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ABSTRACT
Excessive accumulation of zinc (Zn) in urban soil can lead to environmental pollution and pose a potential threat 

to human health and the ecosystem. How to quickly and accurately monitor the urban soil zinc content on a large 
scale in real time and dynamically is crucial. Hyperspectral remote sensing technology provides a new method for 
rapid and nondestructive soil property detection. The main goal of this study is to find an optimal combination of 
spectral transformation and a hyperspectral estimation model to predict the Zn content in urban soil. A total of 88 soil 
samples were collected to obtain the Zn contents and related hyperspectral data, and perform 18 transformations on 
the original spectral data. Then, select important wavelengths by Pearson’s correlation coefficient analysis (PCC) and 
CARS. Finally, establish a partial least squares regression model (PLSR) and random forest regression model (RFR) 
with soil Zn content and important wavelengths. The results indicated that the average Zn content of the collected soil 
samples is 60.88 mg/kg. Pearson’s correlation coefficient analysis (PCC) and CARS for the original and transformed 
wavelengths can effectively improve the correlations between the spectral data and soil Zn content. The number of 
important wavelengths selected by CARS is less than the important wavelengths selected by PCC. Partial least squares 
regression model based on first-order differentiation of the reciprocal by CARS (CARS-RTFD-PLSR) is more stable 
and has the highest prediction ability (R2 = 0.937, RMSE = 8.914, MAE = 2.735, RPD = 3.985). The CARS-RTFD-
PLSR method can be used as a means of prediction of Zn content in soil in oasis cities. The results of the study can 
provide technical support for the hyperspectral estimation of the soil Zn content.
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1. Introduction
Zinc (Zn) and its compounds are often enriched in 

soil by substitution reactions and adsorption and im-
mobilization, resulting in environmental pollution [1].  
Through accumulation, migration and transport in 
the food chain, Zn in soil eventually poses a serious 
threat to human health [2]. Therefore, it is vital to pro-
tect the safety of the urban soil environment by rapid 
and accurate monitoring of the Zn content. The tradi-
tional methods for determining heavy metal content 
in soil require field sampling followed by laboratory 
experimentation, but it is time-consuming, costly and 
inefficient [3,4]. Hyperspectral remote sensing tech-
nology has been applied to the prediction of heavy 
metal contents in soil due to the advantages of rapid, 
accurate, non-destructive, lower cost, and dynamic 
monitoring over a large area [5-7]. 

In recent years, hyperspectral remote sensing 
technology has shown good results in the prediction 
of soil Zn content. For example, the BPNN model 
has good generalization ability (R2 = 0.74, RPIQ = 
1.44) to predict the soil Zn content for Dehong Pre-
fecture, southwest Yunnan Province, China [8], CWT-
RF model has a good prediction accuracy (R2 = 
0.77, RMSE = 9.54, MAE = 7.39) to estimate the Zn 
content for Ordos City, Inner Mongolia Autonomous 
Region, China [9] and PLSR model can effectively 
achieve quantitative inversion (R2 = 0.796, RMSE =  
2.574) of soil Zn content in mining areas of the city 
of Zoucheng, Shandong Province, China [10]. El-
Sayed E [11] found that the PLSR model had the op-
timal prediction for Bahr El-Baqar region with R2 of 
0.66, RMSE of 20.42, and RPD of 2.05. Yang et al. [12]  
pointed out that the PLSR model had the highest 
stability and accuracy (R2 = 0.95, RMSE = 33.65) in 
predicting the Zn content in mining areas of the city 
of Tongling, Anhui Province, China. 

With the acceleration of urbanization and the in-
fluence of the “Silk Road Economic Belt”, eco-envi-

ronmental problems in oases in the northwestern arid 
zones garnered more attention [13,14]. In addition, due 
to the impact of strong human activities, factories 
and high traffic volumes, the level of Zn in urban 
soil is higher than that in farmland and natural soil [15].  
Relevant studies also reported that there is serious 
trace element contamination exists in soil and sur-
face dust in Urumqi [16,17]. Therefore, it is very im-
portant to analyze the possibility of the hyperspectral 
inversion of Zn contents in urban soils. The main 
objective of this study was to find an optimal model 
to predict the Zn content in soil. Thus, the work of 
this study was to identify the important wavelengths 
of Zn in urban soil and evaluate the efficiency of dif-
ferent spectral transformations and soil Zn contents. 
Then, select an optimum hyperspectral prediction 
model for Zn content in urban soil based on the 
partial least squares regression (PLSR) and random 
forests regression (RFR). The results will solve the 
existing problems in the current hyperspectral inver-
sion of Zn content in urban soil.

