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ABSTRACT

The basement aquifers in Burkina Faso are increasingly exposed to groundwater pollution, largely due to socio-

economic activities and climatic fluctuations, particularly the reduction in rainfall. This pollution makes the management

and understanding of these aquifers particularly complex. To elucidate the processes controlling this contamination, a

methodological approach combining principal component analysis (PCA) and multivariate statistical techniques was

adopted. The study analyzed sixteen physicochemical parameters from 58 water samples. The primary objective of this

research is to assess groundwater quality and deepen the understanding of the key factors influencing the spatial variation

of their chemical composition. The results obtained will contribute to better planning of preservation and sustainable

management measures for water resources in Burkina Faso. The results show that three principal components explain 72%

of the variance, identifying anthropogenic inputs, with two components affected by mineralization and one by pollution.

The study reveals that the groundwater is aggressive and highly corrosive, with calcite saturation. Water-rock interactions
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appear to be the main mechanisms controlling the hydrochemistry of groundwater, with increasing concentrations of cations

and anions as the water travels through percolation pathways. PCA also revealed that the residence time of the water and

leaching due to human activities significantly influence water quality, primarily through mineralization processes. These

results suggest that rock weathering, coupled with reduced rainfall, constitutes a major vulnerability for aquifer recharge.

Keywords: Groundwater; Hydrogeochemistry; Spatial Analysis; Principal Component Analysis

1. Introduction

Groundwater, a vital resource for humanity, is facing

increasing challenges due to various factors such as climate

change, organic and inorganic contamination, and saliniza-

tion. These threats have significantly degraded the quality

of this resource, making its management and conservation

increasingly complex. The accumulated groundwater con-

tamination, largely due to the expansion of anthropogenic

activities such as intensive agriculture, rapid urbanization,

and mining, demands particular attention [1–8]. Exploitation

through boreholes, which mainly tap into aquifers altered by

mineralogical weathering, exposes these resources to addi-

tional risks [9–12]. It is therefore essential to evaluate future

trends in water quality to ensure effective and sustainable

groundwater management.

Climate change, for example, not only affects the avail-

ability of water resources but also their quality by exacerbat-

ing phenomena such as salinization and the introduction of

new or re-emerging contaminants. Furthermore, inadequate

management of industrial and agricultural waste leads to the

accumulation of organic and inorganic contaminants, such

as nitrates and heavy metals, in aquifers, further worsening

groundwater pollution problems.

In this context, several approaches have been proposed

to address these issues using methods adapted to local con-

ditions. For instance, Noronha et al. [13] in Portugal devel-

oped a three-step fluid flow model for metallogenesis, while

researchers in Nigeria [14–18] focused on abandoned waste

sites or dumps. Other studies, such as that by Penant [19] in

Benin, have focused on nitrate contamination sources, with

similar research conducted in Morocco [20], in England [21]

and in Burkina Faso [22]. Despite these efforts, the periodic

monitoring of water points remains insufficient, exposing

populations to risks associated with poor-quality drinking

water.

In Burkina Faso, groundwater is particularly vulnerable

to pollution, making hydrochemical studies more difficult

and complex. The increasing contamination, still poorly

understood, coincides with a growing demand for water, ex-

acerbated by changes in land use, notably the expansion of

industrial mining activities and the adoption of chemically

intensive agriculture. In 2015, for instance, 40% of bore-

holes were closed or abandoned due to high arsenic levels,

underscoring the urgency of better water resource manage-

ment [23–25]. This situation is further compounded by a shift

in land use within municipalities, with 57.84% attributed

to the rise in industrial mining activities and a shift toward

chemically intensive agriculture, representing 85% of the

sampled sites.

In the face of these challenges, it is crucial to under-

stand the hydrogeochemical processes governing groundwa-

ter quality in these complex environments. This research

aims to determine the sources and extent of groundwater

contamination to deepen our understanding of the parame-

ters controlling the spatial variation of chemical transfer. To

achieve this, we will employ Principal Component Analysis

(PCA) and other multivariate statistical techniques.

The PCAmethod, widely used in geochemistry, allows

for the interpretation of complex data matrices involving mul-

tiple variables [26–33]. It provides an effective visualization

of the data by grouping different chemical species according

to their origin, thus simplifying the complexity of the ma-

trix [34–36]. Consequently, PCA helps to explore geochemical

data by condensing them into a new set called principal com-

ponents, which facilitates a better understanding and man-

agement of issues related to groundwater quality [32, 37–39].

The PCA plot represents the coordinates of variances, allow-

ing for the exploration of geochemical data (multivariable

data). Therefore, we consider variables as different projec-

tions based on their affinities or characteristics. PCA enables

the extraction and visualization of the essence of the data,

reducing or condensing the data into a new dataset called

principal components, derived from the original data. The
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number of principal components is never greater than the

number of original variables [40].

2. Materials and Methods

2.1. Study Area

The study site is in the Sahelo-Sudanian zone in West

Africa, with GPS coordinates of 11° and 12° N and 1° 48′ ;

2° 24′ W. The territory is divided into several watersheds, in-

cluding the study area covering an area of 7500 km2 (Figure

1a). It is crossed by the Sissili River, which rises in the

basin and flows southwards, ending in the Tô department.

