

The Yangtze River Basin plays a significant func-
tion in the economic development of China in the 
present era. Efficient utilization of water resources 
is vital for promoting sustainable development of 
the economy and society in this area, given its cru-
cial ecological value. Enhancing WUE is essential 
for achieving ecological protection and fostering 
sustainable development in this region. STI is recog-
nized as a key driver to overcome the challenges as-
sociated with low water resource efficiency. To delve 
deeper into this matter, the present study utilizes 
relevant data from 19 provinces and regions within 
the Yangtze River Basin spanning the years 2009 to 
2019. Through the application of a coupling and co-
ordination model, an indicator system is established 
to assess the coupling and coordination relationship 
between WUE and STI. Furthermore, a VAR model 
is employed to examine the relationship between 
WUE and STI, shedding light on their interdepend-
ence and mutual influence.

Figure 9. Impulse response of WUE and STI.
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(1) A comprehensive analysis of the two systems 
reveals their overall growth, but also highlights the 
disparity in their development. The progress of WUE 
outpaces that of STI. For the spatial distribution, 
WUE shows a pattern of higher values in the lower 
reaches, followed by the higher middle reaches and 
lower upper reaches of the Yangtze River Basin. 
Similarly, the distribution of STI across different 
provinces and regions also exhibits a division into 
lower, middle, and upper reaches, with the lower 
reaches displaying higher values compared to the 
middle and upper reaches.

(2) Over time, the CCD values of both the WUE 
and STI subsystems in the Yangtze River Basin re-
gions have shown varying degrees of improvement. 
Notably, provinces such as Guangdong, Zhejiang, 
Shanghai, and Jiangsu have demonstrated significant 
advancements, with their CCD values consistently 
leading across all stages. In particular, Guangdong 
and Jiangsu have achieved high-quality coordination 
between WUE and STI. However, it is essential to 
note that the other areas in the region have yet to 
reach this stage of high-quality coordination and fur-
ther progress is required in these regions.

(3) The spatial distribution of the CCD in the 
Yangtze River Basin reveals two distinct patterns: 
H-H agglomeration areas and L-L agglomeration 
areas. There are no regions exhibiting L-H or H-L 
agglomeration. Furthermore, the degree of CCD 
agglomeration in most provinces is not pronounced. 
The L-L concentration areas are primarily observed 
in Tibet and Qinghai, situated in the upper reaches of 
the Yangtze River. On the other hand, the H-H con-
centration area is solely located in Guangdong in the 
lower reaches. The polarization of agglomeration in 
the basin indicates an imbalance and inadequacy in 
the coupling coordination of WUE and STI. Conse-
quently, it is crucial for all regions within the basin 
to prioritize enhancing the mutual development of 
both subsystems to achieve better coordination and 
balance. 

(4) Moreover, it is observed that the STI does 
not exhibit a substantial response to the influence 
of WUE, while WUE demonstrates a noticeable re-

sponse to STI. Both systems display diverse levels 
of self-enhancement and path dependence. Hence, 
the optimization of the interaction between these 
subsystems should be prioritized in order to achieve 
sustainable development in the Yangtze River Basin.

5.2 Suggestions

To facilitate the coordinated development of 
WUE and STI in the Yangtze River Basin, the cur-
rent study offers several recommendations derived 
from the aforementioned research findings and the 
prevailing conditions within the basin.

(1) Efforts should be made to enhance WUE in 
the Yangtze River Basin region. It is imperative to 
ensure the strict implementation and continuous 
improvement of regulations pertaining to water re-
sources management, taking into account the current 
developmental context. Stringent control measures 
should be imposed on total water consumption, with 
the refinement of consumption indicators at various 
levels and effective monitoring of compliance by 
provincial entities. Rational allocation of water re-
sources is crucial, necessitating the implementation 
of robust planning and allocation strategies. The 
intensity of water resource development within the 
basin should be carefully controlled to maintain a 
sustainable balance. Coordinated management of 
water demand for different purposes is essential, 
while ensuring that ecological water replenishment 
is not compromised.

(2) Efforts should be directed towards enhancing 
the STI and achieving sustainable and environmen-
tally friendly development in this regard. Provinces 
and autonomous regions within the Yangtze River 
Basin should prioritize optimizing their industrial 
structures by promoting the growth of low-energy 
consumption, eco-friendly, and high-tech industries, 
as well as emphasizing environmental protection and 
ecological industries. This approach will facilitate the 
realization of green development within the STI do-
main. Moreover, it is essential to allocate increased 
investments towards research and development  
(R & D) funds and advanced equipment to support 
scientific research and foster innovation activities. 
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Furthermore, there should be a focus on nurturing a 
pool of skilled scientific researchers, expanding the 
team of innovative talents, and facilitating the suc-
cessful transformation of STI achievements.

(3) The coordinated development of WUE and 
STI should be attended to. The achievements of STI 
will be applied to the management and protection of 
water resources in the Yangtze River Basin. Through 
STI, the WUE will be promoted, and the pressure on 
water environments will be reduced. All provinces 
and regions should take into account the strengthen-
ing of the capacity of STI and the improvement of 
WUE, establish and improve the linkage between the 
two, achieve the two-pronged approach, and ensure 
coordinated development.
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