2. Description of the study area
The experimental field (87°28’-87°37’ E and 

43°48’-44°04’ N) is selected in the central parts of 
the Urumqi, which is situated in the southern edge 
of the Junggar Basin, the northwest arid regions of 
China, and is one of the important metropolitan cit-
ies in NW China (Figure 1). The main soil type of 
this region is mainly grey desert soil [15]. The climate 
is regionally marked by a continental arid climate 
with an annual average temperature, precipitation, 
and evaporation of about 6.7 °C, 280 mm, and 2730 
mm, respectively. Urumqi has become the capital of 
Xinjiang and the second-largest city in northwestern 
China due to its rapid economic development and 
expanding industrial scale. Toxic elements in the soil 
are accumulating and are prone to soil pollution.
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Figure 1. Location of experimental field and sample sites.

3. Materials and methods

3.1 Sample collection and analysis

A total of 88 topsoil samples (0-20 cm) were 
collected within the study area (Figure 1) in April 
2021. At each sample site, five sub-samples from the 
topsoil (0-20 cm) layer were taken within 100 m ×  
100 m areas and then mixed together to form one 
composite soil sample, weighing more than 500 g. 
All the samples were returned to the laboratory and 
sieved for 20 meshes after naturally air dried. Each 
sample was divided into two groups, one for the 
determination of Zn content and another one for the 
hyperspectral measurement. The Zn content of soil 
samples was determined as described in “HJ 803-
2016” [18], using an Inductively Coupled Plasma 
Mass Spectrometer (ICP-MS 7800). The analytical 
data quality was analyzed by the laboratory quality 
control methods, including the use of reagent blanks, 
duplicates and standard reference materials for each 
batch of soil samples. For the precision of the an-
alytical procedures, a standard solution was used 
to compare samples to national standards (Chinese 
national standards samples, GSS-12). All of the soil 
samples were tested repeatedly, and the determined 
consistency of the Zn measurements was 96.5%.

3.2 Spectrometric determination and pre-pro-
cessing

The spectral determination of collected soil sam-

ples was measured using a FieldSpec®3 portable 
object spectrometer manufactured by Analytical 
Spectral Devices (ASD), USA. The interval of data 
acquisition was 1 nm with a spectral measurement 
range from 350 to 2500 nm. Firstly, the instrument 
was preheated, and secondly, a 40 cm × 40 cm white 
board was placed on a 2 m × 2 m black cardboard 
for calibration to obtain the absolute reflectance be-
fore determining the spectral data. Finally, the soil 
samples were kept in a natural state on the black 
cardboard with the sensor probe perpendicular to 
15 cm above the soil surface, and the sensor probe 
was optimized with a white board every 5 minutes. 
A total of 15 replicate measurements were taken on 
the same soil sample, and 15 spectral curves were 
collected. 

The 15 spectral curves were averaged using 
ViewSpecPro software, and the arithmetic mean was 
taken as the original reflectance spectral value of the 
soil sample. Due to the influence of the surrounding 
environment and the spectral instrument itself, the 
spectral bands within 350-399 nm, 1350-1430 nm, 
1781-1970 nm and 2401-2500 nm were exclud-
ed before constructing the hyperspectral models, 
which were outputted in a total of 1730 bands. The 
Savitzky-Golay (S-G) filter algorithm is applied for 
smoothing and removing noise from spectral curves. 
Figure 2 illustrates the spectral reflectance curves of 
the original spectra and spectra processed by the S-G 
smoothing.

Figure2. Original (a) and Savitzky-Golay smoothing (b) spectral 
reflectance curve of soil.

3.3 Spectral transformation and important 
wavelength selection

In order to enhance the spectral information re-
lated to Zn in soil samples, the original spectral re-
flectance data (R) are subjected to logarithm of the 
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reciprocal (AT), root mean square (RMS), logarithm 
(LT), reciprocal of the logarithm (RL), reciprocal 
(RT), first-order differentiation (FD), second-order 
differentiation (SD), first-order differentiation of the 
reciprocal (RTFD), second-order differentiation of 
the reciprocal (RTSD), first-order differentiation of 
the logarithm (LTFD), second-order differentiation 
of the logarithm (LTSD), root mean square first-or-
der differentiation (RMSFD), root mean square sec-
ond-order differentiation (RMSSD), logarithmic first 
order differentiation of the reciprocal (ATFD), loga-
rithmic second order differentiation of the reciprocal 
(ATSD), logarithmic first order differentiation of the 
reciprocal (RLFD), and logarithmic second order 
differentiation of the reciprocal (RLSD).

