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ABSTRACT

Solar radiation data forecasting algorithms are important, especially in developing countries, as vast solar power

plants cannot measure reliable and constant solar irradiance. The challenges of solar irradiance prediction may be resolved

by machine learning using weather datasets. This study emphasises the daily and monthly global solar radiation data

predictions of three locations, Pretoria, Bloemfontein, and Vuwani, at different provinces in South Africa with various solar

radiation distributions. The study evaluated five different machine learning models. Forecasting models were established to

evaluate global solar radiation, focusing on input data. The selected forecast models are centered on their ability to perform

with time series data. These models use five years of data from meteorological parameters, such as global horizontal

irradiance (GHI), relative humidity, wind speed and ambient temperature between 1 January 2018 and 31 December 2022.

The datasets from these meteorological parameters are utilised for training and testing the employed algorithms, which

are examined using five statistical metrics. Moreover, the inconsistency of the solar irradiance time series was equally

assessed using the clearness index. The results from this study demonstrate that the R2 value recording 0.866 datasets in

Bloemfontein of random forest algorithm presents the highest performance during the training processes for all models

studied, while the random tree in Vuwani showed the lowest performance of R2 of 0.210 with other algorithms in testing

processes. Additionally, the maximum solar radiation was found in December for both Pretoria and Bloemfontein, recorded

as 5.347 and 5.844 kWh/m2/day, respectively, while it was 4.692 kWh/m2/day at Vuwani in January. Similarly, the average
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clearness index of 0.605, 0.657 and 0.533 are obtained at Pretoria, Bloemfontein, and Vuwani, respectively. Among

the three sites under study, the solar radiation and clearness index are higher in Bloemfontein. Therefore, the proposed

algorithms could be used conveniently for short- and long-term solar power plants in South Africa.

Keywords: Machine Learning; Solar Radiation; Short and Long-Term; Forecasting; Statistical Metrics

1. Introduction

The world is gradually transforming into renewable

energy integrations to generate electricity and reconsider its

energy network [1]. For this reason, the application and de-

velopment of renewable energy have become essential to

the discussion on energy security sustenance and creating

a conservative and workable electricity network. However,

solar energy applications, one of the sources of renewable

energy, have become popular in current research fields not

only in developing countries like South Africa but also in

the global community due to its prominent features such as

cleanliness, availability, and environmentally friendly that

make it more beneficial compared to other renewable energy

sources [2]. Therefore, exploring the solar photovoltaic (PV)

system is essential to decrease the effect of greenhouse gas

discharges in South Africa, generating the highest amount

of greenhouse gas emissions in Africa [3]. However, solar

PV energy generation relies on several parameters, includ-

ing humidity, module temperature, wind pressure, ambient

temperature and solar radiation. The quantity of power gen-

eration may be altered due to the natural disparities of these

parameters in the climate [4]. The sudden variation in so-

lar power produced interrupts power networks’ consistency,

stability, and forecasting. To encounter the fluctuations in

prices, demand variations, and weather instability in solar

radiation, the involvement in a productive forecasting model

for solar energy has become critical, which is most beneficial

for enhancing and regulating demand in supply [5].

Despite being the seventh largest coal provider and the

fifth largest coal distributor, SouthAfrica is still experiencing

terrible energy crises. The current grid connection is heavily

loaded and under stress, while efforts to meet everyday elec-

tricity demands and a substantial percentage of the people in

the country lack the means to provide an electricity supply [6].

Among the several challenges facing the South African gov-

ernment, energy security and maintenance remain the top

priority. The energy disaster started at the end of 2007, when

an urgent need for help was declared, and the execution of

the load-shedding agenda began in 2008 to prevent the na-

tion from going into a total blackout [7]. Meanwhile, this

strategy was the only solution that the national power station

(ESKOM) could use to solve the existing electricity demand.

Since several countries have embraced solar PV to tackle

power shortages, South Africa has yet to incorporate the

new technology; hence, the issue of load shedding schedule

remains a recurring event in the country.

The evolution of South African’s electricity sector has

been affected by historical activities, socio-political changes,

and efforts to address the country’s growing energy require-

ments. Figure 1 presents a full insight into this transforma-

tion, stressing significant indicators and progress that have

played crucial roles in shaping the energy sector.

Figure 1. Many decades of electricity transformation in South

Africa.

Even though the ESKOM requires more development,

it is remarkable that ESKOM is one of Africa’s most depend-

able and effective power providers, boasts a total installed ca-

pacity of approximately 10.5 GW and is better than Nigeria’s

power generation sub-sector of 16.384 MW, notwithstanding

322



Journal of Environmental & Earth Sciences | Volume 07 | Issue 01 | January 2025

that Nigeria has a larger population.

However, the government is currently initializing sev-

eral efforts to improve the restrictions faced by people. These

are not limited to the socioeconomic costs emanating from

the interruption of the power source and failure of the state

grid. As solutions to excite the nation through constant power

supply are on the way, the national utility can encounter big-

ger demand, resulting in higher electricity charges for the en-

tire nation. Upgrading these challenges in the energy sector is

important for the financial development of a developing coun-

try, including South Africa. Therefore, reasonable prediction

and proper solar radiation study might help decrease danger

and allow resource management to be the most profitable

method. Therefore, if solar radiation is predicted correctly,

it is feasible to examine the financial description of the solar

PV system at a specific position and significantly decrease

prices by improving the installation capacity. Solar radiation

assessment could be done through time horizon forecasting

or centered on the input data type. Solar radiation prediction

techniques focussing on data input are grouped into machine

learning, statistical, hybrid, and persistence [8, 9].

Previously, mathematical methods were used to fore-

cast electricity production from solar PV power plants. These

approaches can be characterised as either the Statistical

model or the persistence method. Regrettably, this method

mostly generates low-precision forecasting and becomes in-

appropriate with non-linear data. Due to these restrictions,

machine learning, including support vector machine, SVM,

artificial neural network – ANN, metaheuristic, and extreme

learning machine – ELM methods, have increased signifi-

cantly [10–12]. Machine learning can conveniently solve prob-

lems that are difficult to handle using explicit processes. Ma-

chine learning-based algorithms can build a network between

inputs and outputs even when illustrations are impossible,

making it appropriate for design recognition, data mining,

forecasting and classification [13].

Different research works are being published to fore-

cast solar radiation, and solar prediction could be regarded

as a time series challenge. Forecasting solar radiation with

theAutoregressive MovingAverage (ARMA) and the autore-

gressive integrated moving average (ARIMA) has been in ex-

istence since the 1970s [12, 14]. Examination of the numerical

weather prediction algorithm (NWP) and ARIMA in short-

time horizons shows growing prospects with greater accu-

racy [15, 16]. The statistical features and famous Box-Jenkins

method demonstrated by the ARIMA techniques make it a

preferred model in the system-building procedure. How-

ever, their key constraint is the pre-expected linear method

of the algorithm [17]. Lately, ANN has been widely examined

and applied to predict time series due to knowledge of the

structures shown in the data, deducing the invisible aspect of

nonlinearity and noisy data [18]. Moreover, statistical metrics,

including MAE, R2, RMSE, RAE, and RRSE, are currently

used to show large-scale PV plants using forecasting meth-

ods. Different artificial intelligence (AI) algorithms, such as

RF, DS, LR, DT, and MLR, are frequently used to predict

solar radiation data. Numerous results from earlier investi-

gations opine that AI models produce more reliable results

than empirical algorithms in predicting solar radiation [19, 20].

