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1. Introduction
Monitoring sea level changes during the 20th and 

21st centuries is important in assessing anthropogen-
ic contributions to climate change mechanisms [1].  

Recent sea level rise studies emphasize observing 
systematic changes, such as trends, accelerations, 
periodic oscillations, and unexplained random con-
tributors to sea level changes of known or unknown 
origin. 
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ABSTRACT
Monitoring temporal changes in sea level is important in assessing coastal risk. Sea level anomalies at a tide gauge 

station, if kinematically conceived, include systematic variations such as trend, acceleration, periodic oscillations, and 
random disturbances. Among them, the non-stationary nature of the random sea level variations of known or unknown 
origin at coastal regions has been long recognized by the sea level community. This study proposes the analyses of 
subgroups of random residual statistics of a rigorously formulated kinematic model solution of tide gauge variations 
using X-bar and S control charts. The approach is demonstrated using Key West, Florida tide gauge records. The mean 
and standard errors of 5-year-long subgroups of the residuals revealed that sea level changes at this location have 
been progressively intensifying from 1913 to the present. Increasing oscillations in sea level at this locality may be 
attributed partly to the thermal expansion of seawater with increasing temperatures causing larger buoyancy-related 
sea level fluctuations as well as the intensification of atmospheric events including wind patterns and the impact of 
changes in inverted barometer effects that will alter coastal risk assessments for the future.
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Among them, systematic sea level changes are 
induced by wind stress, atmospheric pressure, pre-
cipitation, river discharge, currents, temperature and 
salinity of the water long periodic solar radiation 
variations and lunar tidal activities [2]. Sub-seasonal 
to decadal periodic movements of sea level, local-
ly and regionally, are also induced by atmospheric 
pressure variations, sea surface winds, and ocean cir-
culation patterns [3]. Linear and nonlinear systematic 
changes in sea level are represented by trend and ac-
celeration/deceleration respectively using kinematic 
models. 

Random sea level anomalies are due to the in-
strumental errors and transient roughness of the 
sea level over short or long timescales because of 
climatic changes. Irregular and episodic discharges 
from a nearby river, or seasonal variations due to the 
components of atmospheric pressure or temperature 
variations may have random components. Some of 
the sea level variability is attributed to the thermal 
expansion of seawater, which accelerates with in-
creasing temperature and larger buoyancy-related sea 
level fluctuations [4]. Climate model simulations with 
increasing greenhouse gas emissions suggest that 
future sea level variability, such as the annual and 
interannual oscillations that alter local astronomical 
tidal cycles and contribute to coastal impacts, are ex-
pected to increase in many regions [4]. 

Recently, Woodworth et al. [5] stated that coastal 
sea level variability can be better understood than 
those in the deep ocean. Their study discussed the 
underlying forcing factors exhaustively. The sys-
tematic components of resulting coastal sea level 
variability can be modeled kinematically, which will 
be demonstrated as a byproduct of this study, such 
that the remaining unknown or unmodeled random 
variability in sea level can be scrutinized at tide 
gauge (TG) stations. Increasing oscillations in sea 
level are expected due to the thermal expansion of 
seawater with increasing temperatures causing larger 
buoyancy-related sea level fluctuations as well as 
the observed intensification of atmospheric events  
because of climate change [6] that will alter coastal 

risk assessments for the future.
The random appearance of the sea level changes 

has long been identified as having non-stationary 
properties [3]. The stationarity of random sea level 
variations can be understood formally as the sta-
tistical properties of a physical system that remain 
unchanged over time [7]. Two types of stationary 
series are identified: One having a constant mean 
and another, fluctuating about that mean with a con-
stant variance [8]. A study by Iz and Ng [9], already 
demonstrated by examining globally distributed 
1862 stations’ tide gauge data from the Permanent 
Service for Mean Sea Level (PSMSL) that random 
excursions in sea levels are preponderantly non-sta-
tionary in variance. This study conjures further and 
demonstrates that there is more to be learned from 
the time progression of non-stationary variances in 
sea level anomalies for climate change related risk 
assessments at coastal regions. 