Firstly, Pearson’s correlation coefficient analysis 
(PCC) was performed between soil Zn content and 
18 forms of soil spectral data, and the bands with 
larger correlation coefficients were screened out as 
important wavelengths for hyperspectral prediction 
modeling. Secondly, all the original and 17 types of 
transformed spectral data were intelligently extract-
ed for the important wavelengths by using Com-
petitive Adaptive Re-weighted Sampling (CARS) 
to exclude further removed wavelengths with low 
correlation [19,20]. The CARS method is constructed 
in Python.

3.4 Modelling of hyperspectral inversion

Soil samples were randomly divided into a mod-
eling data set (70 samples) and a validation data set 
(18 samples) in order to ensure the rationality of 
hyperspectral modeling. The modeling data set was 
used to build hyperspectral prediction models, while 
the validation data set was used to test the accura-
cy of prediction models. The partial least squares 
regression (PLSR) and random forests regression 
(RFR) were used to select the optimum hyperspec-
tral prediction model. The PLSR algorithm considers 
both spectral information (x) and the corresponding 
reference values (y) of samples during modeling and 
transforms the original spectral data into mutually 
orthogonal and unrelated new variables via linear 
transformation, thereby eliminating multicollinearity 

between datasets [21]. 
The RFR is a relatively new data mining tech-

nique that is designed to produce accurate predic-
tions that do not overfit the data. RFR is easy to use 
as it requires only three input parameters: the number 
of two ‘random_state’ and ‘n_estimators’. The three 
input parameters are used to partition the modeling 
set and validation set, and determine the optimal 
partitioning of each tree node [22], respectively. The 
individual trees in the RFR ensemble are built on a 
bootstrapped training sample, and only a small group 
of predictor variables are considered at each split; 
this ensures that trees are de-correlated with each 
other. Additionally, studies have shown that the three 
input parameters provide accurate results [23].

3.5 Model validation

A robust model has high R2 and RPD and low 
RMSE and MAE [24]. Thus, the determination coef-
ficient (R2), root mean square error (RMSE), mean 
absolute error (MAE) and residual prediction devi-
ation (RPD) were chosen to evaluate the prediction 
accuracy of the hyperspectral prediction models. 
When R2 < 0.5, the prediction model does not have 
prediction ability, when 0.5 ≤ R2 < 0.7, the model has 
preliminary prediction ability, and when R2 ≥ 0.7, the 
model has good prediction ability [25]. When RPD ≥ 
2.0, the prediction model has a good prediction abil-
ity, when 1.4 ≤ RPD < 2.0, the model has the initial 
predictive capability, and when RPD < 1.4, the mod-
el has a poor predictive capability. In general, lower 
RMSE and MAE indicate better model prediction 
accuracy [26].

4. Results and analyses

4.1 Statistical analysis of Zn content in soil

Statistical results of Zn contents for soil samples 
in the Urumqi are given in Table 1. Standard devi-
ation (SD) and coefficient of variation (CV) were 
used to measure data dispersion, with the CV used as 
a complement to the SD. Table 1 shows that the Zn 
contents of soil samples are distributed in the range 
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of 34.00-200.00 mg/kg, with an average value of 
60.88 mg/kg. The average Zn contents of modeling 
set and validation set are 60.57 mg/kg and 62.06 mg/
kg, respectively. The SD of modeling set and vali-
dation set are 21.18 and 35.28 mg/kg, respectively. 
And, the CV values of modeling set and validation 
set are 0.35 and 0.57, respectively. It’s clear that 
the average and CV values of Zn contents in the 
modeling set are essentially the same as those of the 
validation set. Influenced by two high value sample 
points, the SD values have a difference. This is be-
cause the main factories are located in the northern 
and northeastern parts of Urumqi and the roads with 
high traffic volumes stretch across the city center [16].  
So, two high value sample points were split into 
modelling set and a validation set respectively. Over-
all, it indicates that the division of soil samples was 
reasonable and can be used for subsequent model 
construction. 

4.2 Correlation between soil Zn content and 
reflectance data

The PCC analysis was performed between the 
Zn content and the spectral data after 17 types 
of transformations and R, which can identify the 
correlation between Zn content and spectral data 
of soil samples. The degree of correlation was ex-
pressed by the Pearson coefficient (r), and PCC was 
examined in the significance test at the P < 0.01 
level (two-sided).

In Figure 3, the spectrum of the R, RMS, and LT 
showed a highly significant negative correlation with 
Zn content with 1730 important wavelengths select-
ed. The spectrum of the AT, RL, and RT showed a 
highly significant positive correlation with Zn con-
tent with 1730 important wavelengths selected. The 
correlation analysis of the Zn content and spectral 
data processed by first-order and second-order dif-
ferentiation transformed indicated that both positive 
and negative correlation coefficients showed extreme 
values, and the positive and negative correlations 
of the filtered important wavelengths were more 
uniformly distributed. Thus, 18 types of spectrum 
can filter out characteristic bands for data modeling, 

and the number of the important wavelengths is de-
scended in the order of: R(1730) = RMS(1730) =  
LT(1730) = RL(1730) = RT(1730) = AT(1730) > 
RLFD(663) > FD(502) > RTFD(436) > RTSD(387) >  
RMSFD(306) > LTSD(253) = ATSD(253) > 
LTFD(194) = ATFD(194) > RMSSD(186) > SD(125) > 
RLSD(82).