However, quite a few studies based on long- and short-

term solar radiation forecasts comprise data from more than

one month. In addition to energy proposals and security

procedures, it supports stakeholders in the design of elec-

tricity generation, transmission and supply [21]. Mellit et al.

predicted monthly solar radiation using a library of Markov

transition matrices and ANN [22]. The result generated a se-

ries of daily clearness indexes. In another development,Apeh

et al. studied solar radiation based on monthly, seasonal, and

yearly data under South African weather conditions [23]. The

result illustrated an average percentage frequency of clear-

ness index of 31.28% of clear sky days, 57% of partially

cloudy days and 11.72% of cloudy days. Furthermore, on

Abu Musa Island, situated in southern Iran, the assessments

of hourly solar radiation were conducted using different

models, including fuzzy inference system (FIS), SVR, AN-

FIS, Multilayer Feedforward Neural Network (MLFFNN),

and Radial basis function networks (RBFNN). Their results

showed that SVR outperformed ANFIS, MLFFN, FIS and

MLFFNN with a correlation coefficient of 0.9999. Indepen-

dent climatic parameters such as RH, local time and TEMP

were used [24]. A genetic model focused on the SVM algo-

rithm was predicted for the short-term forecast of the PV

power plant. The suggested algorithm produced better pre-

dictions than the standard SVM algorithm built on RMSE

and MAPE metrics [25].

A novel prediction technique for global solar radia-

tion forecasting, established on SVM, has been suggested

by Meenal and Selvakumar [26]. Similarly, global solar ir-

323



Journal of Environmental & Earth Sciences | Volume 07 | Issue 01 | January 2025

radiance has been developed using an SVM by Jiang and

Dong [27], while Fan et al. modeled a long-term solar power

forecasting approach that integrates a hybrid method with

least square support vector regression [28]. Das suggested a

forecasting approach for solar power generation that uses

atmospheric data and supports vector regression with histori-

cal solar power [29]. For probabilistic solar power forecasting,

several linear regression techniques have proved to have a

strong performance [30]. A comparative assessment between

support vector regression and multiple linear regression has

been presented for short-term solar power forecasting.

1.1. Problem Formulation

The fundamental challenge motivating in writing this

paper is the demand to develop an accurate solar irradiance

forecast, precisely in areas with rich solar resources, in-

cluding South Africa—an outstanding example in Africa.

Notwithstanding the substantial solar energy prospect in this

area, efficiency application encounters large challenges due

to the difficulties required in accurate solar irradiance predic-

tion. This research emphasizes the demand for an innovative

forecasting model trained in acquiring and integrating solar

irradiance fluctuations within the complex climatic changes

and environmental conditions exclusive to each province.

The present forecasting models, though promising, fall short

of presenting the accuracy necessary for efficient energy

planning, continuous grid integration, and ideal system per-

formance. This research gap highlights the need for a modern

and appropriate forecasting model for South Africa’s distinc-

tive climate. This paper compares the application of various

ML models to tackle the large challenge of advancing the

dependability and accuracy of solar irradiance forecasting

in this demanding environment. The essential challenge of

this research lies in developing a forecasting solution that

capably steers the intricate area of solar irradiance variations

while tackling the location-detailed difficulties posed by the

country’s characteristic meteorological and environmental

conditions.

1.2. Contributions of the Study

The main contributions of the present research work

can be summarised as follows.

1) The article combines different types of data, such as

geographic information and historical weather data, to

enhance the correctness of solar irradiance predictions.

2) The research compares the application of various ML

models, including MLR, LR, RF, DS, and RT, to deter-

mine the most efficient techniques for solar irradiance

forecasting.

3) By using advancedMLprocedures, the article establishes

significant decreases in forecast errors compared to tra-

ditional approaches, improving the consistency of solar

energy prediction.

4) The results of the research have practical implications

for the solar energy industry, for example, better plan-

ning and management of solar power plants, enhanced

integration of solar energy into the grid, and improved

decision-making for solar energy decentralization and

storage.

1.3. Research Gap

The study gaps that exist in the literature and prospec-

tive future research directions are highlighted as follows:

1) The study could advance to different geographical re-

gions with several climatic conditions and assess the

effect of numerous temporal resolutions on model accu-

racy.

2) The utilisation of transfer learning, where models trained

in one location or with one dataset are adapted to another,

is a possible area for further study.

3) The study found a gap between machine learning mod-

els and traditional physical models, including numerical

weather prediction models for solar irradiance prediction.

1.4. Papper Organisation

This study is organised in the following ways: Sec-

tion 2 describes the forecasting horizons such as very short-

term, short-term, medium-term and long-term forecasting.

Section 3 compares and evaluates prediction models. More-

over, Section 4 presents the method used, including the study

site, data preprocessing, PV system, introduction to machine

learning, statistical description and metrics. Results relating

to machine learning are presented in Section 5.  This section

illustrates the results regarding solar radiation in short and

long-term forecasting, as well as the comparison between ma-

chine learning and traditional forecasting approaches. The
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discussions of the results are described in section 6. Finally,

in Section 7, the conclusions, limitations and future works

are presented.

2. Forecasting Horizons

The forecast horizon is the future period by which pre-

diction is expected to be performed. Similarly, it can also be

defined as the time duration between the real period and the

period in which the forecasting is performed. It is classified

into three groups: long-term, medium-term, and short-term.

However, Kumari and Toshniwal have presented another

type of forecasting horizon called “very short-term forecast-

ing” [31]. However, no category of forecasting horizons has

been universally announced. So far, it is essential to recog-

nise the imminent need for power generation and utilisation

by an electrical energy supplier. Solar irradiance prediction,

in terms of forecasting horizons, can be applied to various

uses for the effective and resourceful performance of pho-

tovoltaic power systems. Generally, Figure 2 shows the

various forecasting horizons of solar radiation data in terms

of their operations’ needs.

Figure 2. Forecasting horizon and their applications.

2.1. Very Short-Term Forecasting

The forecasting horizon of this type is characterized by

a predicted time duration between 5 minutes and 6 hours  [14].

An example of very short-term forecasting was observed by

applying time series irradiance when Yang et al.  studied so-

lar irradiance prediction data logged every second [32]. Some

scholars have measured a time scale of a few seconds to a few

minutes or even up to a few hours under this group  [33]. The

forecasting category in this group is highly applicable to esti-

mating electricity prices, requests, instantaneous notification,

monitoring of PV plants and peak load matching  [34].

2.2. Short-Term Forecasting

The short-term forecasting is very pertinent in the com-

mercial supervision of electricity. It helps in electrical energy

demand and supply, distributing load report opinions, unit

efficiency, bulk energy storage and business development in

the electricity market [35]. Typically, the short-term horizon

measures from 30 minutes to 72 hours  [36]. Nevertheless,

few researchers deliberated the range of short-term forecast-

ing from 1 h to numerous hours, days, or even up to 7 days.

An example is observed when Jiang et al.  studied a solar

irradiance prediction model five days in advance, estimating

to maintain consistency and effective harmonizing between

demand and supply when joining the power system to the

whole solar power [37].

2.3. Medium-Term Forecasting

The historical data measured in this forecasting class

differs from a few days, weeks, and months in advance [38].

This type of classification is essential to build and maintain a

timetable of solar power systems consisting of transformers

and other equipment, including a method that experiences

the least loss  [39].

2.4. Long-Term Forecasting

Firstly, scientists see long-term forecasting as a few

months to years ahead  [40]. This prediction classification is

appropriate for proposing long-term projects to implement

solar power plants effectively. The long-term prediction sys-

tem assists in international supervision, for example, site

selection to institute a solar PV system, processing, distri-

bution, and supply of solar energy. However, the prediction

of long-term horizons is less accurate as it does not fore-

cast meteorological variations for a prolonged period. So

far, many scholars have studied long-term prediction algo-

rithms to develop strategies and evaluate site selection  [23, 41].

Thus, various prediction algorithms are often applied in so-

lar radiation forecasting. Many of their results in terms of

performance are near each other, with the research locations
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having similar weather differences. Moreover, the variations

of the results found, and the precision of the forecast differ in

terms of the input parameters used and the capacity of data

applied.

3. Comparison and Evaluation of Pre-

diction Models

Machine learning and DL prediction methods are

broadly applied in energy systems. These methods are used

in several fields such as electrical load forecasting, building

energy consumption forecasting as well as power and load

demand forecasting [42–44]. Generally, buildings account for

a substantial share of world energy waste and consumption.

