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ABSTRACT

The net primary productivity of vegetation (NPP) is an important index to evaluate the carbon sequestration capacity

of vegetation and land use change. Using MOD17N3HGF NPP data, climate data and night-time light data from 2000 to

2020, this study explored the relationship between NPP and urban expansion, land use and climate change in the Southern

Part of Taihang Mountain through brightness gradient method, trend analysis, partial correlation analysis and contribution

analysis. It aims to provide information support for urban and rural planning and ecological management in this region. Key

findings include: Over the past 20 years, NPP in mountain areas has shown an overall fluctuating upward trend, with an “N”

pattern related to altitude. The human activity area expanded by 9.9%, with expansion of highly active areas holding back

NPP growth and moderately active areas contributing to it. The trend of climate change is gradually warming and wetting,

and the correlation between precipitation and NPP is strong, while the correlation between temperature and NPP is weak.

Compared with human activities (19.9%), precipitation was the main driver of NPP change, contributing significantly up to
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79.5%. In the past 20 years, the ecological quality of the south Taihang Mountain region has improved significantly and

actively responded to climate change, but human activities have led to spatial and temporal ecological differences.

Keywords: Climate Change; MODIS NPP; Man-Land Relationship; Southern Part of Taihang Mountain

1. Introduction

Net Primary Productivity (NPP) is the total organic

matter produced by vegetation through photosynthesis per

unit time and per unit area, minus the amount used for res-

piration [1]. It plays an important role in the material and

energy cycles of the ecosystem and is one of the key indica-

tors for measuring the productivity of plant communities [2, 3].

Changes in NPP are mainly influenced by human activities

and climate change [4]. Human activities such as urban expan-

sion, resource exploitation, and pollutant emissions caused

by environmental degradation, combined with environmental

protection measures such as farmland restoration, reforesta-

tion, urban greening and mine reclamation aim to counteract

these negative impacts. In addition, climate change has led to

global temperature rise and changes in precipitation patterns,

which have also led to regional water resource imbalance [5].

Today’s environmental challenges are complex and urgent.

A timely and accurate understanding of NPP changes under

natural and anthropogenic influences is crucial for effective

environmental management, sustainable resource use and

urban planning.

Given the rigorous mathematical and physical model-

ing of NPP and their robustness as indicators of ecological

quality for monitoring, numerous studies have been con-

ducted in recent years to investigate the response of NPP to

human activities and climate change. It is important to note

that the nature and magnitude of the influence of external

factors on NPP changes varies considerably between regions

and ecological environments. During 2001–2020, precip-

itation below 2300 m above sea level has a greater effect

on NPP than temperature in the Yangtze River Basin, while

above 2300 m, on the contrary, human activities promote the

overall increase of NPP [6]. From 2000 to 2020, temperature

was negatively correlated with NPP in most parts of the Yel-

low River Basin, while local precipitation showed a positive

correlation. The increase in NPP was facilitated by farmland

restoration, afforestation, and tree planting initiatives [7]. In

the middle and upper reaches of the Yellow River from 2000

to 2015, the fragmentation degree of forest, grassland, and

shrub types increased, and the aggregation degree decreased

under the strong human disturbance. Different dominant

landscape types resulted in strong spatial heterogeneity of

NPP distribution, but the total NPP of each type showed an

increasing trend [8]. From 2000 to 2020, NPP in the central

Tianshan Mountains shows an upward trend. The conversion

of grassland and oasis into building land leads to the expan-

sion of the urban area, and the desertification of cultivated

land and building land is the main factor for the increase in

NPP [9]. Between 1982 and 2015, the NPP in the Qinling

Mountains was more affected by precipitation, showing a

distinct seasonality under the conditions of climate change

and warming [10]. From 2001 to 2018, both temperature and

precipitation contributed to the increase in NPP in southwest

China, but temperature had a larger effect [11]. From 1982 to

2015, China’s overall NPP shows an increasing trend, and

the NPP of urban land in the Beijing-Tianjin-Hebei city clus-

ter, the Yangtze River Delta city cluster, and the Pearl River

Delta city cluster shows a decreasing trend, while the buffer

zone shows an increasing trend. The effect of temperature

and sunshine on NPP is positive, but the effect of vegetation

reduction is not significant [12]. From 2000 to 2015, most

forest NPP in Nepal exhibited an increasing trend, with the

highest rates observed in the plains, followed by hills, and

the lowest in the mountains. The interannual NPP variation

trend correlated with climate patterns [4]. Between 2001 and

2015, southern Iran experienced a significant increase in

temperature, while precipitation changes were not signifi-

cant. Precipitation played a key role in the changes in NPP,

which are projected to continue to increase in the future [13].

