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ABSTRACT
Satellite image classification is crucial in various applications such as urban planning, environmental monitoring, 

and land use analysis. In this study, the authors present a comparative analysis of different supervised and unsupervised 
learning methods for satellite image classification, focusing on a case study in Casablanca using Landsat 8 imagery. This 
research aims to identify the most effective machine-learning approach for accurately classifying land cover in an urban 
environment. The methodology used consists of the pre-processing of Landsat imagery data from Casablanca city, the 
authors extract relevant features and partition them into training and test sets, and then use random forest (RF), SVM 
(support vector machine), classification, and regression tree (CART), gradient tree boost (GTB), decision tree (DT), and 
minimum distance (MD) algorithms. Through a series of experiments, the authors evaluate the performance of each 
machine learning method in terms of accuracy, and Kappa coefficient. This work shows that random forest is the best-
performing algorithm, with an accuracy of 95.42% and 0.94 Kappa coefficient. The authors discuss the factors of their 
performance, including data characteristics, accurate selection, and model influencing.
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1. Introduction
Accurate classification of satellite images plays 

an essential role in many fields such as urban man-
agement, environmental planning, precision agri-
culture, and natural resource monitoring [1]. With the 
rapid advance of machine learning, a wide range of 
methods has emerged to automate this complex and 
crucial task [2]. 

Casablanca, a dynamic and constantly growing 
metropolis, faces complex challenges in urban man-
agement and sustainable development. Accurate 
classification of satellite imagery [3] in this region is 
a major challenge to enable informed decisions on 
planning, land use, and environmental preservation. 
For these challenges, machine learning methods 
offer promising prospects by providing tools for ex-
tracting meaningful information from large amounts 
of imagery data.

In this context, this study proposes to compare 
machine learning methods for satellite image classi-
fication [4,5], focusing on a case study carried out in 
Casablanca using Landsat imagery data. This study 
aims to evaluate and compare the performance of 
different machine learning methods in the context of 
satellite image classification, using Landsat 8 OLI 
data [6] from Casablanca. We examine supervised 
learning methods [7] such as support vector machines 
(SVMs) [8] and random forest (RF) [9], gradient tree 
boost (GTB) [10], etc., as well as unsupervised learn-
ing methods [2] such as K-means [11] and Lvq [12] using 
the Google Earth Engine platform [13]. By evaluating 
these methods through appropriate performance met-
rics, we aim to identify the most suitable method for 
accurate land use classification in a complex urban 
environment.

The importance of this study lies in its contri-
bution to the scientific literature, offering essential 
information to practitioners and researchers engaged 
in satellite image classification. The results of this 
study could guide the choice of appropriate methods 
for specific applications in urban areas like Casa-
blanca. In addition, this research could inspire future 
improvements in the design of hybrid methods or the 
exploration of deep learning techniques to meet the 

increasingly complex challenges of satellite image 
classification.

In the following sections, we detail the machine 
learning methods examined, the data used in this 
study, experimental protocols, and evaluation met-
rics. Finally, we present and discuss in depth the 
results obtained, while highlighting the implications 
and future perspectives arising from this in-depth 
comparison of machine learning methods for satellite 
image classification in Casablanca. 

2. Related work
Numerous studies in the scientific literature have 

focused on land cover classification using various 
machine learning techniques [14], including CART [15],  
SVM [8], and random forest [9] classifiers for super-
vised learning. Table 1 provides an overview of oth-
er related works.

Yang et al. [16] highlighted the advantages of 
automated monitoring programs based on remote 
sensing, such as early change detection, informed 
decision-making, and wide spatial coverage, making 
them valuable tools for resource management and 
decision-making.

Wahbi et al. [17] highlighted the evolution from 
simple algebraic methods to artificial intelli-
gence-based techniques [18,19], such as machine learn-
ing and deep learning [20], to generate accurate and 
useful settlement data. They highlighted the chal-
lenge of information extraction and image classifi-
cation, proposing a system for assigning classes to 
pixels in the input image.

Phan et al. [21] demonstrated that satellite image 
time series gave higher classification accuracies than 
single-date images in land cover studies over the last 
decade. They noted the importance of Google Earth 
Engine (GEE) in remote sensing applications due 
to its efficient temporal aggregation methods and 
cloud-based nature.

Although the literature review [14,22-24] indicates 
extensive research on land cover classification using 
GEE and various algorithms in European and Asian 
regions, there is little specific research for Morocco. 
This review is an opportunity for researchers to ex-
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plore land cover classification in Casablanca, Moroc-
co, using supervised and unsupervised algorithms by 
exploiting the advantages of the GEE platform [13,25].

For unsupervised learning methods, previous 
work [11,26-28] highlights the ability of unsupervised 
learning to autonomously identify and categorize 
distinct land-use classes, offering a data-driven ap-
proach to land-use analysis.