Hence, decreasing energy usage in buildings is a crucial tech-

nique to moderate climate change effects [45]. Consequently,

most research emphasizes predicting energy demand and

consumption in buildings. With respect to the forecast time

horizon, building energy forecasting can be classified into

short-term (up to one week ahead), medium-term (from one

week to one year ahead), and long-term forecasts (more than

one year ahead) [46]. Forecasting energy demand in buildings

is essential at several levels, from specific households to

the national level. The optimization of equipment perfor-

mance contributes to balancing demand and supply through

real-time renewable energy sources, including in virtually

zero-energy buildings, and supports installation planning

and price decreases in energy systems [47]. Exact informa-

tion regarding residents’ electricity usage is important to

expand load prediction accuracy and guarantee the depend-

able operation of energy management, power systems, and

planning [48].

Several recent research emphasises progress in this

area. Amasyali et al. worked on building energy consump-

tion forecasts using diverse ML and DL models. The find-

ings showed that while ML algorithms mostly work well,

each has weaknesses and strengths, demanding model se-

lection based on definite uses. Gaps were acknowledged in

long-term prediction, residential building energy consump-

tion, and lighting energy consumption prediction, demanding

more consideration [49]. Deb et al. studied nine-time series

(TS) prediction methods for building energy consumption,

such as NN, Fuzzy, Hybrid Model (HM), ARIMA, Case-

Based Reasoning (CBR), Support Vector Machine (SVM),

Gray, Moving Average (MA), Exponential Smoothing (ES),

and ANN. They noted that joining TS methods, for exam-

ple ANN and ARIMA, with optimization approaches like

Genetic Algorithm (GA) and Particle Swarm Optimization

(PSO) produces better results [50]. Walker et al. conducted

research on ML algorithms, such as ANN, Boosted-Tree

(BT), SVM and RF, to forecast hourly electricity demand

using data from 47 commercial buildings for a period of two

years. The RF model proved the best performance in terms

of accuracy and prediction error [51].

In another development, Grimaldo et al. integrated

the k-Nearest Neighbor (kNN) with visual analytics to fore-

cast and assess energy demand and supply. This method

produced correct results and allowed the assessment of di-

verse prediction possibilities and consumption patterns [52].

Similarly, various models were compared to analyse global

solar irradiation in the Sudanese zone of Chad [53]. Hagh et

al. introduced a hybrid model (HM) integrating SVM with

quicker clustering k-medoids and ANN to forecast home

application peak demand and power consumption. This algo-

rithm accomplished a required accuracy of 99.2% using smart

meter data [54]. Hafeez et al. presented an advanced HM for

short-term electrical load forecast, combining a DL model

called Factored Conditional Restricted Boltzmann Machine

(FCRBM), Modified Mutual Information (MMI), and Ge-

netic Wind-Driven Optimization (GWDO). This algorithm

performed better than others, including LSTM, AFC-based

ANN, and MI-based ANN, in terms of accuracy, average

runtime, and convergence rate [55]. Khan et al. developed

the Cuckoo Search Neural Network (CSNN) by integrat-

ing ANN and Cuckoo Search (CS) to advance convergence

time, accuracy, and compatibility for the Organization of

Petroleum Exporting Countries (OPEC) power consump-

tion prediction. This algorithm demonstrated compatibility

and superior efficiency compared to algorithms including

Genetic Algorithm Neural Network (GANN), Accelerated

Particle Swarm Optimization Neural Network (APSONN),

and Artificial Bee Colony Neural Network (ABCNN) [56].

Kazemzadeh et al. conducted an HM for long-term fore-

cast of total energy demand and peak electrical load using

SVR, ANN and ARIMA. Their results showed that the HM

performed better than the other models analysed (HM > PSO-

SVR >ANN >ARIMA) [57].

Several interesting statistical metrics have been applied
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to predict solar radiation, but few have shown high perfor-

mance. Certainly, many of the studies undertaken to predict

global solar radiation used models emanating from groups

and classes. Thus, the entire statistical evaluation mostly

presented results that were similar to those of all other cat-

egories of models [58]. Frequently, it becomes very difficult

to evaluate algorithms successfully because of the limited

number of metrics. For example, the research work by [59] in

2011 evaluated daily global solar radiation data. The authors

established the R2 values as their highest performance in

the study. Table 1 compares the statistical metrics used in

the literature to describe and select the optimal forecasting

algorithm.

The analysis of several literature studies from Table

1 indicates that no model presents the best results in all lo-

cations. Even though many predictions are compared with

similar data types, it is commonly observed that the models

present optimum results from location to location. Thus,

there can be a difference among the metrics that have the

same models and bring the best results for several locali-

ties. For instance, Mehdizadeh et al. obtained an optimum

result in forecasting daily global solar radiation with the

ANN model and estimated an appropriate RMSE value as

1.850 [66]. In a different study, Antonopoulos et al. obtained

an optimum result using ANN with the highest RMSE value

of 3.166 [67]. The differences in the results encountered by

researchers may be a result of missing data, dataset size, the

local climate, input variables, geographical differences and

feature selection. Therefore, different research places empha-

sis on definite time frames or regions. However, this study

progressed to several geographical locations in South Africa

with various climatic conditions and analysed the effect of

various temporal resolutions on model accuracy. Besides,

the study found a gap between machine learning models

and traditional physical models including numerical weather

prediction models for solar irradiance prediction.

Briefly, this article brings a new look at the existing

literature in the following areas:

I) Integrating MLR, LR, RF, DS, and RT models shows

that DL models can improve forecasting accuracy for

solar irradiance.

II) The inclusion of predictors resulting from clear sky

index time series enhances prediction reliability.

III) Analysis of the models using a wide-ranging set of met-

rics, such as MAE, R2, RMSE, RAE, and RRSE, and

forecast skill, providing a robust assessment framework.

4. Methodology

4.1. Description of the Study Site and Database

South Africa is divided into nine different administra-

tive provinces bounded by latitudes 25° and 30° south and

longitudes 17° and 32° east with huge and clear skies that

are endowed for solar energy application, and this energy

has a variety of prospect in every province [68]. The analysis

depicts that every year, the hourly solar radiation in South

Africa exceeds 2500 h and an average between 4.5 and 6.5

kWh/m2/day. The availability of solar radiation data in the

country is pretty wide compared to other African countries

and 2.5 times higher than in Europe [69]. Figure 3 presents

the solar radiation distribution in South Africa, representing

a considerable amount of solar radiation in the country, mak-

ing it an excellent contender for establishing a solar power

plant.

Figure 3. The annual geographical solar radiation distribution in

South Africa.

The GHI map in Figure 3 illustrates the amount of

solar radiation obtained per unit area in various regions in

South Africa. The usefulness of this information cannot be

overemphasised mostly for designers and stakeholders of

solar energy technologies.

4.1.1. Data Pre-Processing

The experiments executed in this study used Python 3.6

through third-party libraries, including Pandas and NumPy

library (Sklearn). Five ML algorithms were selected to build
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Table 1. Comparison of different studies in the literature on solar radiation with the present research.