It covers entirely or partially 12 communes, namely Thyou,

Bougnounou, Dalo, Bakata, Cassou, Gao, To, Sapouy, Leo,

Bieha, Guiaro, Po, and 3 provinces, namely Boulkiemdé,

Sissili, and Nahouri.

The population is estimated at 20,505,155 inhabitants,

with 8,217,864 inhabitants in the study area. It comprises

around sixty ethnic groups, with an annual growth rate rang-

ing from 4.42% to 2.6%. The population density is estimated

at 100 inhabitants per km2. In rural areas, water supply is

provided in the study area through modern wells (90.9%

in 2021) and AEPS (87.1% in 2021). The national access

rate is 76.2% in 2021. This implies high demand from the

population, leading to the utilization of natural resources.

We mainly encounter agricultural areas, which domi-

nate in terms of coverage, and wetlands. The soil distribution

between 2012 and 2018 shows that a majority proportion

of the total area, 57.84%, is now occupied by agricultural

zones [25] (Table 1).

Water resources are heavily dependent on the type of

climate and climatic parameters, mainly precipitation, tem-

peratures, air humidity, winds, evapotranspiration, and evap-

oration. Rainwater runoff constitutes the main source of

supply for surface water capture structures, while infiltra-

tion and groundwater flow are the main vectors for aquifer

replenishment. The climate has two distinct periods. The

climate is Sudanian (southern Sudanian).

The hydrological station of the Sissili in Kounou was

established in 1965 and provides information on the volume

for the period 1965–2012, which is 2.81 million m3, while

the average interannual flow rate is 2.81 m3 s−1. Regarding

geology (Figure 1b), the watershed exhibits two main Pro-

terozoic geological units and sedimentary [41, 42]. However,

three types of geological formations can be distinguished as

particularly productive.

Conversely, volcanic sedimentary formations generally

exhibit lower hydraulic productivity, allowing flows greater

than 5 m3 h−1. For post-tectonic intrusive plutons, the flow

rates are barely above 5 m³ h−1 and can drop to 2 m³ h−1 [1].

(a)

(b)

Figure 1. (a) Localization of the study zone of study. (b) Geologi-

cal map overlaid with boreholes [10].

2.2. Groundwater Data Sampling and Analyti-

cal Method

The Burkinabé government, in its effort to improve

access to water for the rural population, regularly initiates

campaigns to monitor water quality and assess pollution

risks related to water resources in 13 regions. The 2012

analysis campaign revealed high levels of certain chemical

parameters in the sub-basin that could affect water quality. In-

deed, it highlighted harmful chemical elements in significant

concentrations in the water of certain localities. Addition-
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Table 1. Land cover matrix from 2002 to 2018 [25].

Units Fields
Riparian

Formation
Habitat

Body of

Water

Sanave with

Trees

Shrubby

Savannah

Bare/

Eroded

Area

Total 2018

Fields 71946.93 1800.92 598.87 23.40 43498.14 66557.16 2530.89 186956.32

Riparian

formation
78.30 650.37 10.80 2.34 1826.92 830.56 31.17 3430.46

Habitat 780.77 40.69 279.29 1.26 166.29 320.29 7.74 1596.32

Body of

water 39.51 11.95 6.66 47.52 136.59 68.02 4.34 314.59

Sanave with

trees
6811.71 1757.92 131.29 1.71 18219.22 18379.22 707.17 46008.25

Shrubby

savannah 4812.79 2461.89 262.79 1.17 27788.81 42228.20 1768.92 79324.59

Bare/eroded

area 213.40 367.18 1.71 0.00 1511.94 3012.87 476.38 5583.47

Total 2002 84683.40 7090.94 1291.41 77.40 93147.93 131396.31 5526.61 323214.00

ally, highly mineralized waters were also identified, which

could pose kidney problems for the population. Sampling

was conducted on 58 water samples in accordance with stan-

dard norm recommendations (Figure 1) [43–45]. The sampling

methodology developed involved a grid of 10 square kilome-

ters covering the regions. In each grid cell, we collected 8

samples to cover all geological formations present per cell.

For our case, 16 parameters were analyzed using data

processing, although the method relys on existing methods.

T°, pH, and EC were measured by multiparameter device.

NO3
−, SO4

2−, NO2− , PO43
−, Fe²+, NH4

+, and F− were

measured by molecular absorption spectrophotometry. Na+

and K+ were measured by flame atomic emission photom-

etry. The method used to evaluate total cyanide involved

spectrophotometry. As, Pb, and Zn were detected using

microwave plasma atomic emission spectrometry. CO3
2−,

HCO3
−, and Cl− were performed using volumetric methods

with sulfuric acid and silver nitrate, respectively.

Some physicochemical variables are missing or con-

tain input errors (use of dot and comma as decimal separator,

negative value). Therefore, our first step is to correct the

input data. To do this, we will start with the linear regres-

sion method. This analysis involves making a correlation,

calculating the mean and mode of the already corrected data.