Land cover mapping in urban environments has re-
ceived particular attention due to the challenges associ-
ated with dynamic and heterogeneous urban settings [29].  
Previous studies have highlighted the complexity of ur-
ban land cover analysis, including spectral heterogene-

ity, mixed pixels, and temporal changes [30]. They also 
demonstrated the usefulness of Landsat data for urban 
land use analysis, leading to a better understanding of 
urban growth and dynamics [31].

This research makes a valuable contribution to 
the field by examining six supervised and two un-
supervised machine learning algorithms to broaden 
our understanding of land use dynamics in the region 
and to promote more comprehensive land use studies 
specific to the city of Casablanca and to compare in 
terms of accuracy and Kappa coefficient the effec-
tiveness of each algorithm for the classification of 
different areas of Casablanca.

Table 1. Overview of related work.

Classification methods Datasets satellite Better methods from 
researcher study References

● Maximum Likelihood
● Minimum Distance 
● Mahalanobis Distance

Landsat 7 ETM+ data Maximum likelihood [32]

● ISODATA 
● Maximum Likelihood 
● Hybrid Method 

Desert Outlay Datasets Hybrid method  [33]

● Minimum Distance 
● Maximum Likelihood 
● K-Nearest Neighbour

IRIS Plants Dataset K-Nearest neighbour [34]

● Maximum Likelihood 
● Minimum Distance 
● Parellelpiped
● Maximum Likelihood

Landsat 7 ETM+ 
Images Maximum likelihood [35]

● Support Vector Machine 
● Maximum Likelihood 
● Mahalanobis Distance 
● Minimum Distance
● Spectral Information Divergence 
● Binary Codes
● Parallelepiped

Landsat 7 ETM+ data Support vector machine [36]

● Random Forest
● Classification and regression tree
● Gradient tree boost
● Support vector machine
● Minimum distance
● Decision tree

Landsat 8 OLI Minimum distance [14]

3. Study area and datasets

3.1 Casablanca study area

The study area for this research encompasses the 
vibrant urban landscape of Casablanca, a prominent 

coastal city in Morocco. As the largest city in the 
country, Casablanca represents a dynamic hub of 
economic, cultural, and social activities. It is geo-
graphical features, urban expansion, and diverse land 
uses make it an ideal case study for evaluating and 
comparing machine learning methods for satellite 
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image classification.
Casablanca’s geographical coordinates range 

from 33.5441° N latitude to 7.5864° W longitude. 
The city is situated along the northwestern coast of 
Morocco, overlooking the Atlantic Ocean as shown 
in Figure 1. The study area includes the densely 
populated urban core, and the surrounding suburban 
regions, capturing the intricacies of different land 
cover types and their interactions.

Figure 1. Casablanca study area.

3.2 Landsat 8 OLI dataset

Landsat imagery serves as the primary data 
source for this study. The Landsat satellites provide 
multispectral images with different wavelength 
bands, enabling the extraction of valuable informa-
tion about land cover, vegetation, water bodies, and 
urban structures. These images have been collected 
over specific time frames, allowing the assessment 
of seasonal variations and changes in land use. This 
study collects Landsat images from 1-1-2021 to 31-
12-2021.

The complex urban environment of Casablanca 
presents a rich array of land cover classes, including 
residential areas, industrial zones, commercial dis-
tricts, green spaces, water bodies, and transportation 
networks. The diversity of these classes poses a sig-
nificant challenge for accurate satellite image classi-
fication, highlighting the importance of selecting ap-
propriate machine learning methods and techniques.

This study utilized Landsat 8 OLI satellite im-
agery for land cover mapping in the designated 
study area. For land cover classification, the study 

obtained reflectance data from Landsat 8 OLI image 
bands spanning from January 1, 2021, to December 
31, 2021. These images had a spatial resolution of 
30 meters for bands B1 to B7. They were captured 
every 16 days using the GEE cloud platform, which 
offered data availability, storage, and advantages.

4. Methodology
Through the utilization of the methodology illus-

trated in Figures 2 and 3, researchers can proficiently 
employ both supervised and unsupervised machine 
learning algorithms for the classification of Landsat 
satellite images within the Google Earth Engine plat-
form, enabling them to gain valuable insights into 
the dynamics of land use change and make informed 
decisions about urban planning and environmental 
management [37]. Invariably, the first step of data 
pre-processing is shared between the methodologies 
of supervised and non-supervised algorithms. 

● Data acquisition and preprocessing
We obtained Landsat 8 OLI satellite imagery [38] 

for the target region, Casablanca, Morocco, from 
the Google Earth Engine data catalogue [13], then 
pre-processed and filtered the imagery to correct 
for atmospheric distortions and radiometric calibra-
tion, to ensure data quality and consistency. We then 
selected January 1, 2021, to December 31, 2021, 
to capture the different land cover conditions and 
changes over time.