Prediction Model
Optimal

Model
Evaluation Metrics

Forecasting

Horizon/Location
References

RRSE RMSE R2 MAE RAE

ANFIS, Empirical MSTree ANFIS Absent 0.573 0.910 Absent Absent Daily/China [60]

DT, LM, DL, GB, SVM, RF SVM Absent 0.708 0.800 Absent Absent Daily/Europe [58]

SVM, Empirical SVM Absent 0.495 Absent Absent Absent Daily/China [61]

ENN, LRNN, LLNN, FFNN FFNN Absent 0.026 Absent Absent Absent Monthly/Nigeria [62]

MLP, LSTM, GRU, CNN CNN Absent 0.129 0.967 Absent Absent Monthly/Iran [5]

ANN, SVR, GRNN, RF ANN Absent 0.226 0.998 Absent Absent Seasonal/South Africa [63]

LSTM, RNN, SVR LSTM Absent 0.032 Absent Absent Absent 10 years/South Africa [64]

GSR NAR-ANN Absent 0.330 0.960 Absent Absent 2 years/Nigeria [65]

the models. The preliminary variable locations of each algo-

rithm were chosen according to the algorithm’s characteris-

tics. The selection varieties of the variables were then set in

terms of the parameter adjustment approaches for different

ML algorithms. The study utilised Sklearn’s GridSearchCV

technique to choose parameters for each of the 5 ML algo-

rithms, eventually saving the optimal model. However, the

data sets retrieved from the solar stations were established

per hour and daily in a horizontal plane with the sum of 9440

samples per day. Meteorological data were first examined to

determine the presence of missing values before undergoing

training processes. To take care of the missing values of

the functions, the established scientific libraries in Python

were used for data interpolation. Also, it was discovered that

exploratory data analysis from the per-hourly values of GHI

showed that a number of data equal to zero were represented

early in the morning (from 5 am in summer and 7 am in

winter) and at night (from 6 pm in winter and 7:30 pm in

summer) are bound to be zero. However, this affects the fit-

ting of our models on the data as 23790 GHI values are zero

out of 47670, which is the total number of records. These

zero values were removed since the model is affected when

the values are fitted. After selecting data for a fixed time

interval, the total records become 27568. The GHI values

have been normalized to lie in [0, 1] using Equation (1).

G
∧
HIt =

GHIt −GHImin
GHImax −GHImin

(1)

Where GHIt represents GHI at time-step t, GHImin, stands

for the minimum value of the population,GHImax is the max-

imum value of the population, and G
∧
HIt is the normalized

value of GHI at time-step t.

However, to test the model performances (RF, DS, LR,

DT, and MLR model) at various climate stations, daily mea-

surements of meteorological parameters during 2018–2022

at three locations across South Africa were selected. The

monthly variations of ambient temperature (Ta), relative

humidity (Rh) and wind speed (Ws) at each location are pre-

sented in Figure 4. Obviously, most of the meteorological

parameters (Ta andWs) are higher in the summer months and

lower in the winter months. For instance, the monthly mean

of Ta at Pretoria is 22.25 and 13.01 °C in December and July,

respectively, with an annual value of 19.21 °C. Also, the

highest value of the monthly mean of Ta at Bloemfontein is

23.78 °C in February, while this value decreases to 9.64 °C

in July, recording an annual value of 17.91 °C. At Vuwani,

the highest and lowest values of Ta are recorded as 26.49 and

16.65 °C in December and July, respectively, with an annual

average of 22.24 °C. Similarly, there are obvious wind speed

differences recorded at each station. At Pretoria, the annual

Ws value is 2.04 m/s, with the highest and lowest values

recorded as 2.60 and 1.24 m/s in December and June, respec-

tively. A similar phenomenon of lower Ws in the winter and

higher in summer has also been observed at Bloemfontein

and Vuwani, which have annual values of 2.08 and 2.02 m/s,

respectively.

Figure 4. Monthly variations of average metrological parameters

for each station. (a) average temperature. (b) average relative hu-

midity. (c) average wind speed.

Meanwhile, the annual average Rh at Pretoria, Bloem-

fontein andVuwani are 57.17, 65.68 and 70.44% respectively.

The values of Rh are generally low in September within the
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three locations studied. It is found to be lowest in Pretoria

with values of 35.99%, while the maximum values are found

in Vuwani and recorded as 84.91% throughout the year.

4.1.2. Distribution of Dataset

In this research, five years of historical meteorological

and solar radiation datasets were utilised to investigate the

efficiency of the algorithms at the study sites. The set of data

retrieved was Rh, Ta, Ws and GHI as the expected output.

The data was retrieved from 1 January 2018 to 31 December

2022 from the Southern African Universities Radiometric

Network (SAURAN). The details of the research locations

are shown in Table 2.

Data quality control is crucial considering the study

time and the characteristic errors in the instrument-based ob-

servations. The missing and abnormal values in the weather

data were excluded from the final dataset, and the solar ra-

diation data quality control provisions proposed by [70] were

utilised. On the other hand, data pre-processing involves

three stages, filtering, scaling and partitioning the data. Data

filtering takes care of the existence of incorrect measure-

ments or outliers, which can lead to errors or cause uncertain-

ties in the established models. Similarly, scaling is required

so that a standardized range of disparities is obtained in the

features being employed. Data partitioning is executed in

two stages. The initial step is data splitting into training and

testing subsets. Thereafter, the data training set is further

split into other training and validation subsets to utilise the

training subset and fit into the parameters of the model and

use the validation subset to optimize the hyperparameters

as well as finetuning the models with balanced data. The

original dataset comprises the 4 input variables, including

global horizontal irradiance (GHI) an output (PV generation)

for the five years of data collection, as presented in Figure 5.

However, the data are trained, and the best input se-

lection is the main objective of training models in various

prediction horizons. The training set contains 21000 datasets

while the testing data set contains 5330 datasets. Several

arrangements of weather data sets have been tested to cate-

gorise the training procedure. The algorithms centered on

ML propose metrological performance with datasets of a ra-

tio of 70% for training containing 20870 records, validation

set containing 20% of the total data recording 4897 while

10% represents test set with a total data of 2464 records.

Figure 5. The research methodology from data collection to fore-

casting power from PV system.

4.2. Machine Learning Prediction Techniques

Machine learning (ML) has become an essential tech-

nique in advancing the accuracy of solar radiation predic-

tions, making it crucial for both renewable energy integration

and other fields depending on solar energy. This system is

often utilised by artificial intelligence (AI) and remains fa-

mous for gradually discovering different application areas

and efficiency [71]. ML offers the systems the capacity to

comprehend the issue and proceed to evaluate the unknown

outputs. Certainly, the output of any ML is highly subjected

to its variety of features and training success. In this research

work, five various ML algorithms were applied. They are

Decision Stump (DS), Random Forest (RF), Random Tree

(RT), Multivariable Linear Regression (MLR) and Linear

Regression (LR). As stated earlier, the dataset was arbitrarily

split as the shuffled selection method, and 70% of the entire

data was utilised in the training stage of the model, 20%

was used for validation, and the remaining 10% was used

in the testing stage. Generally, a similar dataset for each

location was utilised for the training, validation and testing

data, and the similar symbols were predicted to generate a

higher assessment among the ML algorithms.

4.2.1. Decision Stump

A decision stump is an ML technique that comprises

a one-level decision tree. In this case, the stated decision

tree has one internal node, the root directly linked to the
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Table 2. Geographical descriptions of the research locations.

Site Province Longitude Latitude Elevation (m) Topography

Pretoria Gauteng 28.22 −25.75 1410 The roof of the university building

Bloemfontein Free state 26.21 −29.12 1397 The roof of the Engineering building

Vuwani Limpopo 30.42 −23.13 6280 Vuwani Science Research Center

terminal nodes (its leaves). The prediction of a decision

stump focuses on the value of a single input variable and is

sometimes referred to as a 1 rule by many researchers [72].

It is fast to train and make predictions, which can be useful

when computational resources are inadequate.

4.2.2. Random Forest

Random forest (RF) is a group of classifiers that con-

ceptualise an ensemble of non-identical and independent

decision trees with the knowledge focusing on randomiza-

tion. Equation (2) is used for the description of the random

forest: {
h (x, θk) , k = 1, ..., L

}
(2)

Where θk represents a variable with a mutually independent

random vector with input data x [73]. Every member of the

decision tree employs a random vector as a variable that

randomly chooses both the feature samples and the subse-

quent subset sample data set for training purposes. When

building the random forest model, k represents the number

of decision trees in the random forest, and n is the number of

corresponding decision trees that each sample uses to train

the dataset. Therefore, every member tree is trained on vari-

ous subsections of samples (because of bagging), along with

several subgroups of features (because of random feature

selection). The selection of random characteristics in all

member trees allows the dissociation of the forecasts of the

various trees [74]. One criterion for selecting RF is to handle

outliers and noisy data well due to the averaging effect of

multiple trees.