The number of important wavelengths selected 
by CARS is descended in the order of RMSSD(25) = 
RMSFD(25) = RTFD(25) > RLSD(23) > RTSD(22) >  
ATSD(21) > LTFD(20) = ATFD(20) = FD(20) > 
SD(19) > R(16) > LTSD(14) > RLFD(13) = AT(13) >  
RMS(12) > RL(11) > LT(9) = RT(9). The number 
of important wavelengths selected by CARS is less 
than the important wavelengths selected by PCC.

4.3 The establishment and analysis of the 
spectral inversion prediction model

Partial least squares regression model (PLSR) 
and random forest regression model (RFR) were 
constructed to predict the Zn content of soil in this 
study. Based on Python, the “random_state” of three 
models was set as 48. Due to the randomness of 
the RFR model, the number of parameters (“n_es-
timators” and another “random_state”) will disturb 
the predictive performance of the model. Under the 
consideration of model performance, model running 
time, sample number and other factors, the number 
of parameters (“n_estimators” and another “random_
state”) of the RFR model was set in the range from 
1 to 99. The modeling set is used to construct the 
inversion model, whereas the validation set is used 
to evaluate the performance of the final model. Ac-
cording to the correlation coefficient between the 
Zn content and the spectrum, wavelengths with ab-
solute values more than 0.272 under the processed 
spectral reflectance data were taken as important 
wavelengths. Then, the important wavelengths are 
selected as the independent variables (x), and the 
Zn contents of the soil are selected as the dependent 
variables (y). The hyperspectral inversion model for 
soil Zn content was established by the partial least 
squares regression (PLSR) and the random forests 
regression algorithms, respectively.



81

Journal of Environmental & Earth Sciences | Volume 05 | Issue 02 | October 2023

Table 1. Statistical values of Zn contents in soil in the Urumqi.

Data set Samples/n Minimum Maximum Average SD CV
Modeling set (mg/kg) 70 37.00 164.00 60.57 21.18 0.35
Validation set (mg/kg) 18 34.00 200.00 62.06 35.52 0.57
Total (mg/kg) 88 34.00 200.00 60.88 24.81 0.41

Figure 3. Correlations of PCC between soil Zn content and spectral reflectance data.

The analysis of the PLSR model
The basic statistics related to the stability and ac-

curacy of the PLSR model are given in Table 2.
As shown in Table 2, the R2 inversed by the 

PLSR model based on the important wavelengths se-
lected by PCC range from 0.208 to 0.540, RMSE val-
ues range from 24.089 to 31.621, MAE values range 
from 3.981 to 4.095, and RPD values range from 
1.123 to 1.475. For the RTSD-PLSR model (R2 =  
0.540, RMSE = 24.089, MAE = 3.981, and RPD = 

1.475), the estimation capability of the remaining 
models is poor and the prediction accuracy is low. 

The ranges of R2, RMSE, MAE, and RPD values 
inversed by PLSR based on the important wavelengths 
selected by CARS are 0.135-0.937, 8.914-33.039, 2.735-
4.305, and 3.985-1.075, respectively. The prediction 
accuracy of CARS-RTFD-PLSR model is highest (R2 =  
0.937, RMSE = 8.914, MAE = 2.735, RPD = 3.985). 
PLSR model based on AT, RMS, RT, RMSFD, LTFD, 
ATFD, and FD has the better estimation capability. 
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In general, CARS is superior to PCC, and the 
CARS-RTFD-PLSR model is better than the RT-
FD-PLSR model. A map of the spatial distribution 
(Figure 4) illustrates the relationship between the 
predicted contents of Zn and the measured contents 
of Zn in the study area.
The analysis of the RFR model

In Table 3, the ranges of R2, RMSE, MAE and 
RPD values inversed by the RFR model based on the 
important wavelengths selected by PCC are 0.477-
0.799, 1.414-4.714, 12.417-21.481, and 7.535-
25.120, respectively. The R2 is higher than 0.5 except 
for the RLSD-RFR model, so the RFR model has 
good prediction ability. The best inverse prediction 
model is the FD-RFR model (R2 = 0.799, RMSE = 
2.711, MAE = 12.417, and RPD = 13.102). 