In the following sections, the Key West TG sta-
tion record is used to examine the random properties 
of the sea level fluctuations at this locality as an ex-
ample. Systematic and random sea level variations 
observed at this station are represented by a rigorous 
kinematic model. An Ordinary Least Squares (OLS) 
solution to the kinematic model is then carried out 
and the solution residuals are analyzed using their 
subgroups’ statistics inspired by X-bar and S control 
charts. The reliability of the finding, an increase in 
the variance of the random changes in sea level at 
this TG station from 1913 to the present, is quan-
tified by bootstrapping the residuals and analyzing 
alternative random realization of residual subgroups’ 
stationary/non-stationary properties. 

2. An extended kinematic model of 
sea level variations

The following extended kinematic model rep-
resents observed sea level height anomalies at a TG 
station. It consists of a trend, a uniform acceleration, 
and periodic sea level variations to represent ob-
served sea level anomalies 
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where, the reference datum ℎ0 is defined in the middle of the record at an epoch 0. The trend is
the initial velocity 0 at 0 when  ≠ 0 , and  is the constant rate of change in the sea level
velocity (i.e., the uniform acceleration). ℎ are the periods of systematic sea level oscillations.
Their amplitudes can be constructed using ℎ  ℎ sin and cosine components respectively.

What is markedly different in this model as compared to the previous studies of a similar
nature1 is the inclusion of various prospective low frequency sea level variations at a TG station
explicitly in a top-down approach. The origins of these oscillations in sea level were conjured by
Munk et al. [10] and Keeling and Whorf [11]. Under their scenarios, interactions of the ocean,
meteorological forcing, and sea surface temperature materialize as natural broad band sea level
variations. They modulate astronomical forcings, such as lunar node tide systematically or as
random beatings resulting in sub and super harmonics of known periods (Table 1). Similarly, the
variations in total solar radiation with a period of P = 11.1 years, yield subharmonics with periods:
2  P = 22.2 years and longer. An earlier wavelet analysis by Yndestad [12] also identified several
lunar node subs and super harmonics in Arctic Sea level, temperature, ice extent and winter index
time series data, including the signature of nodal harmonics in pole position time series (Table 1
in Yndestad [13]), and a strong cross correlation with Chandler wobble.

Although the observed amplitudes of such oscillation are small, they can bias sea level
trends and acceleration estimates. Their unmodeled effects confound short TG and Satellite
Altimetry, SA, time series thereby hindering the search for a global GMSL acceleration caused by
anthropogenic global warming. İz [14] demonstrated that once these effects are modeled and the
corresponding model parameters are estimated, spectral analyses of the TG residuals reveal
additional statistically significant sea level variations at the decadal scale due to the ocean surface
wind forcings and periodic changes in atmospheric pressure along the coastal lines of some of the
TG stations [15].

1 With the exception of the earlier studies by this investigator.
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a With the exception of the earlier studies by this investigator.
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where, the reference datum h0 is defined in the mid-
dle of the record at an epoch t0. The trend is the ini-
tial velocity v0 at t0 when a ≠ 0, and a is the constant 
rate of change in the sea level velocity (i.e., the uni-
form acceleration). Ph are the periods of systematic 
sea level oscillations. Their amplitudes can be con-
structed using αh and γh sin and cosine components 
respectively.

What is markedly different in this model as com-
pared to the previous studies of a similar naturea is 
the inclusion of various prospective low frequency 
sea level variations at a TG station explicitly in a 
top-down approach. The origins of these oscillations 
in sea level were conjured by Munk et al. [10] and 
Keeling and Whorf [11]. Under their scenarios, in-
teractions of the ocean, meteorological forcing, and 
sea surface temperature materialize as natural broad 
band sea level variations. They modulate astronom-
ical forcings, such as lunar node tide systematically 
or as random beatings resulting in sub and super har-
monics of known periods (Table 1). Similarly, the 
variations in total solar radiation with a period of P = 
11.1 years, yield subharmonics with periods: 2 × P = 
22.2 years and longer. An earlier wavelet analysis by 
Yndestad [12] also identified several lunar node subs 
and super harmonics in Arctic Sea level, tempera-
ture, ice extent and winter index time series data, 
including the signature of nodal harmonics in pole 

position time series (Table 1 in Yndestad [13]), and a 
strong cross correlation with Chandler wobble. 