Then, statistical analysis (correlation, mean) will comple-

ment the missing data. Through the correlation matrix, we

can see which data correlate best. This gap-filling method is

based on the principle that data closer to each other are more

similar compared to data located at a greater distance where

the geology may differ, for example.

Still aiming to correct the missing data, we will also

use the ion balance (Equations (1) and (2)). This is justified

here because in drilling installations, many ions are often not

considered. Some authors define the acceptable margin of er-

ror for ion balance equilibrium (IBE) as ±5% [7] while others

set it at ±10% [44, 46]. The range of ±5% has been provided

for discrepancies and strengthens the analyses [3].

[Cl−] + [SO4
2−] + [NO3

−] + [HCO3
−] =

[Ca2+] + [Mg2+] + [Na+] + [K+]
(1)

The error percentage is given by : IBE =∑
cations−

∑
anions∑

cations+
∑

anions ∗ 100
(2)

2.3. Multivariate Analysis

The method implemented for the mineralization of wa-

ter relies on principal component analysis. Choosing a data

analysis technique agrees for easy extraction of important

information in its raw state.

To assess the consistency of the variables, we used the

Kaiser-Meyer-Olkin measure and Bartlett’s test of sphericity

to determine if there was a difference. These methods have

been widely employed to analyze groundwater samples as

well as physico-chemical variables.

The literature has assisted in selecting an appropriate

data mining method based on the type of problem:

• Exploratory approaches facilitate the exploration of mul-

tivariate datasets without the need to confirm a specific
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hypothesis. Exploratory analysis techniques often involve

reducing voluminous data to make their exploration easier.

• Decision-making issues involve testing the relationship

between two groups of variables (correlation) or explain-

ing one variable or group of variables by another group

(causality).

In this study, a correlation analysis will be used, where

a correlation indicates a strong relationship if it is close

to 1; this will help to understand their reciprocal relation-

ships [28, 47].

2.4. Acquisition and Mineralization Processes

of Groundwater

This approach involved, in the case of our study, de-

termining the saturation indices (SI) and the Ryznar indices

(RSI) of certain minerals present in the bedrock zone using

the PHREEQC module of the Diagrammes software. Based

on the content of the main chemical elements, Yameogo [48]

mentions that the water balance can be determined, contribut-

ing to the understanding of water properties and behaviors,

such as their tendency to be corrosive or to form deposits.

The saturation index is determined by the product of ionic

activity. The saturation index (SI), expressed by Equation

(3), measures the deviation from equilibrium:

IS = log(PAI)–log(T) (3)

The lack of drilling technical sheets has limited the

distinction between waters from the weathered aquifer and

the fractured zone or coarse sand aquifers. Additionally, due

to the imprecision in the calculations, Kouanda et al. [46] and

Moussa, Zouari and Marc [49] propose considering saturation

to be achieved within a slightly wider range such as −1 <

SI < 1. Furthermore, it is recommended to use various bi-

variate diagrams for further investigation into the sources of

demineralization of waters.

The Ryznar index is determined by the empirical for-

mula, which is written as follows in Equation (4):

pHs = (9.3+ A+ B)−(C+ D) (4)

2.5. Principal Component Analysis (PCA)

The statistical analysis was performed by R code. A

dataset’s total variance or inertia is represented. The goal

is to find the axes along which the data exhibit the greatest

variation. By reducing the dimensions of multivariate data,

PCA typically represents them as axes, while retaining as

many necessary elements [29, 50–53].

2.6. Factor Transformation

The fundamental problem that PCA addresses is to

convert a group of correlated variables into independent vari-

ables. Under ideal conditions, these new variables can be

viewed as underlying factors. That’s is why these orthogonal

quantities are called “factors”, although this interpretation

may not always be perfectly accurate [51, 54, 55].

Z is the matrix n × n data-centric data and V is the

corresponding variance-covariance matrix n × n as shown in

Equation (5):

V = [σij] =
1

n
ZTz (5)

y is a matrix n × n corresponding to n samples of un-

correlated factors yp, p ∈ { 1,...,n } and with no expectations,

as shown in Equation (6):

D =
1

n
yTy (6)

We are searching for an orthogonal matrix A, of size N

× N, to make them into synthetic factors Equation (7).

y = ZA avec ATA = I (7)

To make them into synthetic factors, we need to add

the term 1
n and by yT on a in Equation (8):

1

n
yTy =

1

n
ZTzA (8)

2.7. Maximizing the Variance of a Factor

PCAallows capturing the maximum portion of the vari-

ance of the variables [52]. Let’s consider (Equation (9)) ob-

tained by extracting the variables from Z using a calibrated

unit vector a1.

y1 = Za1 avec a1
T a1 = 1 (9)

To allocate a maximum portion of the variance y1, it

is necessary to identify an objective function ∅1, adopting

λ1, thereby adding a unit norm constraint to the vector a1
[53]

Equation (10):

∅1 = a1
TVa1

T−λ1(a1
Ta1–1) (10)

5
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Next, y2 added as another vector orthogonal to the first
one Equation (11):

Cov(y2, y1) = Cov(Za1,Za2) = a2
T
Va1

T = a2
T
λ1a2 = 0 (11)

∅2 to be maximized contains the choice of a2 normal-

ized to unity, and a2 with a1, thereby adding a unit norm

constraint to λ2 and μ Equation (12).