From 2009 to 2019, evapotranspiration and temperature in-

creased in Tanzania, while precipitation decreased, and NPP

was significantly positively correlated with precipitation and

evapotranspiration, and NPP will increase in the future ex-

cept in the southwestern region of the country [14]. In addi-

tion, night-time light (NTL), as an objective remote sensing

index, is closely related to population density, economic ac-

tivities, and energy consumption, and can comprehensively
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characterize the degree of impact and development trends of

human activities. It is widely used as the most important data

source for monitoring human activity and land use intensity

on a regional scale, as well as for studying changes in urban

distribution and patterns [15, 16], and for assessing levels of

economic development and social activity [15, 17].

Overall, most of the existing research has focused on

the spatio-temporal variability of NPP and its response to hu-

man activities, climate change, and other factors. However,

several problems and deficiencies were identified in the lit-

erature: (1) The multi-factorial interactions between human

activities and climate change at scales below the county and

municipal levels have not received sufficient attention. (2)

Most existing studies use land use type changes as a basis

for human activity, and the use of NTL, which can directly

reflect human social and economic activities, is limited. (3)

Quantitative studies of the contribution of human activities

and climate change toNPP are inadequate, and the extent of

multi-factorial effects is rarely assessed.

Taking some cities in the southern part of Taihang

Mountain as examples, this study used night light data, land

use data, NPP and climate data to study the complex response

of human activities and climate change to NPP. The main

contributions of this paper are as follows: (1) To study the

changes of NPP in the South Taihang region, to timely under-

stand the impact of global warming on nationally important

ecological functional areas, and to provide remote sensing

technology support to ensure the safety of the carbon pool

in the South Taihang region. (2) To study the NPP varia-

tion characteristics and influencing factors in the agricultural

area of the southern foot of Taihang Mountain, and to make

remote sensing contributions to ensuring food security and

promoting sustainable agriculture in the region. (3) To moni-

tor the NPP changes in the Taihang Mountain area and obtain

the ecological changes of important water sources in northern

Henan, so as to ensure the safe, and sustainable development

of water resources in northern Henan. (4) The study includes

land use and NPP changes in Yuntaishan National Nature

Reserve and Taihang Macaque Nature Reserve, which can

provide technical support for the protection, restoration, sus-

tainable development and biodiversity conservation of terres-

trial ecosystems. (5) The characteristics of urban expansion

in South Taihang and its impact on NPP were studied to pro-

vide data guarantee for the construction of a safe and healthy

living environment. The study is of great significance for an

in-depth understanding of the impact of human activities and

climate interaction on the ecosystem and formulating sus-

tainable development strategies, and the results will provide

a scientific basis and reference for regional environmental

protection and ecological restoration.

2. Overview of the Study Area

 Situated at the geographical boundary between the sec-

ond and third terrains of the Chinese landscape and the water-

shed separating the North China Plain from the Loess Plateau,

the Taihang Mountains play a critical role as an important

ecological barrier in the central region of China. Thanks

to South Taihang’s rich mineral resources and high-quality

tourism conditions, cities in South Taihang have large-scale

and relatively developed economic conditions.

The study area includes several cities close to South

Taihang and Northern Henan, namely Jiyuan, Qinyang, Boai,

Jiaozuo, Xiuwu, and Huixian. The geographical coordinates

of the area are between 34°53′ and 35°50′ N latitude and

112°1′ and 113°56′ E longitude. With a total area of approxi-

mately 5786 km2, the region exhibits altitudes ranging from

72 m to 1923 m. The average altitude is measured at 346.7 m.

The landforms within the study area consist of plains, hills,

and mountains, accounting for 43.8%, 18.4% and 37.8% of

the total area, respectively (Figure 1).

Figure 1. Overview of the study area.