Although the observed amplitudes of such os-
cillation are small, they can bias sea level trends 
and acceleration estimates. Their unmodeled effects 
confound short TG and Satellite Altimetry, SA, 
time series thereby hindering the search for a global 
GMSL acceleration caused by anthropogenic global 
warming. İz [14] demonstrated that once these effects 
are modeled and the corresponding model param-
eters are estimated, spectral analyses of the TG re-
siduals reveal additional statistically significant sea 
level variations at the decadal scale due to the ocean 
surface wind forcings and periodic changes in atmo-
spheric pressure along the coastal lines of some of 
the TG stations [15]. 

All the above-mentioned effects are therefore 
incorporated into the kinematic model. The period-
icities consist of a mix of seventeen sub and super 
harmonics attributed to the compounding of the nod-
al tides, solar radiation, and annual and sub annual 
variations with natural sea level variations (Table 1). 
In total, the extended kinematic model includes 37 
unknown parameters. 

As far as the statistical properties of the model 
are concerned, the disturbances denoted by εt may be 
autocorrelated of first order, AR(1). First order auto-
correlations AR(1) exist with varying magnitudes in 
globally distributed tide gauge stations once the low 
frequency sea level variations are modeled. The au-
tocorrelations are always positive and can be as large 
as ρ = 0.4 or more. Such AR(1) disturbances can be 
represented as follows, 

Table 1. Compounded Luni-Solar and other periodicities all in years.

Nodal
subharmonics

Nodal
superharmonics

Nodal
superharmonics Solar Chandler Annual

subannuals

74.5 18.6 3.7 11.1 429.5/365.4 = 1.2 1.00 

55.8 9.3 3.1 22.2 0.50 

37.2 6.2 2.6 0.25

4.7 2.3 

a

a 
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e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,
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Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

(2)

In this expression, –1 ≤ ρ ≤ 1 is the unknown 
autocorrelation coefficient of the AR(1) process. 
Furthermore, the stochastic processes for the random 
noise ut and εt, have the following assumed distribu-
tional properties,

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

(3)

where 

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

 is the variance of ut. The square root of 
its estimate is denoted by, 

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

 or stated simply as the 
standard error, SE. The error of omission of a pos-
itive AR(1) correlation reduces the effective length 
of the total series statistically in proportion to the 
magnitude of ρ, and leads to a Type I error in testing 
null-hypotheses when assessing the solution parame-
ters. The above expression together with Equation (2) 
gives,

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

(4)

If the observation equation represented by Equa-
tion (1) at an epoch t-1 is multiplied by ρ and sub-
tracted from the following observation equation at t, 
the effect of AR(1) is removed,

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].

e and can be as large as  = 0.4 or more. Such AR(1) disturbances can be represented as
follows,

 = −1 + 
(2)

In this expression, −1 ≤  ≤ 1 is the unknown autocorrelation coefficient of the AR(1)
process. Furthermore, the stochastic processes for the random noise  and , have the following
assumed distributional properties,

  = 0,  2 = 2, (−1) = 0 (3)

where 2 is the variance of . The square root of its estimate is denoted by,  or stated simply
as the standard error, SE. The error of omission of a positive AR(1) correlation reduces the
effective length of the total series statistically in proportion to the magnitude of , and leads to a
Type I error in testing null-hypotheses when assessing the solution parameters. The above
expression together with Equation (2) gives,

  = 0, (2) = 2 =
2

1 − 2 (4)

If the observation equation represented by Equation (1) at an epoch t-1 is multiplied by 
and subtracted from the following observation equation at t, the effect of AR(1) is removed,

ℎ − ℎ−1 = ℎ0 − ℎ0−1 + 0  − 0 +  −1 − 0

+

2

 − 0
2 +  −1 − 0

2

+
=1


ℎ 

2


 − 0 −  
2


(−1 − 0)

+
=1


 

2


 − 0 −  
2


(−1 − 0) + 

(5)

Because the random errors in this representation are identically and independently
distributed, i.i.d., with zero expected value, i.e., ~ 0,2 , the observation equations based on
Equation (5) can be solved using the OLS method. In the following section, OLS is used to
generate the residuals needed for the graphical analyses of random excursions in sea level at Key
West, Florida TG station.