The hyperparameter selections are essential for opti-

mizing the performance of an RF model to improve predic-

tion accuracy. Compared to advanced DL models, RF has

moderately limited hyperparameters, making the process of

selecting the best settings easier [75]. The main hyperparam-

eters for an RF regressor model comprise: 1) n-estimators:

This regulates the number of trees in the forest. According

to Díaz-Uriarte and Alvarez de Andrés, this number should

be set adequately high to obtain strong performance [76]. 2)

min samples leaf: This stipulates the minimum number of

samples needed to exist in a leaf node. 3) max depth: This

sets the maximum depth of each tree, making this value too

high can bring about overfitting the model during data train-

ing [77]. Nevertheless, Gressling opines that finding an ideal

set of hyperparameters during the validation process relies

deeply on the dataset’s features [78].

4.2.3. Random Tree

RT splits a data set into batches and applies a constant

to every group. A single-tree algorithm is prone to incon-

sistency and presents poor forecast precision. Therefore,

RT bagging as a decision tree model can produce correct

results [79]. RT has better adaptability and rapid training com-

petence. When dealing with smaller datasets or situations

where overfitting is a concern, RT might be a good choice.

4.2.4. Multivariable Linear Regression 

When several explanatory variables are applied, the re-

gression model is considered a Multilinear regression (MLR)

model. As a result, more slopes need to be calculated, and the

model should be analysed using a cross-validation method

to reduce the risk of overfitting [80]. MLR model is a ma-

chine learning technique established focusing on the general

formula depicted in Equation (3).

Yi = b1 + b2A1 + b3A2 + b4A3 . . . ,+bn+1An (3)

While Ai represents meteorological parameters, b1, b2, b3,

b4, and bn+1 represent regression coefficients, and Yi repre-

sents the dependent variable.

MLR is mainly an algorithm that studies the relation-

ship between dependent and multiple independent param-

eters. Additionally, it is widely used in assessing solar ra-

diation research [33]. Training and making predictions with

MLR are computationally efficient, making it appropriate

for huge datasets.

4.2.5. Linear Regression (Time Series) Algo-

rithms

Linear regression (LR) forecasting refers to an algo-

rithm that forecasts the future results of any system with
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historical information. Meanwhile, this prediction method

requires the description of the data either by a non-linear or

linear autoregressive process acquired. Therefore, the time

series algorithm equation is presented in Equation (4).

y(m+ n) = f [y(m), y(m− 1),

y(m− 2), . . . , y(m− h− 1)
(4)

Here, the function f represents the current and historical

values of y. However, different possible prediction methods

involve forecasting the next values of the time series using

two techniques. The first method is the independent value

prediction (preparing the direct model to predict y(m+n). At

the same time, the other step involves an iterative approach

and reiterating one-method-upfront forecasting until the pre-

ferred possibility. To ensure the consistency of predicted fu-

ture values in regression models, various assumptions must

be considered. The most essential assumption is that the cor-

relation between the residuals and the explanatory variables

must be zero.

4.3. Statistical Description and Analysis

The standard deviation (SD) calculates the variation or

dispersion of a set of values. The mean describes the average

values of the parameters measured, while the minimum and

maximummeasure the range of parameters. Table 3 presents

the pertinent descriptive statistical factors used in the study.

This paper comprises four independent variables, in-

cluding relative humidity and ambient temperature, along

with the dependent variable being GHI. Solar irradiance mea-

surements have daily and monthly variations demonstrating

the hourly global solar radiation values and extraterrestrial

solar radiation at noon. On the other hand, the clearness

index, Kt, is usually utilised to characterize and estimate

solar irradiance, as this index tolerates the monthly, sea-

sonal, and yearly changes experimented in solar irradiance.

However, Kt is described as the ratio of the solar global

horizontal irradiance, H, obtained several times, to the ex-

traterrestrial global horizontal irradiance for the same time

and is expressed according to Equation (5):

Kt =
H

Ho
(5)

WhereHo,t represents extraterrestrial global horizontal irra-

diance at a time, t, and H is the global horizontal irradiance

obtained simultaneously, t. On considering the hourly period,

hourly extraterrestrial global radiation on a horizontal surface

Ho is found by applying the well-recognised Equation (6).

Ho,h = IscEo(sinδ + sinφ+ cosδcosφcosωh) (6)

Similarly, considering the monthly average daily ex-

traterrestrial radiation, Equation (7) is considered [23]:

Ho = 24x3600Isc
Π sc

[
1 + 0.333cos

(
360n
365

)]
[
cosφcosδsinω + Πω

180 sinφsinδ
] (7)

Where n = day number, δ = the declination angle calculated

using Equation (8), Isc = solar constant (1367 W/m2), φ =

latitude of the location, ω = hour angle and is calculated

using Equation (9).

δ = 23.45sin

(
360

365
(248 + n)

)
(8)

ω = cos−1( −tanφtanδ ) (9)

However, theKt model is not specifically limited to H,

as presented in Equation (5). Different studies have focused

on correlating the diffuse transmittance index or diffuse co-

efficient with the GHI parameter to improve the precision of

DHI evaluation as presented in Equation (10) [23, 81].(
Kd =

Hd

Ho

)
≈ f

(
Kt =

H

Ho

)
(10)

4.4. Statistical Performance Assessment

The daily and monthly global solar irradiation fore-

cast, analysed with different machine learning algorithms, is

compared with the data measured by statistical factors. For

example, root relative square error (RRSE), mean absolute

error (MAE), root mean square error (RMSE), coefficient of

determination (R2) and root absolute error (RAE).

The RMSE indicates the variation between the pre-

dicted and measured values presented by a model. Indeed,

the RMSE represents model correctness by equating the dif-

ference between the actual and forecast data. The RMSE

is calculated using Equation (11) and always has a positive

value.

RMSE =

√∑n

i=1
(Oi − Pi)

2
(11)

In Equation (11), Oi represents the i-th observed or

calculated value by the engaged methods, Pi represents the

i-th predicted value, and the number of all observations is

represented by n. As the RMSE becomes smaller, the model

deviation is reduced and vice versa. 
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Table 3. Statistical description analysis of the used data from three locations in South Africa.

Pretoria

Variables Mean Std Dev Std. Error Max Min

GHI 391.0400 98.1800 28.3420 511.6210 249.7690

T_av 19.2080 3.2670 0.9430 23.2500 13.0100

Rh_av 57.1650 11.8190 3.4120 73.8600 35.9900

WS_av 2.0380 0.4750 0.1370 2.6500 1.2400

Bloemfontein

GHI 248.6660 70.7480 20.4230 350.6110 162.9930

T_av 17.9130 4.9250 1.4220 23.7800 9.6400

Rh_av 65.6770 9.730 2.8090 80.6000 53.4600

WS_av 2.0830 0.4890 0.1410 2.8700 1.2960

Vuwani

GHI 210.6380 45.6100 13.1660 281.5400 145.9640

T_av 22.2420 3.0780 0.8880 26.4900 16.6500

Rh_av 70.4350 10.9370 3.1570 84.9100 48.2900

WS_av 2.0230 0.2650 0.0765 2.4100 1.6500

In another development, the MAE describes an average

of all errors given in Equation (12).

MAE =
1

n

∑n

i=1
|Oi − Pi| (12)

It can also be seen as a measure of the errors between

the measured and true values. The coefficient of determina-

tion R2 describes the strength of a linear correlation between

the forecast and the measured values, as defined by Equation

(13).

R2 = 1−

[ ∑n
i=1 (Oi − Pi)

2∑n
n=1 (Oi −Oave)

2

]
(13)

Usually, the closer the R2 value is to 1, the better the

model’s fitness. In addition, R2 is an instrument that discov-

ers and examines the ability of a statistical model to describe

and predict future results.

Similarly, the RAE is defined as a quantity that

compares a predictive model’s performance with a sim-

ple model’s performance. This statistical model confirms

whether a model works better than predicting only the aver-

age, which is given by Equation (14).

RAE =

∑n
i=1 | Oi − Pi |∑n
i | Oi −Oave |

(14)

The RRSE describes the square root of the sum of

squared errors normalized by the sum of squared errors of a

simple algorithm as represented by Equation (15).