The northern part of the study area consists of South

Taihang, which features rugged terrain and extends from

northeast to southwest. Notable features in this area include

the Yuntai Mountain National Nature Reserve, the Taihang
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Mountain Macaque Nature Reserve, and several tourist attrac-

tions rated 4A or above. On the other hand, the southern plain

exhibits a vast expanse and is endowed with well-developed

water systems, encompassing major rivers, for instance the

Yellow River, Qinhe River, and Dashahe River. The region

has high quality arable land and favorable irrigation condi-

tions for agricultural production, with winter wheat, summer

corn and other crops being the primary focus. The climate is

classified as a temperate continental monsoon climate, with

an average annual precipitation ranging from 564.9 mm to

736.5 mm and an average annual temperature ranging from

8.5 °C to 15.6 °C.

3. Materials and Methods

3.1. Data Acquisition and Processing

Key data used in this study include:

(1) The NPP data were obtained from the MOD17A3HGF

(2000–2020) dataset provided by the US National Aero-

nautics and Space Administration (NASA), available at

(https://ladsweb.modaps.eosdis.nasa.gov/). This dataset

is derived from MODIS/TERRA satellite remote sensing

data and uses the BIOME-BGC model to estimate NPP.

The spatial resolution of the dataset is 500 m and the

temporal resolution is annual. Data extraction was per-

formed using the MODIS Reprojection Tools (MRT) soft-

ware. (2) The climatological data utilized in this study were

obtained from the National Tibetan Plateau Data Center

(https://data.tpdc.ac.cn/) [18, 19]. These data include the China

1-km monthly mean temperature dataset (1901–2022) and

the China 1-km monthly precipitation dataset (1901–2022).

The generation of these two datasets involved the application

of the Delta downscaling scheme by Peng Shouzhang, using

the global climate dataset published by CRU and WorldClim

specifically for China. The temperature data are provided in

units of 0.1 ℃, while the precipitation data are reported in

units of 0.1 mm. The spatial resolution of both datasets is

approximately 1 km. MATLAB software was employed for

data extraction and conversion into TIFF format. The annual

total precipitation was derived from the monthly precipitation

data, and the monthly average temperature was aggregated to

obtain the annual average temperature. (3) A Prolonged Arti-

ficial Night-Time Light Dataset of China (PANDA) utilized

in this study was obtained from the National Tibetan Plateau

Scientific Data Center (https://data.tpdc.ac.cn/) [20]. It was

calculated and published by Zhang Lixian et al., employ-

ing the Night-Time Light Convolutional Long Short-Term

Memory (NTLSTM) network method. This approach was

based on the existing night-time light data from VIIRS and

DMSP sources. The dataset has a spatial resolution of ap-

proximately 1 km and a temporal resolution of 1 year. (4)

The China Land Cover Dataset (CLCD) utilized in this study

was developed by Jie Yang et al. (30 m annual land cover

and its dynamics in China from 1990 to 2019 - Zenodo). It

was created by analyzing a vast collection of remote sensing

images available on the Google Earth Engine platform. The

classification process involved the use of a random forest

classifier to assign land cover categories [21]. The CLCD

includes various land cover types such as cultivated land,

forest land, scrub, grassland, water bodies, ice and snow,

bare land, artificial surfaces, and wetlands. (5) The elevation

data used in this study are obtained from the NASA Space

Shuttle Radar Topographic Mission (SRTM) dataset. The

SRTM dataset creates a digital elevation model by measuring

the Earth’s surface altitude using radar equipment aboard the

US Space Shuttle Endeavour. The SRTM digital elevation

model has a spatial resolution of 30 meters.

Finally, MODIS NPP data, climate data, and night light

data are resampled to obtain a consistent spatial resolution of 1

km. The sampling method is the nearest neighbor method. All

data were projected using the UTM WGS84 49N projection.

3.2. Methods

3.2.1. Human Activity Level Extraction Based

on NTL

Based on the PANDA dataset, NTL was graded using

Brightness Gradient (BG) to indicate the intensity of human

activities [22]. At the local scale, there is a quadratic relation-

ship between NTL and the corresponding BG, which describes

the pixel-level variation in luminance in the area of human

activity. BG is defined as the maximum rate of change of the

NTL value from the center pixel to the adjacent pixel within a

given range. To eliminate the influence of anomalous pixels

on the result, the BG of each raster is calculated using the

maximum mean method. The formula is:

BG =

√
dNTL

dx2
+

dNTL

dy2
(1)
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dNTL/dx2 = [(NTL2 +NTL5 +NTL8)−

(NTL0 +NTL3 +NTL6)]/(8× pixelsize)
(2)

dNTL/dy2 = [(NTL6 +NTL7 +NTL8)−

(NTL0 +NTL1 +NTL )]/(8× pixelsize)
(3)

Number the central pixel and the eight adjacent pixels

from NTL0 NTL8 from left to right and from top to bot-

tom. The BG from the central pixel to all adjacent pixels is

estimated by the rate of change dNTL/dx2 in the horizontal

direction and the rate of change dNTL/dy2 in the vertical

direction. Quadratic polynomial fit of NTL and BG:

BG = aNTL2 + bNTL+ c (4)

Where a, b and c are the coefficients of the fit polyno-

mial.