3. Tide gauge records
Key West, Florida, monthly TG time series data displayed in Figure 1 are used for the

OLS solution and the graphical analyses of the residuals. The record is referenced to the Revised
Local Reference, RLR, defined by the Permanent Mean Sea Level, PSMSL. No corrections
including post glacial rebound, nor inverted barometric effects were applied to the data. The
records were downloaded from the PSMSL repository in November 2020 [16].
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Figure 1. Monthly averaged sea level height anomalies at Key 
West, Florida, TG station.

4. Ordinary least squares solution 
The observation equation given by Equation 

(5) is a function of the unknown AR(1) correlation 
coefficient ρ on the left-hand side. If several OLS 
solutions are carried out for the values within the in-
terval [–1 ≤ ρ ≤ 1], the solution with the smallest SE 
is adopted as the optimal value for the model based 
on Equation (5). This process is known as the Hil-
dreth-Lu procedure [17]. All the statistically signifi-
cant parameters for the Key West Florida TG station, 
i.e., those with p-valuesb, p < 0.05, were estimated 
using this approach. 

The solution statistics tabulated in Tables 2 and 
3 indicate that the model explains more than 72% of 
the sea level variations together with well-defined 

b p-value is the probability of obtaining a test statistic result at least as 
extreme or as close to the one that was observed, if the null hypothesis is 
true (Goodman, 1999). Smaller p-values for the model parameters in this 
study provide statistical evidence (independent of the significance level) 
that the magnitudes of estimates cannot be attributed to chance alone. 
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sea level trends and uniform acceleration estimates. 
The Durbin-Watson statistic, DW = 1.9, is close to 
its expected value of 2, which indicates the solu-
tion residuals are free from unmodeled systematic  
effects. 

The statistically significant low frequency sea level 
variations experienced at the TG station shown in Table 
3 have amplitudes large enough to bias the trend and 
acceleration estimates and their statistics. More impor-
tantly, they confound the randomness of the residuals if 
they are not incorporated into the model. 

Figures 2 and 3 reveal that the residuals are un-
ambiguously free from any unmodeled systematic 
sea level variations. This outcome is also a testament 
to the effectiveness of the top-down modeled low 
frequency sea level changes. Because the model 
removes all the systematic variations from the sea 
level anomalies, the remaining unexplained sea level 
variations at this TG station are the random effects 
whose statistical properties will be studied in the fol-
lowing section. 
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Figure 2. Standardized residuals (residuals divided by their 
standard errors).

 

12080400-40-80-120

140

120

100

80

60

40

20

0

Residual (mm)

Fr
eq

ue
nc

y

Figure 3. The histogram of the standardized residuals exhibits a 
normal-like distribution.

5. The analyses of the residuals using 
x and s control charts

In statistical quality control, X-bar and S control 
charts (also known as Shewhart charts [18]) are used 
to monitor variation in a business or industrial pro-
cess during which samples are collected at regular 
intervals and analyzed [18]. In this study, inspired by 
these charts, subgroups of residuals will be created 
and the time evolution of their means and standard 
errors will be investigated using what is labelled in 
this study as X-bar and S control charts. As previ-
ously stated, part of the displayed sea level variabil-
ity by these charts’ statistics can be attributed to the 
thermal expansion of seawater, which is expected to 
increase with rising sea surface temperature in many 
regions as demonstrated by simulation studies [18]. 

A prerequisite for the analyses of the residual 
charts would be their randomness, i.e., Normal-like 
distribution of the standardized residuals shown in 

Table 2. OLS solution statistics. Trend and uniform acceleration estimates are statistically significant at α = 0.05.