∅2 = a2
TVa2

T−λ2(a2
Ta2–1) + μa2

Ta1 (12)

By adding a1
T, the value μ is shown by the Equation

(13):

Tr (V) =
∑n

i=0
σii =

∑n

i=0
bi (13)

2.8. Interpretation of Factor Variances

Equation (14) characterizes the portion of the total vari-

ance usually given as a percentage

V ariance of te factor

Total variance
=

λp

Tr (V )
(14)

It is considered that if an identity is below 1, it is ac-

cepted that the factor defining the value is less than the mea-

sured value because its variance is less than the unit variance

of the variables [56, 57].

2.9. Correlation of Variables with Factors

We work with standardized data Z̃αi to bring all vari-

ables to the same scale (Equation (15)):

Z̃αi =
zαi−mi√

σii
(15)

where mi and
√
σii are the mean and standard deviation of the

variable zi. The correlation matrix is represented in Equation

(16):

R =
1

n
Z̃TZ̃ (16)

The length of vectors ai is equal to one (Equation (17)):

ai
Taj = ρij (17)

From a geometric perspective, the vectors ai position

ρij as the cosines of the angles between two vectors corre-

sponding to different variables [56, 57].

The projection of variable positions from the surface

of the hypersphere onto planes defined by factorial axes

provides a graphical representation known as a “correlation

circle”, showing their proximity within an originally centered

unit circle. These representations are useful for assessing the

affinity or antagonism between variables. These plots are

reliable if the variables of interest are centered around the cir-

cle. Otherwise, multiple factorial planes must be examined

to ensure that observed proximity on one circle corresponds

to proximity on the hypersphere [29].

We can also create correlation circles between the vari-

ables and pairs of factors. We multiply the V matrix on

the left and right by the diagonal matrix of inverse standard

deviations (Equation (18)):

Corr(zi, yp) =

√
λp

σii
qip (18)

3. Results and Discussion

3.1. Subsection Groundwater Analysis

The study area is divided among 13 municipalities,

which do not have the same geological contexts. Linear

regression curves were used to assess the quality of correla-

tions (Figure 2). They allowed us to fill in the missing values

relative to the input values. The equation of EC as a function

of TDS determined the line y = 0.8428x + 12.215. TDS, like

EC, describes the inorganic salts present in water solution

with a correlation (R2 = 0.74). TAC is mainly due to HCO3,

ranging from 5 mg L−1 and reflects the low values of bicar-

bonate ions compared to TDS (Figure 2) with a correlation

of (R2 = 0.56) and a line y = 0.4367x + 46.311. The expla-

nation we can give is that a large number of variables makes

it difficult to correlate a certain number of explanatory vari-

ables. These variables generate lower standard errors than

the constant. However, reducing the number is necessary for

clarity.

The ion balance in the samples varies from 0% in

Kayabo to 31% in Boala. Finally, ion balance is verified

based on the levels of measured ions (<10%), considering

certain high ionic charges. However, not all samples have a

balanced ion balance. The samples from Boala, Métio, and

Kayero-bo are not reliable (>10%), but they appear low in

terms of the results. The waters of these three villages could

be dominated by trace metal elements. These traces are not

considered when calculating the balance. This discrepancy

may also arise from invalid analysis results or ions present

in the water that have not been analyzed. The presence of

6

all major elements is also noted in the various samples. This



Journal of Environmental & Earth Sciences | Volume 07 | Issue 01 | January 2025

could result from a lack of precision in the analysis methods

used. The results show that samples with a balanced balance

have better values for comparison criteria [7, 26]. Thus, based

on these results, ion balance is therefore reliable for the treat-

ment of physico-chemical data of groundwater. This was

supported by linear regression.

3.2. Water Quality Data Processing and Analy-

Figure 2. Linear regression between parameters, HCO₃ and TDS; TDS and EC in groundwater.

sis

3.2.1. MultivariateAnalysis of Different Physic-

ochemical and Chemical Variables

The reduction of information is to a small number. It is

therefore a method that is both exhaustive and truthful (rep-

resentation of variables in a space according to directions of

maximum inertia) (Figure 3 and Table 2).

Significant links are reflected in the various correla-

tions. We observe a moderate to strong correlation of HCO₃⁻

ions with Ca²⁺ (R² = 0.61), Mg²⁺ (R² = 0.79), Na⁺ (R² = 0.60),

K⁺ (R² = 0.51), as well as with NH₄⁺ and iron (R² = 0.87),

due to the alteration of silicates. When soluble elements

are leached, we observe a recombination with other ions, or

they remain static. Infiltration waters contain CO2, and this

CO2 rich water can corrode aluminosilicate minerals such as

plagioclase and biotite in rocks [48]. The partially crystallized

intermediate phases reassemble into neoformed materials,

particularly clays. This is confirmed by (Figure 5), as most

groundwater reaches chalcedony, calcite, and dolomite satu-

ration but is undersaturated in halite and gypsum.