4.1 Workflow of supervised methods 

● Data preparation and feature extraction
After the data acquisition stage, we moved on 

to the data preparation and feature extraction stage, 
in which we defined five land cover classes (built-
up area, cropped area, forest area, barren area, and 
water body) based on the study objectives and the 
specific characteristics of our study area, these 
classes are presented in Table 2. Next, we created a 
representative training dataset by selecting sample 
pixels from the pre-processed imagery for each land-
use class. The samples had to be accurately labeled 
using ground truth data or existing land cover maps. 
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Then we extracted from the Landsat 8 OLI imagery 
the spectral bands and indices that distinguish the 
different land cover types. The most common visible 
bands are B2, B3, and B4, the NIR band is B5 and 
the short-wave infrared bands are B6 and B7 (Table 
3). 

Figure 2. Workflow of the presented method.

● Training the models
In this step, we selected six supervised algorithms 

to apply a land cover classification of the six classes 
(built-up area, cropped area, forest area, barren area, 
and water body) extracted in the previous step. The 
supervised machine learning algorithms chosen to 
classify the Casablanca study area are random forest 
(RF) [9], CART [15], support vector machine (SVM) [8], 
decision tree (DT) [15], minimum distance (MD) [39], 
and gradient tree boost (GTB) [10]. Table 4 provides 
an overview of the parameters for each algorithm.

Figure 3. Workflow of methodology implemented in Google 
Earth Engine (GEE).

These algorithms are implemented in the Google 
Earth Engine platform using available built-in func-
tions or custom scripts. We trained the supervised al-
gorithms using the prepared training dataset. During 
training, the algorithms learn to associate the extract-
ed features with the corresponding in these step land-
use classes. Note that we have already divided the 
training data into training (80%) and validation (20%) 
sets to evaluate model performance during training 
and avoid over-fitting.

● Model evaluation
We evaluated the performance of the trained 

models using a validation dataset to measure their 
accuracy and generalization capabilities. Evaluation 
measures such as accuracy, producer accuracy, user 
accuracy, and coefficient Kappa. Table 5 shows 



123

Journal of Environmental & Earth Sciences | Volume 05 | Issue 02 | October 2023

these metrics. 
● Land cover classification
Finally, we generated land-use maps and visual-

ization outputs to evaluate the results and identify 
classification errors or ambiguities.

A confusion matrix [40] analysis was conducted 
for each method to evaluate the accuracy of the clas-
sified land cover maps generated by the supervised 
machine learning algorithms in GEE. The confusion 
matrix provided an overview of the accuracy assess-
ment, and the metrics were presented in Table A1. 

4.2 Workflow of unsupervised methods 

The unsupervised learning methodology for 
mapping the land cover of Casablanca using Google 

Earth Engine involves a sequence of steps encom-
passing data preparation, unsupervised clustering, 
interpretation, accuracy assessment, and visualiza-
tion. The integration of Google Earth Engine’s capa-
bilities and satellite imagery facilitates efficient and 
accurate land cover classification within the urban 
context of Casablanca. The following steps describe 
the methodology shown in Figure 3:

● Region of interest (ROI) selection
Next, we defined the specific area of Casablanca 

that will be the focus of the classification. The ROI 
should encompass the land cover types of interest 
and account for the urban complexity of the city.

● Unsupervised learning algorithm
Subsequently, unsupervised learning algorithms, 

Table 2. Land cover classes/references.

Land cover classes Numbers of points Description

Water_area 115
A water area refers to a geographical region or surface covered by various 
types of water bodies, such as oceans, seas, rivers, lakes, ponds, reservoirs, 
and wetlands.

Forest_area 174

A forest area refers to a large expanse of land characterized by dense 
vegetation dominated by trees, shrubs, and other woody plants. Forests are 
vital ecosystems that provide numerous ecological, economic, and social 
benefits.

Barren_area 150 Barren areas are characterized by minimal or no vegetation cover, and they 
can be found in various environments

Built-up_area 130 This class represents densely built urban areas with structures, buildings, 
roads, and other urban infrastructure.

Cropped_area 119

A cropped area, also known as cropland or agricultural land, refers to 
a specific portion of land that is actively used for cultivating crops and 
agricultural activities. In such areas, farmers engage in planting, growing, 
and harvesting various crops to produce food, fiber, and other agricultural 
products.

Total 688

Table 3. Bands of Landsat 8 OLI satellite.

Bands

Name Spatial resolution (Pixel size) meters Spectral resolution (μm) Wavelength

B3 30 0.53-0.59 Green
B4 30 0.64-0.67 Red
B5 30 0.85-0.88 Near infrared (NIR)
B6 30 1.57-1.65 Shortwave infrared (SWIR 1)

B7 30 2.11-2.29 Shortwave infrared (SWIR 2)

Source: [38].
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specifically k-means clustering [43], and LVQ [12] are 
applied to the pre-processed Landsat imagery. 