The part with a high BG value generally appears in the

area with a large NTL brightness change, that is, the transi-

tion area between urban and rural areas or the transition area

between rural and undeveloped areas. The NTL data from

2000 to 2020 were processed by gradient. According to BG,

the intensity of human activity was divided into three cate-

gories: high activity, medium activity, and low activity. The

formula for calculating the split point is shown in Table 1:

3.2.2. Trend Analysis of the NPP

NPP data, climate data and lighting data are analyzed

based on the unitary linear regression analysis method. In

a linear regression model, the regression coefficient (slope)

reflects the rate of change of the data, that is, the annual

change of the data [23]. The formula is:

slope =
n
∑n

i=1i×Xi − n
∑n

i=1i
∑n

i=1Xi

n×
∑n

i=1i
2 − (

∑n
i=1i)

2 (5)

Where slope is the rate of change of the data, i is year I

among all survey years n (n = 21), and X is the type of data

to be examined. If slope > 0, it means that the data show an

increasing trend; otherwise, it means that the data show a

decreasing trend.

The significance of the changes in the data was verified

using the F-test method (mainly for NPP data). This method

is only used to evaluate the reliability of data trend changes,

independent of the rate of data change. The formula is:

F =

∑n
i=1(ŷi−

−
y)∑n

i=1(yi − ŷ)/ (n− 2)
∼ F (1, n− 2) (6)

Where ŷi is the regression value,
−
y is the average of

the data and n is the total number of years 21. According to

the F-distribution criticality table, the trend of change can be

divided into the following five classes: no significant change

(p > 0.5), significant increase (slope > 0, 0.01 < p < 0.05),

significant deterioration (slope < 0, 0.01 < p < 0.05), ex-

tremely significant increase (slope > 0, p < 0.01), extremely

significant deterioration (slope < 0, p < 0.01).

3.2.3. Partial Correlation Analysis of NPP and

Climate Factors

Based on a first-order partial correlation analysis, the

influence of one variable of the climatic factors on NPP is

studied while controlling for the other variable. First, the

simple correlation coefficients between the two variables

and NPP are calculated and the formula is as follows:

Rxy =

∑n
i=1

[(
xi−

−
x
)(

yi−
−
y

)]
√∑n

i=1

(
xi−

−
x
)2 ∑n

i=1 (yi−
−
y)

2
(7)

Where Rxy is the simple correlation coefficient be-
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Table 1. NTL-based human activity intensity segmentation point calculation.

Area Partition Point NTL BG

Low activity
region

�0(��0, ��0) ����� ������
2 + ������ + �

�1(��1, ��1) −
�

2�
−

��1 − �
2�

+
�2

4�2

��0 + ��2

2
Medium activity

region

�2(��2, ��2) −
�

2� � =
4�� − �2

4�High activity
region �3(��3, ��3) ����� ������

2 + ������ + �

2
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tween climate factors and NPP, xi and yi are the values of

climate factors and NPP in year i,
−
x and

−
y are the average

values of climate factors and NPP, and n is the total number

of years.

Then the partial correlation coefficient of the first order

is obtained and the formula is as follows:

rx1y·x2 =
rx1y − rx2yrx1x2√
1− r2x2y

√
1− r2x1x2

(8)

Where rx1y·x2
represents the partial correlation coef-

ficient between climate factor x1 and NPP, holding climate

factor x2 constant. rx1y, rx2y, and rx1x2
represent the sim-

ple correlation coefficients between climate factor x1 and

NPP, between climate factor x2 and NPP and between the

two climate factors.

3.2.4. Contribution Analysis

The contribution value was obtained by multiplying the

rate of change of each influence factor by the weight of its in-

fluence on NPP, and the contribution of each influence factor

to the long-term trend in vegetation NPP was studied [24, 25].