The relationships between cation concentrations and

HCO₃⁻ in the bedrock environment suggest that the alteration

of silicates may be due to other factors. PCA shows this well,

indicating that K and Na result from strong anthropogenic

pressure. It can be noted that the dominant process is the dis-

solution of limestone minerals under the influence of carbon

dioxide. With the fault being open, biogenic carbon dioxide

spreads very easily at the level of shallow piezometers during

recharge. There is no pronounced dominance for Na and K;

however, for magnesium, this is due to anthropogenic input.

The relationships between cation concentrations and

Cl− show no correlation between these parameters (Ca2+)

(R2 = 0.27), (Na+) (R2 = 0.29), (Mg2+) (R2 = 0.36), (K+)

(R2 = 0.47), except Na and K. It should be noted that Na+

7
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and K+ increase as Cl− concentrations decrease, suggesting

that the concentration levels appear to be independent or

have different sources in the sub-basin. This is explained by

the absence of minerals containing a high chloride content

in the rocks, which is included in biotite [12, 58, 59]. For Mg,

we observe the least mineralized waters, which suggests an

external input.

The relationships between anion concentrations and

Cl− are almost non-existent: HCO3
− (R2 = 0.40), NO3

−

(R2 = 0.34), SO4
2− (R2 = 0.33). Bicarbonate ions do not

show a clear correlation with chlorides, suggesting chlo-

rides in the water are probably not due to silicate weathering.

There is an association or clustering in the relationship be-

tween nitrates and chlorides. We observe that three wells

with high nitrate concentrations stand out in the villages of

Koumbogoro in the Bieha commune and Don in the Leo

commune. This suggests a likely common anthropogenic

origin (related to agriculture), indicated by the fact that these

wells are located in agricultural areas, as indicated by land

use. High chloride levels do not accompany high nitrate

levels. This disparity may be due to the presence or absence

of denitrification in the pollution source. Regarding the re-

lationship between orthophosphates and chlorides, as well

as between sulfates and chlorides, two distinct trends are

observed. Extreme values could be attributed to domestic

pollution sources from nitrates or chemical fertilizers used

in fields.

Figure 3. Box plot of the distribution of physicochemical parameters.

3.2.2. Groundwater Acquisition and Mineral-

ization Process

Figure 4 shows the statistical parameters of saturation

indices (IS < −1) undersaturation relative to calcite. Under-

saturation with respect to calcite, aragonite, gypsum, and

anhydrite is noted. The values that exceed the norm for cal-

cite and frequent interaction between water and rock in the

wells tend to elevate the pH, IS is equilibrium. Conversely,

gypsum and anhydrite exhibit a favorable equilibrium state

for dissolution in water. For dolomite (Figure 5a) and cal-

cite, a dominance of samples in a state of oversaturation is

observed, and an equilibrium state with respect to carbonate

minerals (−1 < IS < 1) is also observed for some samples.

There is a dominance of Ca2+ over SO4
− in all samples

(Figure 5b), which may indicate that gypsum and anhydrite

dissolution is obviously a secondary process and that other

reactions have occurred and contributed significantly to the

production of Ca2+ ions relative to SO4
− in the different

aquifers. This is supported by the predominance of the calcic

and magnesian bicarbonate facies. A common origin of Ca,

8
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Table 2. Groundwater correlation matrix.

  Ca2+ Mg2+ Na+ K+ Fe2+ NH4
+ Cl− SO4

2− NO3
− NO2

− POs4− P F Al As Zn HCO3
−

Ca2+ 1

Mg2+ 0.26 1

Na+ 0.43 0.37 1

K+ 0.3 0.46 0.64 1

Fe2+ 0.02 −0.04 −0.19 −0.03 1

NH4
+ −0.01 −0.02 −0.14 0 0.87 1

Cl− 0.27 0.36 0.29 0.47 0.13 0.19 1

SO4
2− 0.59 0.26 0.4 0.41 −0.04 −0.04 0.33 1

NO3
− 0.08 0.47 0.35 0.62 0.16 0.07 0.34 0.26 1

NO2
− 0.17 0.42 0.39 0.5 0.03 −0.03 0.24 0.2 0.63 1

POs4− −0.1 −0.14 0.02 −0.11 −0.14 −0.15 −0.28 −0.23 −0.25 −0.17 1

P −0,1 −0,14 0.02 −0.11 −0.14 −0.15 −0.28 −0.23 −0.25 −0.17 1 1

F 0.28 0.13 0.43 0.13 −0.16 −0.19 −0.04 0.29 0.06 −0.05 0.02 0.02 1

Al −0,15 −0.1 0.13 0.06 −0.18 −0.19 −0.16 −0.13 0.01 −0.02 0.37 0.37 0.04 1

As −0,05 −0.28 −0.3 −0.21 0.04 −0.08 −0.12 0.1 −0.12 −0.05 −0,18 −0.18 0.15 −0.26 1

Zn 0.15 0.15 −0.13 0.01 0.07 0.04 0.01 −0.07 0.33 0.07 −0.11 −0.11 −0.05 0.06 −0.13 1

HCO3
− 0.61 0.79 0.6 0.52 −0.05 −0.01 0.4 0.44 0.33 0.31 −0.11 −0.11 0.25 −0.1 −0.32 0.02 1

Mg, and HCO3 minerals confirms dolomite dissolution. It

was concluded that the saturation index does not allow for un-

derstanding the geochemical mechanism of demineralization.