K-means clustering [11] is chosen for its capability 
to autonomously group pixels with similar spectral 
characteristics into distinct clusters, representing dif-
ferent land cover classes. The algorithm is initialized 
with a user-defined number of clusters and iterative-
ly assigns pixels to the nearest cluster centroid based 
on spectral similarity. Google Earth Engine’s cloud-
based processing capabilities play a pivotal role in 

the scalability of the methodology. 
LVQ, or learning vector quantization [12], is a 

supervised learning algorithm, but it always works 
with unlabeled data; it can also be said to be an un-
supervised learning algorithm. It has been used to 
compare the differences between unsupervised and 
supervised learning algorithms. It uses a training 
data set to classify new data points according to their 
similarity to labeled examples in the training set. In 
this paper, we used LVQ as an unsupervised cluster-

Table 4. Parameters for each algorithm.

Machine learning 
algorithms type Algorithms Parameters Description

Supervised 
algorithms

MD metric = Mhalanobis The distance metric to use.
RF numberOfTrees = 15 The number of decision trees to create.
Cart maxNodes = 15 The maximum number of leaf nodes in each tree

SVM kernel = linear The kernel type. One of LINEAR (u′×v), POLY 
((γ×u′×v + coef0)ᵈᵉᵍʳᵉᵉ)

DT treeString The decision tree, specified in the text format
GTB numberOfTrees = 15 The number of decision trees to create.

Unsupervised 
algorithms

K-means
nCluster = 5 The number of clusters.

distanceFunction = Euclidean Distance function to use.

LVQ numCluster = 5 The number of clusters.

Table 5. Evaluation metric equations for each classification.

Metrics Equation Description

 (OA) 
Overall 
accuracy

 Land cover classification

Finally, we generated land-use maps and visualization outputs to evaluate the results and
identify classification errors or ambiguities.

A confusion matrix [40] analysis was conducted for each method to evaluate the accuracy
of the classified land cover maps generated by the supervised machine learning algorithms in
GEE. The confusion matrix provided an overview of the accuracy assessment, and the metrics
were presented in Table A1.
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(OA)
Overall
accuracy
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Number of correctly classified samples

Number of samples

It was used to determine the proportion of correctly mapped
reference sites among all reference sites, expressed as a percentage.
It was calculated by dividing the number of correctly classified
samples by the total number of samples [40,41].

(UA)

User
accuracy

UA =
Correct imprevious surface pixel

Correct+ Misclassified pixel

It represented the frequency with which the actual terrain features
were correctly displayed on the classified map or the probability of
correctly classifying a certain land cover in a ground area. It was
calculated by dividing the number of accurately classified reference
sites for a particular class by the total number of reference sites for
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(PA)

Producer
accuracy

PA =
Correct imprevious surface pixel

Total imprevious pixels

It indicated the reliability of the class on the map with respect to its
presence in the field. It was calculated by dividing the total number
of correct classifications for a specific class by the sum of correct
and misclassified pixels for that class [34].

Kappa
coefficient

 =
paccord − PHasard

1 − PHasard
.

It provided an overall evaluation of the classification performance
compared to random assignment. It ranged from –1 to 1 and was
derived from a statistical test to evaluate the classification
accuracy, determining if the classification performed better than
random [42].

 The observation of inter-rater agreement is: paccord

 The overall probability that graders agree is: PHasard
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ing algorithm to group pixels or data points based on 
their similarity. The LVQ algorithm in GEE works 
by iteratively adjusting a set of cluster prototypes to 
minimize the distance between prototypes and data 
points. It assigns each data point to the nearest pro-
totype, effectively clustering the data into distinct 
groups. The platform efficiently computes clustering 
algorithms across Landsat imagery spatial and tem-
poral coverage of Landsat imagery, enabling rapid 
analysis of the entire study area.

● Accuracy assessment and validation
Validation and accuracy assessment are integral 

components of the methodology. A stratified random 
sampling approach generates reference data points 
across the study area. These reference points are 
used to validate the accuracy of the unsupervised 
classification results. Table 2 shows the reference 
data used. Various accuracy metrics, including over-
all accuracy and kappa coefficient, are calculated to 
quantify the agreement between the classified land 
cover map and the reference data.

● Visualization and mapping
The final step of the methodology involves visual 

interpretation and refinement. The unsupervised 
classification results are visually compared with 
high-resolution imagery and existing land cover 
maps to identify and rectify misclassifications or in-
consistencies. 

In summary, throughout the methodology, Google 
Earth Engine’s computational capabilities are lever-
aged for efficient processing, enabling the analysis of 
large-scale Landsat datasets. The cloud-based nature 
of the platform facilitates scalability and accelerates 
data processing to achieve accurate land cover map-
ping in the urban environment of Casablanca.