RRSE =

√ ∑n
i=1 (Oi − Pi)

2∑n
i=1 (Oi −Oaνe)

2 (15)

Where Oaνe is the average of the observed values.

5. Results and Discussion

5.1. Prediction with Machine Learning

The analysis in this paper presents the predictability of

daily global solar radiation falling on the horizontal surface

through various machine learning models in three provinces

in South Africa. Several statistical models that are regularly

used in the literature were used to authenticate the success

of the algorithms. Table 4 presents the training and testing

scores in the different provinces under study. The dataset

of the RF algorithm in Bloemfontein presents the highest

performance of R2 with a value of 0.8659 in training pro-

cesses for all models studied, while Random Tree in Vuwani

showed the lowest performance of R2 of 0.2100 with other

algorithms in testing processes. In other words, it can be

said that all models in terms of R2 exhibit good performance

in predicting the daily global solar radiation. In contrast,

the random forest performances in all three provinces are

very close, where the algorithm could forecast global solar

radiation values. In addition, it realised median error values

in relation to the DS and RT algorithms.

It is established that the measured performance vari-

ables measured during the training stage are better than those

achieved during the testing stage. In this case, the algorithm

is over-fitted [82]. The slight change between the training and

testing values shows that the algorithm takes neither under-
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Table 4. Training and testing scores of data sets in different provinces.

Dataset

Training Model R2 MAE RMSE RAE (%) RRSE (%)

Pretoria Random Tree 0.7589 50.4163 63.9259 83.9146 86.6379

Random Forest 0.8474 46.6435 57.6265 77.6351 78.1005

Decision Stump 0.6011 44.2971 58.9462 73.7296 79.889

Testing

Random Tree 0.4536 34.1923 47.1923 56.6669 63.2978

Random Forest 0.8606 46.8928 57.9526 77.7155 77.7302

Decision Stump 0.5971 45.73.19 59.775 75.7915 80.1746

Training

Bloemfontein Random Tree 0.4941 57.9095 73.9708 81.4037 86.9073

Random Forest 0.8659 52.985 64.7248 74.4812 76.0444

Decision Stump 0.6003 55.5215 68.0403 78.0468 79.9396

Testing

Random Tree 0.5115 59.0075 71.6768 86.0792 86.6761

Random Forest 0.8371 51.2585 62.4675 74.7751 75.5397

Decision Stump 0.5115 59.0075 71.6768 86.0792 86.6761

Training

Vuwani Random Tree 0.3135 63.0092 78.7388 93.0238 94.9921

Random Forest 0.8383 52.0188 64.0407 76.7982 77.2600

Decision Stump 0.6002 53.1017 66.2741 78.3969 79.9544

Testing

Random Tree 0.2100 69.2305 83.0989 100.0000 100.0000

Random Forest 0.8502 52.4642 63.4804 75.7818 76.3914

Decision Stump 0.6023 52.0105 66.3464 75.1266 79.8403

fit nor overfit. The closer the R2 value is to one, the better

the datasets will fit with the regression line. As observed

in Table 3, the RMSE for all algorithms in the different lo-

cations fluctuates between 47.1923 and 83.0989 for both the

training and the testing process. Therefore, by comparing

all the algorithms and following [82], the results showed that

forecasting solar radiation using RF is more efficient than

the DS and RT algorithms.

5.2. The Performance Analysis of Solar Radia-

tion Based on Short-TermWeather Uncer-

tainty

The hourly historical solar irradiance datasets from

Pretoria, Bloemfontein and Vuwani were each divided into

80% for the training set and 20% for the testing set with

data standardisation performances. Furthermore, the data

set is also analysed in various conditions to illustrate several

climate categories and uncertainty in solar irradiance, such

as a clear day, a partially cloudy day, and a cloudy day. The

analysis is necessary since the accuracy of the prediction irra-

diance is influenced by fluctuations during various weather

categories. Therefore, the prediction algorithms were then

trained for the real-time data with two different weather days.

The days selected are the 1st of January and the 14th of May,

all in 2018. Each day is chosen from a different station and

analysed as a clear or partially cloudy and cloudy day, as

presented in Figure 7. On a clear day, there are no fluctua-

tions. Figure 7a the 1st of January is classified as a clear day

in Pretoria with a maximum measured and predicted solar

irradiance of 1124.20 and 945.45 W/m2, respectively, while

the same clear day is observed in Figure 7b in Bloemfontein

with maximum measured and predicted solar irradiance of

1181.4 and 1165.3 W/m2 respectively. Figure 7c shows that

the same day in Vuwani is partially cloudy with variations

with maximum measured and predicted solar irradiances of

1100.0 and 1024.4 W/m2, respectively.

Similarly, the 14th of July is observed as a cloudy day

in both Pretoria and Vuwani, as observed in Figure 6a,c,

while Figure 6b in Bloemfontein is seen as a clear day. The

maximum irradiances for the measured and predicted values

are 1124.20 and 945.45W/m2, respectively, while in the case

of a partially cloudy day, there are variations with measured

and predicted values of irradiance recorded as 523.95 and

467.34W/m2, respectively. On a cloudy day, multiple severe

irradiance fluctuations are noticed. A high prediction preci-
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sion in clear-sky conditions and a low one in partly cloudy

conditions can be observed.

Figure 6. Forecasting of solar irradiance predicted and measured

in different weather conditions at (a) Pretoria, (b) Bloemfontein (c)

Vuwani on the 1st of January and the 14th of May 2018.

Since the type of weather on the 14th of May varies

meaningfully from that of the 1st of January, in Figure 6a,b,

the prediction approaches experienced terrible forecasting

performance for higher varied days. Moreover, it has been

noticed that the prediction of the performance of conven-

tional standard algorithms decreased on cloudy days. This

could be due to bad weather situations. Even a slight change

produces a significant difference in irradiance. The quick

variation of the cloud layers on cloudy days produces enor-

mous challenges with irradiance forecasts. The results are

tested and validated for each type of day using RMSE evalu-

ations, as presented in Figure 7.

Figure 7. Prediction performance of the RMSE metric against dif-

ferent algorithms in (a) Pretoria, (b) Bloemfontein (c) Vuwani.

This proposed method shows that on a clear day, the

RMSE values in Pretoria, Bloemfontein and Vuwani are

409.089, 398.372 and 361.604 W/m2, respectively, for the

RTmodel. On the contrary, during the cloudy day, the values

of RMSE in Pretoria, Bloemfontein and Vuwani are 76.43,

92.89 and 71.28W/m2, respectively, for the RFmodel. More-

over, the study offers a different method of applying different

models to predict solar irradiance. Compared to other sta-

tistical metrics, the RMSE is very high in forecasting solar

irradiance on a clear day with the least value on a cloudy day;

hence, Figure 8 shows the normalised RMSE of Figure 7.

It is obvious from the results established in Figures 6–8 that

with the increment in the prediction horizon, the forecast

precision of algorithms decreases.

Figure 8. Prediction performance of the nRMSE metric against

different algorithms in (a) Pretoria, (b) Bloemfontein (c) Vuwani.

Table 5 presents several numerical values of the met-

rics designed for the locations studied and the study models.

As depicted in Table 4, R2 values differ between 0.2 and 1.0,

subject to the type of day, model, and location. However,

it can be easily inferred from the results shown in Table

5 that several algorithms, in terms of R2 on a clear day in

all locations, perform well in predicting daily global solar

radiation.

Considering the clear day in these locations, the RF

algorithm in terms of R2 in Pretoria shows a performance

of 0.942. This means that 94.2% of the data fit the regres-

sion model and are considered a strong correlation. Also,

in Bloemfontein, both RF and MLR show an equal value

of R2 0.948 each as the highest value among all the algo-

rithms. Therefore, this result shows that 94.8% of the data

fit each regression model. The town of Vuwani has MLR

as the highest model with an R2 value of 0.964, therefore

regarded as the best performance on a clear day among the

three locations studied. Generally, the average RF perfor-

mance is presented as the best performance among all the

algorithms studied. The result agrees with many research

works  [35, 83] that examined the use of RF to forecast solar

radiation values.