The R2 inversed by the RFR model based on the 
important wavelengths selected by CARS ranges 
from 0.316 to 0.856, the ranges of RMSE and MAE 
values are 1.100-7.377 and 10.074-20.343, and the 
RPD values are 4.815-30.127. The prediction accu-
racy of CARS-LTFD-RFR model is highest (R2 = 
0.856, RMSE = 2.514, MAE = 10.074, and RPD = 
14.129). 

CARS is superior to PCC, and the CARS-LTFD-
RFR model is better than the FD-RFR model. How-
ever, all the estimation capability of the RFR model 
is good because the values of RPD are higher than 
2.0. A map of the spatial distribution illustrates the 
relationship between the predicted contents of Zn 
and the measured contents of Zn in the study area 
(Figure 5).

Table 2. Statistics of accuracy parameters of PLSR model for soil Zn content in Urumqi.

Transformation
PCC CARS

R2 RMSE MAE RPD R2 RMSE MAE RPD

R 0.376 25.051 4.037 1.418 0.496 24.209 3.919 1.467

AT 0.329 29.095 4.215 1.221 0.550 23.833 3.935 1.490

RMS 0.303 29.650 4.232 1.198 0.532 24.297 4.050 1.462

LT 0.329 29.095 4.215 1.221 0.480 25.624 3.805 1.386

RL 0.271 30.334 4.048 1.171 0.200 31.770 4.651 1.118

RT 0.346 28.735 3.951 1.236 0.506 24.977 3.653 1.422

RMSFD 0.263 30.502 3.894 1.165 0.591 22.722 4.128 1.563

RMSSD 0.389 27.776 4.079 1.279 0.332 29.023 4.307 1.224

LTFD 0.481 25.579 3.752 1.389 0.762 17.323 3.536 2.050

LTSD 0.427 26.899 4.032 1.320 0.135 33.039 4.305 1.075

RLFD 0.208 31.621 4.095 1.123 0.168 32.402 4.294 1.096

RLSD 0.372 28.158 4.066 1.261 0.299 29.732 4.038 1.195

RTFD 0.358 28.451 3.916 1.248 0.937 8.914 2.735 3.985

RTSD 0.540 24.089 3.981 1.475 0.337 28.932 4.045 1.228

ATFD 0.474 25.765 3.926 1.379 0.510 24.856 4.114 1.429

ATSD 0.426 26.905 4.036 1.320 0.333 29.017 4.367 1.224

FD 0.384 27.889 4.036 1.274 0.687 19.833 3.871 1.791

SD 0.367 28.263 4.095 1.257 0.397 27.594 4.062 1.287

R (original spectral reflectance data); AT (logarithm of the reciprocal); RMS (root mean square); LT (logarithm); RL (reciprocal of the logarithm); RT (reciprocal); RMSFD 

(root mean square first-order differentiation); RMSSD (root mean square second-order differentiation); LTFD (first-order differentiation of the logarithm); LTSD (second-

order differentiation of the logarithm); RLFD (logarithmic first order differentiation of the reciprocal); RLSD (logarithmic second order differentiation of the reciprocal); 

RTFD (first-order differentiation of the reciprocal); RTSD (second-order differentiation of the reciprocal); ATFD (logarithmic first order differentiation of the reciprocal); 

ATSD (logarithmic second order differentiation of the reciprocal); FD (first-order differentiation), SD (second-order differentiation).
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Figure 4. Distribution of Zn content based on measured values (A) and PLSR predicted values (B).

Table 3. Statistics of accuracy parameters of RFR model for Zn content of soils in Urumqi.