5. Results and discussion

5.1 Supervised learning

The study area comprised multiple land cover 
classes (5 classes), as shown in Table 2, which re-
quired considerable computational effort in local 
computation mode.

Various classification methods [8-10,15,39] were ap-
plied to map the study area in Casablanca, including 
random forest (RF), classification and regression 
trees (CART), gradient tree boosting, support vector 
machine (SVM), minimum distance (MD), and de-
cision trees (DT). The resulting land cover maps for 
each approach are displayed in Figure 4, and you’ll 
find the legend showing the names of each classified 
class with its very visible color in Figure 5.

The performance of each classification method 
was evaluated using several metrics [13]: overall accu-
racy, user accuracy for each class, producer accuracy 
for each class, and the Kappa coefficient derived 
from the confusion matrix. The equations utilized 
for the computation of these metrics are illustrated in 
Table A1.

We have integrated spectral indices with the ex-
tracted features and Landsat image bands to guaran-
tee high accuracy for each algorithm. These spectral 
indices are combinations of pixel values from mul-
tiple spectral bands in a multispectral image. These 
indices provide valuable information about the rela-
tive presence or absence of specific land cover types. 
One widely recognized index is the Normalized 
Difference Vegetation Index (NDVI) [33]. Besides 
NDVI, several other indices like the Modified Nor-
malized Difference Water Index (MNDWI), among 
others, utilize various spectral bands to emphasize 
different phenomena such as vegetation, water, soil, 
etc. In this study, we employed three specific spec-
tral indices [33]: NDVI for vegetation, soil, MNDWI 
for water, and Normalized Difference Built-up Index 
(NDBI) for built-up areas. Table 6 outlines the for-
mulas for calculating each of these indices.

This research incorporated the four spectral indi-
ces into the feature extraction phase and incorporat-
ed them integrated the training data creation process. 
During this step, the indices were computed and 
appended as additional spectral bands to enhance the 
classification outcomes for each classifier utilized 
in this project. By incorporating these indices, the 
study aimed to improve the classification accuracy 
and achieve more precise identification of land cover 
categories.
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CART DT
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Figure 4. Classification results of Casablanca’s land cover map.

   

Figure 5. Legend of classification results in the land cover map-
ping of Casablanca.

This study used Landsat 8 OLI datasets and pro-
cessing tools, including the Google Earth Engine 
(GEE) platform, to map land cover categories in 
Casablanca. The study used various classifiers, such 
as CART, RF, SVM, Gradient Tree Boost, DT, and 
MD, to delineate the territory into different zones, in-
cluding Water, Forest, Built-up, Barren, and Cropped 
areas. 

Based on previous studies [9,14,16,19-23,46-52] and our 
own research, we found that the methodology em-

ployed in our experiment can be adapted to map and 
evaluate different regions in various countries or 
cities, as this methodology is not oriented solely to-
ward Casablanca city. The main contribution of this 
research has been the successful adaptation of the 
method to map and evaluate land use in other regions 
or countries. Based on the confusion matrix for each 
classifier, it was evident that the random forest clas-
sifier was the most effective, boasting a Kappa co-
efficient of 0.94. This value is close to 1, indicating 
that the classification is significantly superior to ran-
dom. Moreover, it achieved an accuracy of 95.42%, 
significantly higher than the accuracy of the other 
classifiers, which were 94.77%, 91.50%, 91.50%, 
83%, and 93.46% for MD, DT, CART, SVM, and 
GTB, respectively. Figure 6 shows the overall accu-
racy of these classifiers. The results for the DT and 
CART classifiers were very similar. However, the 
SVM classifier exhibited a considerably lower accu-
racy of 83% compared to the other classifiers, and its 
Kappa coefficient was 0.78.

Table 6. Spectral indices used.

Index Equation References
Normalized 
difference 
vegetation index 
(NDVI)

This study used Landsat 8 OLI datasets and processing tools, including the Google Earth
Engine (GEE) platform, to map land cover categories in Casablanca. The study used various
classifiers, such as CART, RF, SVM, Gradient Tree Boost, DT, and MD, to delineate the territory
into different zones, including Water, Forest, Built-up, Barren, and Cropped areas.

Based on previous studies [9,14,16,19-23,46-52] and our own research, we found that the
methodology employed in our experiment can be adapted to map and evaluate different regions in
various countries or cities, as this methodology is not oriented solely toward Casablanca city. The
main contribution of this research has been the successful adaptation of the method to map and
evaluate land use in other regions or countries. Based on the confusion matrix for each classifier,
it was evident that the random forest classifier was the most effective, boasting a Kappa
coefficient of 0.94. This value is close to 1, indicating that the classification is significantly
superior to random. Moreover, it achieved an accuracy of 95.42%, significantly higher than the
accuracy of the other classifiers, which were 94.77%, 91.50%, 91.50%, 83%, and 93.46% for MD,
DT, CART, SVM, and GTB, respectively. Figure 6 shows the overall accuracy of these
classifiers. The results for the DT and CART classifiers were very similar. However, the SVM
classifier exhibited a considerably lower accuracy of 83% compared to the other classifiers, and
its Kappa coefficient was 0.78.