Because generally, no formation of carbonate minerals, such

as calcite, is detected in the granitic basement rocks. It is

clear that the dissolution of calcium aluminosilicate minerals

by dissolved carbon dioxide in water constitutes the primary

process influencing mineral acquisition and progression. The

absence of correlation between Na and Cl− anthropogenic

input confirms halite dissolution (Figure 5c). These results

conclude that IS does not allow understanding the mecha-

nism of water demineralization from the absence of calcite

precipitations in rocks.

Figure 4. Statistical parameters of saturation indices.

Figure 5. Dissolution line: (a) dolomites, (b) gypses and (c) halites.

Figure 6 shows the statistical parameters of Ryznar

(RSI) RSI > 7 aggressive and highly corrosive waters. It

helps to define an aggressive (corrosive) trend of the water.

The trend indicates aggressive and highly corrosive waters,

except for the Yaké borehole in the To municipality, which

has an incrusting water that will lead to calcium carbonate

deposition. In various studies, it has been demonstrated that

water can be corrosive in acidic rocks such as granite and

schist. Conversely, when the rock is basic, when the pH is

above 7, such as basalt and dolerite, water tends not to exhibit

this corrosive aggressiveness. Therefore, this will depend

on the carbonic acid content and the pH. The water’s ability

to corrode depends on the quantity of ions it contains. For

example, near the city of Koudougou, a reddish color in the

water has been observed, which led the population to aban-

don the wells. Studies conducted by [46, 60] in the Mouhoun

basin in a sedimentary framework also showed this fact. The

relationships of these orders of magnitude will depend on

the relationships obtained [61–63].

Figure 6. Statistical parameters of Ryznar indices.

3.2.3. Groundwater Characterization Using

Principal Component Analysis

Eigenvalues/Variances: We begin by analyzing the

eigenvalues using R. These eigenvalues also provide us with

9
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the proportion of variance, that is, information retained by

each principal component, which we extract using the appro-

priate function (Table 3).

In a second step, the Kaiser-Meyer-Olkin (KMO) test

is applied to the sample. A high Kaiser-Meyer-Olkin index

(usually > 0.5) indicates the relevance of PCA. Indeed, this

method measures the adequacy of the data with the feasibil-

ity of PCA. The value found of 0.6 is largely satisfactory.

The Bartlett test performed on the correlation matrix for the

same eigenvalues verifies the suitability of the data. A chi-

square value of 756.27 exceeds the critical value allowing

for effective dimensional reduction. This demonstrates that

PCAcan effectively reduce the dimensionality of the original

dataset. This reflects a perfect correlation of the variables

for dimension reduction (Table 3).

The table is obtained as follows, for example, 3.132/10

equals 31.132, which is approximately 31.13% of the vari-

ation. The cumulative share of the variance gives us the

cumulative percentage. For example, 31.13% plus 19.57%

equals 50.70%. Consequently, approximately 72% of the

total variance is found in the six values [52].

Furthermore, when CP > 1, it shows the accuracy of

the information, thus ensuring dimensionality reduction, and

(Figure 7) highlights the contribution of the variable.

Our study shows that the first six principal components

contain 72% of all the information in the initial database

(Table 3). This is a reasonable percentage considering that

the initial database contained 16 variables. Another method

to evaluate and verify the observed variance is to analyze

the scree plot. Indeed, it represents the eigenvalues on the

y-axis and the components on the x-axis (Figure 7).

Figure 7. Drawing the collapse line for selecting major compo-

nents.

The variable graph is represented in Table 4.

It is possible to visualize the variables and color them

according to:

• their representational qualities (COS2) or

• their contributions to the main components (contrib).

Here, we examined the variables based on their graphi-

cal representation or their contribution to the CPs.

3.3. Correlation Circle

The relationship is used to define the position of the

variable, as shown in Figure 8. This method of representing

variables is distinct from the method used for observations,

where variables are represented by their correlations with the

principal components. Coloring according to cos2 indicates

the quality of representation.

Figure 8. Quality of performance.

The quality of representation of variables on the PCA

map is referred to as cos2 (square cosine) (Figure 9). We

also endeavored to create a bar plot of the square cosine to

better understand and analyze the variables.

Figure 9. Bar plot of the square cosine of the variables.

10
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Table 3. Cumulative variances and eigenvalues.

Total Variance (%) Cumulative Variance (%)

Component 1 3.13e+00 1.95e+01 19.57

Component 2 2.47e+00 1.54e+01 35.02

Component 3 1.87e+00 1.17e+01 46.75

Component 4 1.55e+00 9.69e+01 56.45

Component 5 1.43e+00 8.97e+01 65.42

Component 6 1.17e+00 7.33e+01 72.76

Table 4. Results for active variables. (a) Quality of representation. (b) Contributions to major components.