Transformation
PCC CARS

R2 RMSE MAE RPD R2 RMSE MAE RPD

R 0.509 3.012 14.228 11.793 0.437 1.179 14.926 30.127 

AT 0.584 2.593 14.722 13.698 0.470 3.477 17.097 10.216 

RMS 0.509 3.012 14.228 11.793 0.437 3.693 16.259 9.618 

LT 0.508 3.012 14.253 11.793 0.488 2.357 14.426 15.070 

RL 0.584 2.593 14.806 13.698 0.457 1.100 14.148 32.291 

RT 0.584 2.593 14.722 13.698 0.518 5.215 15.646 6.811 

RMSFD 0.578 2.671 21.481 13.298 0.598 3.435 12.992 10.341 

RMSSD 0.640 2.027 14.822 17.523 0.316 2.678 18.884 13.264 

LTFD 0.524 1.500 14.126 23.680 0.856 2.514 10.074 14.129 

LTSD 0.714 2.216 13.622 16.029 0.388 3.359 18.903 10.575 

RLFD 0.744 3.614 12.963 9.828 0.463 7.377 15.206 4.815 

RLSD 0.477 2.269 15.729 15.654 0.318 2.721 20.343 13.054 

RTFD 0.692 3.300 16.944 10.764 0.747 2.095 11.648 16.955 

RTSD 0.683 2.711 14.694 13.102 0.536 1.886 13.846 18.834 

ATFD 0.628 1.414 17.556 25.120 0.709 2.887 12.352 12.303 

ATSD 0.655 2.828 15.556 12.560 0.454 3.435 18.111 10.341 

FD 0.799 2.711 12.417 13.102 0.777 1.886 11.778 18.834 

SD 0.593 4.714 16.889 7.535 0.465 2.528 15.949 14.051 

R (original spectral reflectance data); AT (logarithm of the reciprocal); RMS (root mean square); LT (logarithm); RL (reciprocal of the logarithm); RT (reciprocal); RMSFD 

(root mean square first-order differentiation); RMSSD (root mean square second-order differentiation); LTFD (first-order differentiation of the logarithm); LTSD (second-

order differentiation of the logarithm); RLFD (logarithmic first order differentiation of the reciprocal); RLSD (logarithmic second order differentiation of the reciprocal); 

RTFD (first-order differentiation of the reciprocal); RTSD (second-order differentiation of the reciprocal); ATFD (logarithmic first order differentiation of the reciprocal); 

ATSD (logarithmic second order differentiation of the reciprocal); FD (first-order differentiation), SD (second-order differentiation).
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4.4 Discussion of optimal prediction models

On the one hand, estimating Zn content in soils 
using hyperspectral remote sensing is a cost-efficient 
method but challenging due to the effects of natural 
environmental conditions and soil properties [27]. On 
the other hand, high-data dimensionality is a com-
mon problem in hyperspectral data processing, so 
the inversion accuracy of the constructed model is 
biased by redundant spectra and noise [23,28]. 

In this study, the predicted accuracy of the soil Zn 
content is R2

CARS-RTFD-PLSR > R2
RLSD-RFR > R2

CARS-LTFD-RFR > 
R2

RTSD-PLSR. Therefore, combined with the performance 
of the prediction accuracy of soil Zn content, the predic-
tion accuracy of PLSR among the modeling methods 
is significantly better than that of RFR. As shown in 
Tables 2 and 3, the fitness, stability and accuracy of the 
prediction model are changed to different degrees after 
processing methods of the original spectral data. The best 
predict prediction model is the CARS-RTFD-PLSR (par-
tial least squares regression model based on first-order 
differentiation of the reciprocal by CARS) model (R2 =  
0.937, RMSE = 8.914, MAE = 2.735, and RPD = 3.985), 

which has the better ability to invert the soil heavy metal 
content in the study area. The scatter plot of the meas-
ured and predicted values of Zn content modeling by 
CARS-RTFD- PLSR and R-PLSR model was exhibited 
in Figure 6.

The R2 calculated by the PLSR model constructed 
based on CARS-RTFD of the important wavelengths 
is significantly higher than that modeled from the 
original spectral data, and both the RMSE and MAE 
are significantly decreased. From Figure 6, it can 
be intuitively seen that the prediction accuracy of 
the PLSR model based on original spectral data was 
not high, and the R2 between the measured and pre-
dicted values was 0.496. The prediction accuracy of 
the CARS-RTFD was improved significantly, and 
the predicted and measured values presented a good 
agreement with each other, with R2 of 0.937, which 
was improved by 0.441 compared with the R-PLSR 
model. Overall, a faster and more convenient meth-
od for estimating Zn content in soil is described in 
this work. This method provides an effective way for 
predicting soil Zn contents in oasis cities.

Figure 5. Distribution of Zn content based on field measured values (A) and RFR predicted values (B).
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5. Conclusions
To find an optimal model to predict the soil Zn 

content for the study area, the PLSR model and the 
RFR model were constructed based on the important 
wavelengths and Zn content from soil samples. The 
results of this study lead to the following conclu-
sions: 

1) Transformed spectral data with Pearson’s cor-
relation coefficient analysis and CARS can obvious-
ly reduce the interference of the environmental back-
ground and improve the correlations between soil 
spectral reflectance data and Zn contents of soil. The 
first-order differentiation of the reciprocal (RTFD) 
has the most significant enhancement of spectral fea-
tures.

2) The results showed that the CARS-RTFD-
PLSR model is more stable with the highest pre-
diction ability (R2 = 0.937, RMSE = 8.914, MAE = 
2.735, and RPD = 3.985) for soil Zn content in the 
research region. The CARS-RTFD-PLSR method 
can provide a reference method and technical sup-
port for the prediction of soil Zn content in oasis cit-
ies.