Index Equation References

Normalized difference
vegetation index (NDVI) NDVI =

NIR − RED
NIR+ RED

[27]

Modified normalized
difference water index

(MNDWI)
MNDWI =

Green − SWIR1
Green+ SWIR1

[44]

Normalized difference built-
up index (NDBI) NDBI =

SWIR − NIR
SWIR+ NIR

[45]

[27]

Modified 
normalized 
difference water 
index (MNDWI)

This study used Landsat 8 OLI datasets and processing tools, including the Google Earth
Engine (GEE) platform, to map land cover categories in Casablanca. The study used various
classifiers, such as CART, RF, SVM, Gradient Tree Boost, DT, and MD, to delineate the territory
into different zones, including Water, Forest, Built-up, Barren, and Cropped areas.

Based on previous studies [9,14,16,19-23,46-52] and our own research, we found that the
methodology employed in our experiment can be adapted to map and evaluate different regions in
various countries or cities, as this methodology is not oriented solely toward Casablanca city. The
main contribution of this research has been the successful adaptation of the method to map and
evaluate land use in other regions or countries. Based on the confusion matrix for each classifier,
it was evident that the random forest classifier was the most effective, boasting a Kappa
coefficient of 0.94. This value is close to 1, indicating that the classification is significantly
superior to random. Moreover, it achieved an accuracy of 95.42%, significantly higher than the
accuracy of the other classifiers, which were 94.77%, 91.50%, 91.50%, 83%, and 93.46% for MD,
DT, CART, SVM, and GTB, respectively. Figure 6 shows the overall accuracy of these
classifiers. The results for the DT and CART classifiers were very similar. However, the SVM
classifier exhibited a considerably lower accuracy of 83% compared to the other classifiers, and
its Kappa coefficient was 0.78.

Index Equation References

Normalized difference
vegetation index (NDVI) NDVI =

NIR − RED
NIR+ RED

[27]

Modified normalized
difference water index

(MNDWI)
MNDWI =

Green − SWIR1
Green+ SWIR1

[44]

Normalized difference built-
up index (NDBI) NDBI =

SWIR − NIR
SWIR+ NIR

[45]

[44]

Normalized 
difference built-up 
index (NDBI)

This study used Landsat 8 OLI datasets and processing tools, including the Google Earth
Engine (GEE) platform, to map land cover categories in Casablanca. The study used various
classifiers, such as CART, RF, SVM, Gradient Tree Boost, DT, and MD, to delineate the territory
into different zones, including Water, Forest, Built-up, Barren, and Cropped areas.

Based on previous studies [9,14,16,19-23,46-52] and our own research, we found that the
methodology employed in our experiment can be adapted to map and evaluate different regions in
various countries or cities, as this methodology is not oriented solely toward Casablanca city. The
main contribution of this research has been the successful adaptation of the method to map and
evaluate land use in other regions or countries. Based on the confusion matrix for each classifier,
it was evident that the random forest classifier was the most effective, boasting a Kappa
coefficient of 0.94. This value is close to 1, indicating that the classification is significantly
superior to random. Moreover, it achieved an accuracy of 95.42%, significantly higher than the
accuracy of the other classifiers, which were 94.77%, 91.50%, 91.50%, 83%, and 93.46% for MD,
DT, CART, SVM, and GTB, respectively. Figure 6 shows the overall accuracy of these
classifiers. The results for the DT and CART classifiers were very similar. However, the SVM
classifier exhibited a considerably lower accuracy of 83% compared to the other classifiers, and
its Kappa coefficient was 0.78.

Index Equation References

Normalized difference
vegetation index (NDVI) NDVI =

NIR − RED
NIR+ RED

[27]

Modified normalized
difference water index

(MNDWI)
MNDWI =

Green − SWIR1
Green+ SWIR1

[44]

Normalized difference built-
up index (NDBI) NDBI =

SWIR − NIR
SWIR+ NIR

[45][45]

The user and producer accuracy of random forest 
for a given class was generally different. For exam-
ple, the built-up class showed a difference between 
the producer accuracy (84.61%) and user accuracy 
(91.66%), indicating that some areas were correctly 
identified as built-up areas. Table A1 shows the land 
cover confusion matrix of each classifier. In the con-
fusion matrix of the SVM classifier, which has high 
accuracy compared to other classifiers, we found 
the producer’s accuracy for the cropped class was 
50%. By comparison, Table A1 reveals that the user 
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achieved an accuracy of 86.66%. This signifies that 
only half of the reference cropped areas were accu-
rately identified as such, while 86.66% of the areas 
classified as cropped were indeed cropped.