Principal Component Analysis Result for Individuals

Name Description

1 $“coord” “Coordinates for the individuals”

2 $“coord” “Cos2 for the individuals”

3 $“coord” “Contributions of the individuals”

(a)

Dim1 Dim2 Dim3 Dim4 Dim5

Ca2+ 5.55e−06 0.01 0.50 0.13 2.63e−01

Mg2+ 2.43e−01 0.001 0.46 0.05 1.62e−01

Na+ 3.03e−01 0.07 0.07 0.005 2.65e−01

K+ 3.26e−01 0.06 0.0009 0.29 1.32e−01

Fe2+ 4.39e−01 0.52 0.04 0.04 6.94e−01

Am 4.97e−01 0.60 0.04 0.15 8.46e−05

(b)

Dim1 Dim2 Dim3 Dim4 Dim5

Ca2+ 1.77 e−04 0.66 26.94 8.44 18.38

Mg2+ 7.77 e+00 0.05 24/52 3.67 11.34

Na+ 9.69 e+00 3.03 4.10 0.34 18.48

K+ 1.04 e+01 2.61 0.05 19.04 9.22

Fe2+ 1.40 e−01 21.17 2.35 3.19 0.48

Am 1.58 e−04 24.41 2.23 9.87 0.005

We note:

A high squared cosine indicates an efficient represen-

tation on the main dimension analyzed. If it is close to the

circumference, as shown by phosphorus, orthophosphate,

sulfate, and ammonium, unlike nitrates, magnesium, and cal-

cium. The summation of the axes represented by the squared

cosines must eaual 1. The use of squared cosines confirms

the reliability of the representation.

3.3.1. Contributions of Variables to Main Axes

The following command allows us to see the contri-

bution values (Figure 10). The two dimensions are crucial

for expressing the confidence in the datasets as a percentage

(Table 5). Data that are weakly correlated with these axes are

not taken into account. The R code shows the top 5 variables

that contribute the most to the principal components.

Figure 10. Value of the contribution.

The most significant data are identified on the follow-

ing graph (Figure 11).

3.3.2. Description of Dimensions

In the previous sections, the foregrounding of the data

was determined based on their contribution to the principal

components (Tables 6 and 7).
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Table 5. Total contribution to FP1 and FP2.

Dim1 Dim2 Dim3 Dim4 Dim5

Ca2+ 4.83 5.12 4.44 3.39 0.72

Mg2+ 0.03 0.09 0.02 0.22 0.26

Na+ 0.21 0.0009 0.06 0.10 0.03

K+ 0.05 0.38 0.03 0.12 1.20

Fe2+ 0.04 0.17 0.01 0.08 0.009

Am 0.26 0.01 0.13 0.004 0.20

Figure 11. Correlation graph.

Table 6. Description de la dimension 1.

Correlation Value

SO4
2− 0.70 4.50 e−12

Cl− 0.61 4.05 e−09

NO2
− 0.58 5.16 e−08

K 0.57 1.26 e−07

Na+ 0.55 4.36 e−07

Mg2+ 0.49 9.18 e−06

NO3
− 0.31 6.46 e−03

F 0.30 8.91 e−03

Al −0.36 1.42 e−03

P −0.58 4.93 e−08

POs4− −0.58 4.93 e−08

Table 7. Description de la dimension 2.

Correlation Value

P 0.54 6.82 e−07

POs4− 0.54 6.82 e−07

F 0.42 1.97 e−04

Na+ 0.27 1.89 e−02

K 0.25 2.99 e−02

SO4
2− 0.24 3.57 e−02

Zn −0.56 1.6 e−07

Fe2+ −0.72 4.88 e−13

NH4+ −0.77 6.71 e−16

The results presented above concern quantitative vari-

ables, sorted according to their correlation p-value.

3.3.3. Graph of Individuals

Figure 12 shows the matrix of individual results from

the ‘get_pca_ind()‘ function [from the factoextra package].

Just like ‘get_pca_var()‘, the ‘get_pca_ind()‘ function re-

turns a list of matrices containing all the data.

To access the different elements, we went through

the contact details of individuals through the head(ind$co-

ord) function, then the quality of individuals through the

ead(ind$cos2) function. Next, we checked the contribution

of the individuals using the function (ind$contrib). This al-

lowed us, in the end, to plot the graph of individual reliability.

Figure 12. Graph of individuals.

3.3.4. Coloring by Groups and Ellipses of Con-

centration

We explain how to integrate confidence ellipses for

specific groups (Table 8) and (Figure 13). To do this, we

will use the iris dataset.

12
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Table 8. Iris dataset.

Sepal Length Sepal Width Petal Length Petal Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

Figure 13. Ellipses of concentration.

If desired, it is possible to highlight concentration el-

lipses. So we also used ellipse.type = “confidence”. We ob-

serve that the biplot becomes practical only when the dataset

contains fewer individuals; otherwise, the final plot may

become unreadable. Furthermore, the coordinates are not sit-

uated in the same center. Thus, our attention is more focused

on their absolute position on the graph.

3.3.5. Discussion

Table 3 described in the section above shows the vari-

ance explained by each eigenvalue. Consequently, approxi-

mately 72% is explained by the first six eigenvalues. Indeed,

it represents the eigenvalues (variance of the factors) on the

ordinate axis (Figure 7).