5.3. Long-Term Monthly and Yearly Analysis

of Solar Radiation, Clearness Index, and

Diffuse Fraction

The solar radiation attained on the Earth’s surface

changes over time with respect to the Sun’s location and other

weather parameters. Nevertheless, this radiation is unlimited.

Solar energy flow remains an essential aspect of the energy

source on Earth’s surface. If the flux attained on the Earth’s

surface in a certain place differs significantly, particularly

seasonally, the flux emitted by the Sun remains moderately

unchanged. Figure 9 shows that solar radiation fluctuates

from month to month due to the rotation of the Earth in addi-

tion to South African weather conditions. In each location,
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Table 5. Machine learning technique to characterise different daily weather conditions in different locations.

Clear Day in Pretoria Clear Day in Bloemfontein Clear Day in Vuwani

Model R2 MAE RAE(%) RRSE(%) R2 MAE RAE (%) RRSE(%) R2 MAE RAE (%) RRSE (%)

RT 0.713 363.897 88.719 90.718 0.800 328.766 76.014 83.621 0.816 291.183 72.726 82.137

RF 0.942 268.866 65.550 64.258 0.948 281.339 65.049 65.772 0.901 283.988 70.929 70.099

DS 0.912 146.207 35.646 40.224 0.895 161.053 37.237 43.789 0.758 197.054 49.216 67.203

MLR 0.929 129.720 31.626 38.633 0.948 118.838 27.477 35.023 0.964 100.605 25.127 32.105

LR 0.824 344.764 84.054 86.647 0.838 373.476 86.350 89.243 0.905 544.767 136.062 137.466

Partially cloudy day in Pretoria Partially cloudy day in Bloemfontein Partially cloudy day in Vuwani

RT 0.852 45.963 51.329 62.078 0.402 167.160 95.530 87.400 0.336 54.799 82.650 91.524

RF 0.506 64.273 71.777 72.305 0.659 127.241 72.717 77.819 0.556 45.273 68.026 70.029

DS 0.659 39.459 44.066 48.089 0.769 83.598 47.775 60.747 0.882 24.500 36.818 45.255

MLR 0.704 30.502 34.063 40.292 0.667 45.719 73.519 26.128 0.885 14.509 21.807 22.805

LR 0.792 53.232 59.447 60.039 0.123 161.524 92.309 93.912 0.759 45.131 67.813 69.400

Cloudy day in Pretoria Cloudy day in Bloemfontein Cloudy day in Vuwani

RT 0.417 47.606 66.038 77.935 0.160 104.087 100.000 100.000 0.331 37.824 39.771 54.971

RF 0.513 51.755 71.793 76.655 0.400 73.873 70.973 74.7134 0.412 61.121 64.268 67.715

DS 0.502 44.271 61.411 57.592 0.397 44.472 42.726 58.395 0.593 31.824 33.463 43.851

MLR 0.630 30.243 41.952 42.806 0.520 65.102 62.546 85.339 0.586 18.615 19.574 21.585

LR 0.247 56.140 77.876 98.417 0.334 99.432 95.589 96.544 0.408 77.884 81.897 87.896

it is observed that solar radiation varies between 2.433 and

5.347 kWh/m2/day in all provinces in different months of

the year.

Figure 9. Comparison between solar radiation and clearness in-

dex with months of the year in different provinces (a) Pretoria (b)

Bloemfontein (c) Vuwani.

In Figure 9, it can be observed that the maximum solar

radiation found in December for both Pretoria and Bloem-

fontein is recorded as 5.347 and 5.844 kWh/m2/day, respec-

tively, while the maximum solar radiation maximum is found

in January for Vuwani with a value of 4.692 kWh/m2/day.

Similarly, the average clearness index is 0.605, 0.657 and

0.533 in Pretoria, Bloemfontein and Vuwani, respectively,

while their respective clearness index maximum is 0.663,

0.717 and 0.621, all in June. Among the three sites under

study, the solar radiation and clearness index are higher in

Bloemfontein. Figure 9 suggests that the proposed method

effectively predicts the monthly average global solar radia-

tion. However, the month of June has the lowest solar radia-

tion in Pretoria and Bloemfontein, recording 2.76 and 2.717

kWh/m2/day, respectively, compared to that found at Vuwani

in July with a value of 2.433 kWh/m2/day. This study could

conclude that the maximum amount of energy is available

during summer (November to March) and the minimum in

winter (June through August) in the studied locations.

Figure 10 shows a notable correlation between the dif-

fuse fraction and the clearness index values, especially in

Pretoria and Vuwani, with R2 values of 0.8802 and 0.9034,

respectively. It is noticed that there is a best fit of the scatter

plot between the diffuse index and the clearness index value

in Vuwani Limpopo province.

Figure 10. Scatter plot of diffuse fraction versus clearness index in

different provinces (a) Pretoria, (b) Bloemfontein (c) Vuwani.

It is observed that there are comparative agreements

between the values of the diffuse fraction and the clearness

index, especially in Figure 10a,c. The presence of scattered

plots between diffuse fraction and clearness index in Figure

10b could imply a high level of noise or randomness in the

data, leading to uncertainty in the analysis. South Africa

is dependent on coal, but efforts are ongoing to expand its

ageing coal-fire. The decline of the existing fleet is evident

as renewables, including solar PV, are fast growing in the

country. Figure 11a,b demonstrate the relationship between

the predicted and measured solar radiation on summer and

winter days, respectively.

It can be seen that there is a good positive correlation

between the model results and the measured data. The appro-

priate accuracy of the model can be observed from high R2

values and a close relationship between the forecasted and

measured solar radiations for both seasons, as indicated in

Figure 11a,b. The RMSE for the chosen summer and winter
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days is low, and it can be attributed to the fact that the model

performs well for various seasons. While the model results

indicate good forecasting ability, it is essential to note its

deficiencies.

Figure 11. The relationship between predicted solar radiation and

the measured solar radiation during (a) a summer day in a(i) Preto-

ria a(ii) Bloemfontein a(iii)Vuwani (b) a winter day in b(i) Pretoria

b(ii) Bloemfontein b(iii) Vuwani.

5.4. Assessment of Machine Learning and Tra-

ditional Forecasting Approaches

Machine learning arises as a better option for solar ra-

diation prediction because of its special ability to manage

difficult patterns and various data sources. Compared to the

traditional statistical approaches that depend on historical

data patterns, ML performs well by expertly capturing dif-

ficult relationships within datasets, familiarising non-linear

patterns, and providing more prediction accuracy. While

physical models, including those focusing on satellite images

and numerical weather predictions, have their advantages,

they are often restricted in addressing the essential challenges

of atmospheric conditions and may struggle to capture deli-

cate connections, mainly under challenging situations. ML

proposes the flexibility to integrate the strengths of statistical

and physical models, generating hybrid models that excel

in forecasting. An extensive summary of the advantages of

ML and limitations in solar irradiance forecasting, as de-

scribed in Table 6, emphasises the features contributing to

its preference over traditional techniques.

Table 6. Comparison of machine learning and traditional forecasting approaches.

Feature Machine Learning Traditional Approaches Capability References

Managing difficult

relationships

ML can capture difficult, non-linear

relationships in data.

Traditional approaches may struggle with

difficult relationships and non-linear

patterns.

ML

Nonlinearity
MLs are well-matched for capturing

nonlinearities in data.

Traditional methods may find it difficult to

model non-linear relationships.
ML

Forecasting errors
ML models can reach little forecasting

errors with suitable training data.

Traditional techniques’ forecasting errors

may be inadequate by their basic

assumptions.

ML

Automation and

scalability
ML can be automated and scaled.

Traditional approaches may be deficient in

automation and scalability.
ML

Overfitting
MLs, if not correctly normalised, can be

susceptible to overfitting.

Traditional approaches may be stronger

when overfitting becomes an issue.
Tradition

Managing missing

Data

ML models may struggle with missing data,

and imputation methods may be needed.