Figure 6. The overall accuracy (OA) of different methods.

The study also incorporated spectral indices, such 
as NDVI, MNDWI, and NDBI, to enhance land 
cover classification. These indices were useful in 
separating different land cover characteristics in Cas-
ablanca, including vegetation, water, soil, and built-
up areas. Each index had its calculation equation, as 
detailed in Table 6. 

Overall, the research demonstrated that some 
classes achieved high accuracy. In contrast, others 
had relatively poorer accuracy, indicating the com-
plexity and challenges of land cover classification in 
diverse regions and environmental conditions.

5.2 Unsupervised learning

This section presents the results and subsequent 
analysis of the Weka K-means and Lvq algorithm ap-
plied in Google Earth Engine (GEE) for land cover 
mapping of Casablanca using Landsat 8 OLI satellite 

data for the specified period 1-1-2021 to 31-12-2021. 
The image was segmented into five distinct land-use 
classes: water, forest, cultivated areas, barren land, 
and built-up areas. Performance metrics, including 
accuracy and Kappa coefficient, provide insight into 
the effectiveness of these algorithms. Table 5 shows 
the equations for these evaluation metrics.

In the Google Earth Engine platform, clusters are 
used the same way as classifiers. The training data 
are feature collection properties, fed into the clus-
ter. Unlike classifiers, there is no input class value 
for a cluster file. The general clustering workflow 
we followed in this paper is presented in Figure 3: 
First, we collected features with numerical proper-
ties in which we searched for clusters, second, we 
instantiated our cluster and trained the cluster using 
the training data, then we applied the cluster to the 
Landsat satellite image of our study area (Casablan-
ca) and finally we labeled the clusters.

In this study, several underlying factors contribute 
to the accuracy achieved by the K-means and Lvq 
algorithm:

● Spectral discrimination: The ability of the al-
gorithm to discriminate between land-use classes is 
highly dependent on the selection of spectral bands 
and derived indices. Making an informed choice of 
features with high discriminating power.

● Number of clusters (K): Determining the op-
timum number of clusters (K) is essentially crucial. 
An inappropriate choice can lead to classes being 
merged or split, affecting classification accuracy.

● Spectral similarity: Spectral similarity between 
certain land use classes can confuse and reduce clas-
sification accuracy.

Based on the results obtained by the algorithms 
used, it can be concluded that unsupervised methods 
do not achieve optimum performance in the classi-
fication and clustering of satellite images for land 
cover mapping. Supervised approaches, on the other 
hand, achieve significantly higher accuracy rates. 
Nevertheless, in the context of this study, consider-
able efforts have been made to improve the perfor-
mance of the K-means and Lvq algorithms. Before 
the application of techniques to improve data quality, 
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the results of K-means and Lvq had demonstrated 
particularly low accuracy, amounting to 31.47% and 
19.96%, respectively, with a Kappa coefficient of 
0.14 and 0.0009, respectively, as shown in Table 7. 
The land-use maps obtained for each algorithm are 
shown in Figure 7.

K-means LVQ

Figure 7. Land cover classification of Casablanca of each algo-
rithm.

To improve these results, a series of improve-
ments were made to the pre-processing stages. 
Atmospheric correction and cloud removal were 
applied to enhance source data quality. Next, inte-
grating spectral indices such as NDBI, NDVI, and 
WNDBI was carried out in conjunction with the 
image bands. We were incorporating these indices 
aimed to increase separability between the different 
classes. Table 6 shows the equations for these spec-
tral indices.

This approach proved to generate a clear im-
provement in the accuracy of the K-means algorithm, 
reaching an accuracy of 38.66% with 0.06 Kappa co-
efficients, and for the LVQ algorithm, unfortunately, 
we have a poor accuracy of 26.01% with Kappa co-
efficients of 0.06. Figure 8 illustrates these results. 

This improvement reflects moderate accuracy but 
represents significant advances in the initial results. 
From these results, we can say that the K-means 
algorithm performs better than the Lvq algorithm, 
but we concluded that unsupervised learning algo-
rithms do not perform well for land cover mapping. 
On the other hand, in these previous studies and my 
previous work [14], we demonstrated that supervised 
learning algorithms perform well for satellite image 
classification and land cover mapping.

Figure 8. The overall accuracy and Kappa coefficient values of 
each adopted algorithm.

5.3 Comparison results of supervised and un-
supervised methods

According to the results presented in the previous 
sections, the random forest classifier outperformed 
the other supervised and unsupervised learning al-
gorithms, achieving an accuracy of 95.42% and a 
Kappa coefficient of 0.94, indicating its significant 
superiority over the other classifiers.