Overall, the results of this study demonstrate the 
possibility of directly applying hyperspectral remote 
sensing approaches to estimating soil Zn contents 
in oasis cities. This method can provide technical 
support for the hyperspectral estimation of the soil 
Zn content and can require rapid detection of Zn a 
contamination of soil. However, the limitation of this 

study is the lack of combination of hyperspectral and 
remote sensing imagery, which needs to be further 
verified in subsequent studies.

Author Contributions
Qing Zhong completed all the experiments to 

obtain data, processed the data, and wrote the main 
manuscript text. Mamattursun Eziz provided support 
and gave guidance for this study. Rukeya Sawut and 
Mireguli Ainiwaer taught the methods. All authors 
reviewed the manuscript.

Conflict of Interest
The authors declare no conflicts of interest.

Funding
This research was funded by the National Natural 

Science Foundation of China (No. U2003301) and 
the Tianshan Talent Training Project of Xinjiang.

Acknowledgement
The original version of this paper was substantial-

ly improved thanks to the constructive comments by 
anonymous reviewers.

References
[1] Zhao, R.X., 2004. Huan jing wu ran hua xue 

Figure 6. Measured and CARS-RTFD-PLSR predicted values of Zn content in soil.



86

Journal of Environmental & Earth Sciences | Volume 05 | Issue 02 | October 2023

(Chinese) [Environmental pollution chemistry]. 
China Industry Press: Beijing.

[2] Chen, Y.Z., Wang, F., Wang, G., et al., 2012. 
Research advances on zinc pollution and reme-
diation of soil system. Fujian Journal of Agricul-
tural Sciences. 27(8), 901-908.

[3] Patel, A.K., Ghosh, J.K., Sayyad, S.U., 2022. 
Fractional abundances study of macronutrients 
in soil using hyperspectral remote sensing. Geo-
carto International. 37(2), 474-493.

[4] Yang, Y., Cui, Q.F., Jia, P., et al., 2021. Estimat-
ing the heavy metal concentrations in topsoil in 
the Daxigou mining area, China, using multi-
spectral satellite imagery. Scientific Reports. 11, 
11718. 

[5] Wei, L.F., Pu, H.C., Wang, Z.X., et al., 2020. 
Estimation of soil arsenic content with hyper-
spectral remote sensing. Sensor. 20, 4056-4071.

[6] Tan, K., Wang, H.M., Chen, L.H., et al., 2021. 
Estimating the distribution trend of soil heavy 
metals in mining area from HyMap airborne hy-
perspectral imagery based on ensemble learning. 
Journal of Hazardous Materials. 401, 1-17.

[7] Ye, M., Zhu, L., Li, X.J., et al., 2022. Estima-
tion of the soil arsenic concentration using a 
geographically weighted XGBoost model based 
on hyperspectral data. Science of the Total Envi-
ronment. 858, 159798-159798.

[8] Bian, Z.J., Sun, L.N., Tian, K., et al., 2021. Es-
timation of heavy metals in Tailings and soils 
using hyperspectral technology: A case study 
in a Tin Polymetallic mining area. Bulletin of 
Environmental Contamination and Toxicology. 
107, 1022-1031.

[9] Zhang, B., Guo, B., Zou, B., et al., 2022. Re-
trieving soil heavy metals concentrations based 
on GaoFen-5 hyperspectral satellite image at an 
opencast coal mine, Inner Mongolia, China. En-
vironmental Pollution. 300, 118981-118992.

[10] Hou, L., Li, X.J., Li, F., 2018. Hyperspec-
tral-based inversion of heavy metal content in 
the soil of coal mining areas. Journal of Envi-
ronmental Quality. 48, 57-63.

[11] Omran, E.S.E., 2016. Inference model to predict 

heavy metals of Bahr El Baqar soils, Egypt using 
spectroscopy and chemometrics technique. Model-
ing Earth Systems and Environment. 2, 1-17.

[12] Yang, H.F., Xu, H., Zhong, X.N., 2022. Predic-
tion of soil heavy metal concentrations in cop-
per tailings area using hyperspectral reflectance. 
Environmental Earth Sciences. 81, 183-193.

[13] Wei, B., Jiang, F., Li, X., et al., 2010. Heavy 
metal induced ecological risk in the city of 
Urumqi, NW China. Environmental Monitoring 
and Assessment. 160, 33-45.

[14] Li, J.M., Zhang, Y.T., 2019. Wu lu mu qi bu tong 
gong neng qu lin dai tu rang zhong jin shu wu 
ran te zheng fen xi (Chinese) [Characteristics of 
heavy metal pollution in forest belt soil of different 
functional zones in Urumqi, Xinjiang]. Journal of 
Environmental Sciences. 28, 1859-1866. 