Traditional approaches may manage

missing data more smartly
Tradition [84]

Computational

difficulty

Some developed MLs, mainly DL models,

can be computationally costly.

Traditional approaches are mostly

computationally cheap.
Tradition

Interpretability

ML models, mostly DL, are normally

regarded as “black boxes,” making

interpretation and understanding more

difficult.

Traditional models are mostly more

interpretable as they focus on identified

physical principles or statistical

relationships.

Tradition [85]

Dynamic retraining

ML can be easily retrained and updated as

new data becomes available, affirming that

the models remain accurate over time.

Traditional approaches may be difficult to

retrain and update, regularly demanding a

complete improvement of the model to

integrate new data.

ML [13, 85]

High cost of

maintenance

MLmodels may be expensive to maintain

because of the demand for skilled personnel,

data acquisition, and advanced

computational resources.

Traditional approaches mostly have lesser

initial costs since they depend on the current

computational structure and simpler models.

Tradition [86]
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6. Discussion

The constant benefit of the random forest algorithm

in terms of the training time emphasizes its effectiveness

compared to other algorithms analysed in this work [87]. This

effectiveness is remarkably important given the fluctuations

in the number of GHI measured. Similarly, the reliability of

RMSE parameters across numerous GHI selections indicates

that the essential method of retrieving data from the weather

station is sufficient for correct GHI prediction. This result un-

dermines previous research that proposed substantial effects

of GHI variety on model performance.

The findings in this research point to constant overval-

uation of GHI in May under cloudy sky conditions in the

three provinces, supporting the idea of the models’ effort

to perform successfully during months described by such

weather patterns [88]. The existence of clouds due to the hin-

drance of sunlight is caused by factors such as the length

of unclearness of the sun by clouds, the optical thickness

of the clouds and secondary effects, including reflections

between cloud layers or from the sides of clouds. These

factors jointly influence the quantity of irradiance that at-

tains the surface. Moreover, Weyll et al. [89] proposes that the

decrease in statistical model activities can be characterized

by the random performance of the atmosphere and the effect

of clouds in controlling the pattern of irradiance over time.

During overcast or partially cloudy conditions, the irradiance

pattern leans to exhibit negligible autocorrelation within its

time sequences. In this case, cloud transmission is, hence,

the most flexible feature influencing surface irradiance in

several geographical settings.

This study strengthens the efficiency of data-drivenML

methods in medium-term GHI prediction. Significantly, it is

established that the amount of solar radiation employed in

the research did not meaningfully affect the model’s produc-

tivity within the study areas. This indicates that the method-

ology shows an intensity of generalization capability, pos-

sibly appropriate to other provinces with varying datasets.

Nevertheless, it is critical to recognize the impact of dataset

attributes on study performances. The model described in

this work has impacts on an increasing body of research on

solar power forecasting for PV power plants in South Africa.

While similar and complex research has been performed in

other regions, just a few numbers are available for South

Africa [90, 91]. Because of variations in the orientation and

axis tracking capabilities of South African power plants, di-

rect assessment with these studies is difficult. However, the

model can be tested against others established in regions

with similar and different climatic conditions to validate its

forecasting accuracy.

Besides, this research highlights the comparative ad-

vantages of data-driven ML models over traditional models,

remarkably regarding the computational proficiency and pre-

dictive precision for solar radiation predictions. By present-

ing a sustainable alternative to resources, the method not only

offers the scientific knowledge of GHI forecast but also holds

practical effects for improving the functional efficiency of

solar energy management systems [92]. This supports wider

sustainability aims and supports the incorporation of renew-

able energy sources into the energy grid.

7. Conclusion, Limitations and Fu-

ture Works

This study investigated the short and long-term global

solar radiation data predictions of three locations in differ-

ent provinces in South Africa with various solar radiation

distributions. The performance of five machine learning,

including random tree, random forest, decision stump, mul-

tilinear regression and linear regression, are examined to

predict daily and monthly solar radiation. It can be deduced

from the results of hourly short-term forecasting that the R2

values are 0.873 on a clear day and 0.990 on a cloudy day in

Pretoria. Also, at Vuwani on a clear day, the values of R2 are

0.8730 and 0.990 on a cloudy day. Therefore, the clearer the

day, the less correlation and the better the forecast. In fact,

the R2 values in all the models in this study change from

53.7% to 98.6%, whereas the RMSE of all the algorithms in

different provinces fluctuates between 47.1923 and 83.0989

for both the training and testing process depending on the lo-

cations. The algorithm used in all provinces has presented a

very successful result. Considering all statistical metrics and

study locations in South Africa, the best results are achieved

within Bloemfontein. When the three locations and all al-

gorithms are examined regarding RMSE, it is observed that

many values found are close to zero. This means that several

predicted results could be considered ‘reasonable prediction’

or “good prediction”. Furthermore, it is pertinent to note

that during the general assessment, random forest, multiliear
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regression, and decision stump models present close results

in the analysis based on the daily category in all locations.

Hence, several parameters should be considered to choose

the best of these models. The selection between machine

learning and traditional approaches for solar irradiance fore-

cast relies on several factors, such as the specific demands

of the role, needed results, and available resources. Machine

learning produces better accuracy, scalability, and adaptabil-

ity but also accompanies higher computational difficulty and

operation costs. However, traditional approaches offer easier

interpretability at lower prices but may be rigid and robustly

desirable for handling intricate, non-linear data designs.

Thus, it is obvious that the presented article has bridged

an essential gap in the literature, contributing a strong and

effective alternative to traditional models. The implications

of the results go outside academia, indicating an improve-

ment in the working efficiency of solar energy management

systems, hence contributing to wider sustainability targets

and renewable energy integration. Similarly, the results ob-

tained in this research can assist South African governments

in better policy implementations in terms of considerations

for integrating solar photovoltaic systems as the country’s

core sources of electricity.

Although machine learning methods present consid-

erable prospects for adaptive and accurate solar irradiance

forecasts, they come with several limitations and complex-

ities. These comprise reliance on huge and high-quality

datasets, challenges in model interpretability, high computa-

tional prices, and the complexity of model selection, tuning,

and feature engineering.

The result based on the solar radiation prediction of the

proposed algorithm is compared with standard algorithms,

bearing in mind weather unreliability, and the research has

resulted in various weather types. It is noticed that the pro-

posed model exceeded even with severe variations in the

irradiance during cloudy and partially cloudy days. Hence,

future research work will emphasise decreasing the error in

solar irradiance prediction because of non-linear weather

conditions.
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Abbreviation

AI Artificial Intelligence

AIP Adaptive Internet Protocol

ANFIS Adaptive Neuro-Fuzzy Inference Systems

ANN Artificial neural network

ARIMA Autoregressive Integrated Moving Average

ARMA Autoregressive Moving Average

CNN Convolution Neural Network

CO Carbon (iv) Oxide

DHI Direct Horizontal Irradiance

DL Deep Learning

DS Decision Stump

Ta Amient Temperature

Rh Relative Humidity

Ws Wind Speed

DT Decision Tree

EI2 Energy Internet and Energy System Integration

ELM Extreme Learning Machine

FFNN Feedforward Neural Network

FIS Fuzzy Inference System

GB Gradient Boosting
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GHI Global Horizontal Irradiance

GRNN General Regression Neural Network

GSR Global solar radiation

IREC International Renewable Energy Congress

Long-Term Long term

LR Linear Regression

LSTM Long-Short-Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLFFNN Multilayer Feedforward Neural Network

MLP Multilinear Perception

MLR Multivariale Linear Regression

MPPT Maximum Power Point Tracker

nRMSE Normalized Root Mean Square Error

NWP Numerical Weather Prediction Algorithm

PV Photovoltaic

RAE Root Absolute Error

RBFNN Radial basis function networks

RF Random Forest

RH Relative Humidity

RMSE Root Mean Square Error

RNN Recurrent Neural Networks

RRSE Root Relative Square Error

RT Random Tree

SAURAN Southern African Universities Radiometric Network

SD Standard Deviation

SVM Supportive Vector Machine

SVR Supportive Vector Regression
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