The analysis involved comparing the accuracy 
of each classifier using confusion matrices and var-
ious measures such as overall accuracy (OA), user 
accuracy (UA), producer accuracy (PA), and Kappa 
coefficient, as shown in Table 5. The results showed 
that the random forest classifier consistently outper-
formed and outperformed the other algorithms in 
terms of accuracy and Kappa coefficient, achieving 
an accuracy of 95.42%, significantly higher than that 
of the other supervised and unsupervised algorithms, 
which were 94.77%, 91.50%, 91.50%, 83%, 93.46%, 
38.66%, and 26.01% for MD, DT, CART, SVM, 
GTB, K-means, and Lvq respectively. 

As shown in Table 7, the SVM classifier showed 
a significantly lower accuracy of 83% compared to 
the other supervised algorithms. Its Kappa coefficient 
was 0.78, while for the non-supervised algorithms, 
the results indicate that K-means and Lvq showed 
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particularly low accuracy, amounting to 31.47% and 
19.96%, respectively, with Kappa coefficients of 0.14 
and 0.0009, respectively.

These results allow us to assert that supervised learn-
ing algorithms perform better for land cover mapping 

than non-supervised learning algorithms. In this work, 
we have demonstrated that the supervised random for-
est algorithm outperforms all other algorithms, and that 
supervised learning algorithms perform well for satellite 
image classification and land cover mapping.

Table 7. Overall accuracy and Kappa coefficient of each supervised and unsupervised method.

Evaluation 
metrics

Supervised methods Unsupervised methods

SVM Cart RF GTB DT MD K-means LVQ
Overall 
accuracy % 83 91.50 95.42 93.46 91.50 94.77 38.66 26.01

Kappa 
coefficient 0.78 0.89 0.94 0.91 0.89 0.93 0.21 0.06

6. Conclusions and prospects
In summary, this study highlights the importance 

of methodological selection in achieving accurate 
classification of satellite imagery and underlines the 
need for context-sensitive assessments. The results 
of this research have significant implications for 
improving land use mapping, urban planning, and 
environmental management in similar areas of Cas-
ablanca. This study provides useful information for 
selecting appropriate machine-learning methods for 
satellite image classification in urban areas like Cas-
ablanca. By highlighting the advantages and disad-
vantages of each technique, we offer practical advice 
to practitioners and researchers. 

This work carried out an in-depth evaluation of 
various supervised and unsupervised algorithms 
for the classification of Landsat satellite images in 
the Casablanca region of Morocco. The aim was to 
assess the ability of these algorithms to represent 
various land cover categories. Based on the results 
presented in this work, accurately the reliability 
and versatility of the GEE platform, with its cloud-
based architecture, eliminates the need to integrate 
other external and often commercial software. Ac-
cording to the experimental results, the supervised 
random forest algorithm achieved high accuracy. 
This success can be attributed to the supervised 
learning methodology, which involves the collection 
of training and validation points in the study area. 
This approach improves the classification process of 

the study area. This study differs from the existing 
literature in that previous work has mainly focused 
on specific phenomena in various study areas in Mo-
rocco or other cities and countries. 

For future work, the study will explore integrating 
hybrid methods and exploration of more advanced 
neural networks, which offer increased efficiency 
in the classification of satellite images to achieve a 
more accurate classification of land cover and detec-
tion of urban areas in the Casablanca study area in 
Morocco.
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Appendix 

Table A1. Land cover evaluation metrics of each classifier.

SVM
PA UA OA Kappa

Water_area 100 100

83 0.78 
Barren_area 100 77.35
Forest_area 82.75 75
Built-up_area 69.23 81.81
Cropped_area 50 86.66
Cart

PA UA OA Kappa
Water_area 100 100

91.50 0.89
Barren_area 95.12 97.5
Forest_area 89.65 81.25
Built-up_area 76.92 83.33
Cropped_area 92.30 92.30
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RF
PA UA OA Kappa

Water_area 100 100

95.42 0.94
Barren_area 97.56 100
Forest_area 93.10 90
Built-up_area 84.61 91.66
Cropped_area 100 92.85
GTB

PA UA OA Kappa
Water_area 100 100

93.46 0.91
Barren_area 97.56 100
Forest_area 79.31 92
Built-up_area 88.46 79.31
Cropped_area 100 92.85
DT

PA UA OA Kappa
Water_area 100 100

91.50 0.89
Barren_area 95.12 97.5
Forest_area 89.65 81.25
Built-up_area 76.92 83.33
Cropped_area 92.30 92.30
MD

PA UA OA Kappa
Water_area 100 100

94.77 0.93
Barren_area 95.12 100
Forest_area 86.20 92.59
Built-up_area 92.30 88.88
Cropped_area 100 89.65

Table A1 continued