Time span
year

Initial velocity
mm/year

Uniform acceleration
mm/year2

SE
mm.

Adj. R2

% DW ρ

1913–2020 2.45 ± 0.06 0.018 ± 0.005 41.2 71.8 1.9 0.4

Table 3. Statistically significant amplitudes of periodicities and their SEs. Units are in mm.

Period
(year) 75 37 37 12.4 11 6 Annual Semi-annual

Amplitude 11.78 18.05 18.05 6.77 6.49 6.95 81.28 39.23
SE ±2.87 ±2.89 ±2.79 ±2.76 ±2.75 ±2.70 ±2.38 ±1.87
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Figure 2, and their statistical independence. The his-
togram with a Normal distribution fitting is shown 
in Figure 3 and the DW test result confirms that the 
conditions for randomness are effectively fulfilled. 
The correlogram generated with 5-year lags reveals 
that there are no statistically significant leftover au-
tocorrelations in the residual series (Figure 4).
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Figure 4. Correlogram of the residuals with 5% significance 
intervals based on 5-year lags.

At this point, X-bar and S residual charts can be 
constructed. Figure 5 is the X-bar residual chart 
generated by the averages of 5-year subgroups stand-
ardized residuals. The time progression of the 5-year 
subgroup residual averages varies randomly about 
the zero mean of the entire standardized residuals 
series and reveals that the residuals are stationary in 
mean. But S residual chart exhibits a contiguously 
increasing variance in the sea level, i.e., residuals 
are non-stationary in variance (Figure 6). A simple 
linear regression, using the standard errors of the 
subgroup means as dependent variables, shows that 
there is a statistically significant (α = 0.05) rate of in-
crease of 0.009 ± 0.003 rad/year in sea level variance 
since 1913. For the moment, assessing the physical 
significance of the estimated rate increase would be 
challenging since this is an underresearched topic in 
sea level studies, which requires similar assessments 
at other globally distributed TG stations for clarity.
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Figure 5. X-bar residual chart constructed using means of 5-year 
long subgroup residuals.
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Figure 6. The S residual chart was constructed using the 
standard errors of 5-year long subgroups of residuals.

Meanwhile, although the trend of the S residual 
chart is statistically significant and visually noticea-
ble on the graph, it is still questionable if the intensi-
fication is due to chance only, because the regression 
explains only Adj R2 = 28% of the variation. To ver-
ify, one hundred monthly residual series were gener-
ated by randomly shuffling the original standardized 
residuals. The s residual charts were then created for 
each shuffled residual series and the trends of the s 
residual charts were estimated (Figure 7). Out of one 
hundred bootstrapped subgrouped S residual charts, 
only the trend of one series’ S residual chart (shown 
in Figure 7 with a red diamond shape) exceeded the 
trend of the original (shown as a red circular dot) 
indicating that the odds for getting the intensifica-
tion of the residuals’ variances of this magnitude by 
chance alone is about 1 out of 100. 
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Figure 7. The S residual chart trends (rad/year) are estimated 
from the S residual charts of 100 randomly shuffled standardized 
monthly residual series. Red dot is the trend of the original 
series’ residuals’ S chart. Only one trend out of 100 bootstrapped 
series trends (shown with a red diamond shape) has a magnitude 
larger than the original trend of the s residual chart.

6. Conclusions
This study demonstrated the use of S residual 

charts to investigate random properties of sea level 
variations at Key West TG station. The residuals of 
an OLS solution to a rigorous kinematic model repre-
senting sea level anomalies revealed that random sea 
level fluctuations at this station are stationary, how-
ever, the variances of the random sea level changes 
have been steadily increasing since 1913 up to the 
present. Evidently, there is more to be learned about 
the nature of random sea level variations at globally 
distributed TG stations using graphical analyses of 
their stationary/non-stationary properties. The origin 
and potential ramifications of the increasing variance 
in sea level rise for coastal risk assessments will re-
quire further investigations. 
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