[15] Sidikjan, N., Eziz, M., Li, X., et al., 2022. 
Spatial distribution, contamination levels, and 
health risks of trace elements in topsoil along 
an urbanization gradient in the City of Urumqi, 
China. Sustainability. 14(19), 12646.

[16] Hini, G., Eziz, M., Wang, W., et al., 2020. Spa-
tial distribution, contamination levels, sources, 
and potential health risk assessment of trace ele-
ments in street dusts of Urumqi city, NW China. 
Human and Ecological Risk Assessment: An 
International Journal. 26(8), 2112-2128.

[17] Yao, X.D., Wang, J., Wang, Y.M., et al., 2022. 
Wu lu mu qi mou gong ye yuan qu tu rang 
zhong jin shu qian zai sheng tai feng xian ping 
jia (Chinese) [Potential ecological risk assess-
ment on heavy metals in the soil of an industrial 
park in Urumqi, China]. Transactions of Nonfer-
rous Metals Society of China. 12, 160-166.

[18] Soil and Sediment-Determination of Aqua Re-
gia Extracts of 12 Metal Elements-Inductively 
Coupled Plasma Mass Spectrometry [Internet]. 
Ministry of Environmental Protection of the 
People’s Republic of China; 2016. Available 
from: https://english.mee.gov.cn/Resources/
standards/Soil/Method_Standard4/201607/
t20160704_357088.shtml

[19] Yuan, Z.R., Wei, L.F., Zhang, Y.X., et al., 2020. 

https://english.mee.gov.cn/Resources/standards/Soil/Method_Standard4/201607/t20160704_357088.shtml
https://english.mee.gov.cn/Resources/standards/Soil/Method_Standard4/201607/t20160704_357088.shtml
https://english.mee.gov.cn/Resources/standards/Soil/Method_Standard4/201607/t20160704_357088.shtml


87

Journal of Environmental & Earth Sciences | Volume 05 | Issue 02 | October 2023

Hyperspectral inversion and analysis of heavy 
metal arsenic content in farmland soil based on 
optimizing CARS combined with PSO-SVM 
algorithm. Spectroscopy and Spectral Analysis. 
40(2), 567-573.

[20] Zhong, X.J., Yang, L., Zhang, D.X., et al., 
2022. Effect of different particle sizes on the 
prediction of soil organic matter content by vis-
ible-near infrared spectroscopy. Spectroscopy 
and Spectral Analysis. 42(8), 2542-2550.

[21] Ma, X.M., Zhou, K.F., Wand, J.L., et al., 2022. 
Optimal bandwidth selection for retrieving Cu 
content in rock based on hyperspectral remote 
sensing. Journal of Arid Land. 14(1), 102-114.

[22] Samuel, N.A., Anna, F.H., Andreas, A., et al., 
2021. Advances in soil moisture retrieval from 
multispectral remote sensing using unoccupied 
aircraft systems and machine learning tech-
niques. Hydrology and Earth System Sciences. 
25, 2739-2758.

[23] Michelle, D., Onisimo, M., Riyad, I., 2011. Ex-
amining the utility of random forest and AISA 
Eagle hyperspectral image data to predict Pinus 
patula age in KwaZulu-Natal, South Africa. 
Geocarto International. 26(4), 275-289.

[24] Rukeya, S., Nijat, K., Abdugheni, A., et al., 

2018. Possibility of optimized indices for the as-
sessment of heavy metal contents in soil around 
an open pit coal mine area. International Journal 
of Applied Earth Observation and Geoinforma-
tion. 73, 14-25.

[25] Vohland, M., Joachim, B., Joachim, H., et al., 
2011. Comparing different multivariate calibra-
tion methods for the determination of soil or-
ganic carbon pools with visible to near infrared 
spectroscopy. Geoderma. 166, 198-205.

[26] Wang, Y.Y., Niu, R.Q., Lin, G., et al., 2023. 
Estimate of soil heavy metal in a mining region 
using PCC-SVM-RFECV-AdaBoost combined 
with reflectance spectroscopy. Environmental 
Geochemistry and Health. Ahead of print.

 DOI: https://doi.org/10.1007/s10653-023-01488-W
[27] Liu, W.W., Li, M.J., Zhang, M.Y., et al., 2020. 

Hyperspectral inversion of mercury in reed 
leaves under different levels of soil mercury 
contamination. Environmental Science and Pol-
lution Research. 27, 22935-22945.

[28] Zhou, M., Zou, B., Tu, Y.L., et al., 2022. Spec-
tral response feature bands extracted from near 
standard soil samples for estimating soil Pb in 
a mining area. Geocarto International. 37(26), 
13248-13267.

https://doi.org/10.1007/s10653-023-01488-W