The dimensions 1 to 5, represented byTables 4a and 4b,

summarize the influence of the necessary variables. These

constitute hydrochemical variables related to the mineraliza-

tion of the geological complex and the constituent elements

of soils. Each factor is characterized by a specific set of key

variables to highlight the mechanism of mineralization and

water pollution. We notice (Tables 5 and 6) that Dim1 repre-

sents 35% of the total variance and is influenced by variables

such as Mg2+, Na+, Ca2+, K+, SO4
2−, et Cl−. hen Dim2

represents 26.6% of the total variance and is influenced by

variables (Table 5) such as NH4, Fe2+, Zn, PO43
− and P.

According to [46], this results from the rock expansion process

leading to the alteration of the minerals in the parent rock,

favoring the development of an alteration profile. Several

factors affect this alteration, including the nature of the par-

ent rock, the type of climate, the hydraulic gradient, the pH

and temperature of the water, the biosphere, and the expo-

sure time of the rock. The mineral concentration of water

appears to be affected by the duration of residence, leading

to leaching of rocks and potential chemical reactions within

the aquifer [64–66].  Thirdly, Dim3 represents 14.6% of the

total variance and is influenced by variables such as Mg2+,

Ca2+, and As. According to Faye et al. [1], Bamba et al. [23]

andYameogo [48], leaching implies that undissolved elements

remain in place or interact with other elements. Infiltration

water, rich in CO₂, will attack plagioclase and biotite. Poorly

crystallized compounds, silicate chains, and dissolved ions

are transformed into new minerals, such as clays. However,

the correlation matrix (Table 2) supports and corroborates

these assertions.

Regarding the correlation circle (Figure 8) and the cos2

(Figure 9), it is observed that distinct groups have been iden-

tified. This is confirmed by the quality of the representation,

which is indicated by the values of cos2. The variables will

be colored based on their squared cosine levels: green for

low values, blue for moderate values, and red for high values.

Therefore, based on the colour codes, we have a pre-

liminary representation showing a positive correlation in red

among the groups of ions NH4, Fe
2+, Zn, PO43

−, P and

SO4
2−. This indicates an exchange from the soil, suggesting

a strong contribution from anthropogenic activities. There

is a lower correlation between As, NO3− and Ca
2+. Indeed,

this combination of ions indicates an anthropogenic contribu-

tion to water mineralization. Principal Component Analysis

(PCA) revealed that two other factors contribute to water

mineralization in the study area [67–69]. These are soil leach-

ing and the influence of anthropogenic activities, with the

lack of correlation between nitrate and zinc confirming this.

Still based on the color codes, we have the group of
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ions Na+, K+ and Cl−. There is a lower correlation be-

tween Mg2+, F and NO2
−. These indicators are typical of

an environment where water interacts extensively with rock,

thereby promoting prolonged dissolution time. Since hy-

drolysis is a gradual process, these conditions demonstrate

how water chemistry evolves over time [70–72]. PCAconfirms

the presence of a negative relationship between contaminant

compositions (major ions in this case) and pH, as well as a

strong correlation between Ca2+ and HCO₃⁻. The excess of

HCO₃⁻ in the water indicates that it comes from silicates and

provides information about the residence time [73].

PCA applied to borehole samples reveals two principal

axes. On one hand, there are positive correlations indicating

a natural origin related to the petrography of the geological

formation (silicates and their alteration products). On the

other hand, negative correlations define the anthropogenic

origin of mineralization linked to diffuse agricultural pollu-

tion. By projecting the points in the space of variables, we

can infer that boreholes deviating from the cloud influenced

by external inputs along the negative values of F2 are pol-

luted. The boundary separating polluted from unpolluted

waters is represented by the dashed vertical line. This in-

dicates that the mineral sources are the same and pollution

sources affecting boreholes first start affecting water from

the shallow aquifer captured by wells. PCA analysis proves

to be a relevant method in this context.

4. Conclusions

Previous studies have highlighted pollution across the

13 municipalities. However, nowadays, groundwater pollu-

tion has increased, leading to predictable health risks and the

abandonment of some water points. The use of the satura-

tion index and the implementation of PCA have improved

the understanding of contamination. Average measurements

indicate a predominantly acidic pH. Electrical conductivity

readings suggest high mineralization, resulting in isolated

water pockets. This level of mineralization and conductivity

aligns perfectly with the deposition pattern, defined as the

presentation and general organization of rocks in the sub-

basin. Indeed, in regions covered with lateritic duricrust, the

duricrust aquifer is separated from the fractured rock aquifer.

It is also noted that cations and anions increase with well

depth. Additionally, while calcium and magnesium levels

differ from one borehole, the opposite is true for chlorine and

sodium. Bicarbonates make up the majority of the water’s

mineralization and outweigh other anions. These waters are

also highly aggressive and corrosive throughout the basin,

with the exception of the Yaké borehole in the To munici-

pality. They also show saturation in calcite. Multivariate

analyses have highlighted that mineralization is affected by

soil leaching and human activities.
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