The formula is as follows:

Knpp = Cpre + Ctmp + Cntl (9)

Cpre =
αnpp

αpre
∗Kpre (10)

Where K is the rate of change and C is the contribution

value.
αnpp

αpre
is the partial derivative of the multiple regres-

sion of NPP on various influencing factors, representing the

weight of pre in the factors influencing NPP. When multi-

plied by the rate of change of pre Kpre, the contribution

value of pre to the change of NPP is Cpre. 

Ppre =
Cpre

Cpre + Ctmp + Cntl
(11)

In order to integrate the regions with large differences

in the contribution value of each factor to NPP, the influence

weight of each factor to NPP is represented in the form of

contribution degree P. The objective of this study was to ana-

lyze the relative influence of temperature, precipitation, and

human activities on changes in NPP. To achieve this, we fo-

cused solely on these factors in our calculations, disregarding

other potential influences.

4. Results

4.1. Spatial and Temporal Patterns of the NPP

The average NPP for the period 2000–2020 shows vari-

ations between 230.23 and 382.68 gC m–², with a multi-year

average of 307.62 gC m–². As shown in Figure 2a, the low-

est average NPP was observed in 2001, while the highest

occurred in 2020, with a range of 152.45 gC m–². The NPP

in the study area shows a fluctuating increasing trend, with

an average increasing trend of 3.89 gC m–² a–1, p = 0.6054.

Out of the 21 years analysed, the mean NPP was lower than

the multi-year mean NPP in 11 years, especially in the period

2000–2010. In particular, the NPP was particularly high in

2003 and 2004, followed by a fluctuation below the mean

line, after which it returned to normal levels in 2005. From

2015 onwards, only 2019 showed a lower NPP value com-

pared to the mean.

The distribution of mean NPP at different altitudes is

depicted in Figure 2b. NPP shows a gradient distribution

pattern with increasing altitude. Initially, it first reaches the

lowest value of 254.76 gC m–² from the plain area to 200

m. Subsequently, NPP increases rapidly from 200 m and

reaches its maximum value of 352.46 gC m–² between 400

and 600 m. However, there is a sharp decrease at 600 m,

followed by another decrease after leveling off at 900–1200

m. At 1400–1500 m, NPP reaches its lowest value of 177.02

gC m–² before rising sharply to its maximum value at the

southern part of Taihang Mountain boundary. The trend of

NPP increasing rate with altitude mirrors that of NPP distri-

bution, with average increasing trend ranging from 0.63 to

6.21 gC m–² a–1).

Figure 2. (a) Interannual variation of NPP and (b) its relationship

with elevation.

Figure 3 illustrates that across the study area, the ma-

jority of pixel NPP falls within the range of 200–500 gC m–².

During 2000–2020, the number of pixels of 200–400 gC m–²

decreased significantly, while the number of pixels of 400–500
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gC m–² increased significantly, especially after 2013. About

8.5% of the pixel NPP is consistently below 100 gC m–², and

these areas are mainly distributed in plain areas. About 5.6%

of the pixel NPP remained between 100 and 200 gC m–²,

and these regions were mainly located at higher elevations

in mountainous areas. Specifically, in 2002, the ecological

quality was the worst, with 23.5% of pixel NPP below 200

gC m–², and 76.5% of pixel NPP between 200–400 gC m–².

In contrast, 2020 has the best ecological quality, with 62% of

pixels having NPP higher than 400gC m–².

Figure 3. Spatial distribution of NPP from 2000 to 2020.

4.2. Changing Characteristics of HumanActiv-

ities

The results of brightness gradient extraction show that

there is an expanding range of volatility in the evolution of

different active regions in the past 21 years (Figure 4). The

areas with high activity levels are mainly concentrated in

Huixian, Jiaozuo and Jiyuan. The areas with high activity lev-

els are mainly concentrated in Huixian, Jiaozuo and Jiyuan.

The evolution of human activity patterns is characterized by

the transition from medium to high activity areas in the plain

at a rate of 9.51 km² per year. There is also an expansion of

medium active region into low activity region in mountain-

ous regions at a rate of 10.86 km² per year. The expansion of

medium active region is mainly observed in Huixian and the

northeast of Jiyuan, with the northern expansion limited by

the Taihang Mountains. The high activity region, expanding

region, and mid-level active region are mainly located in

the plain areas, with average elevations of 129 m, 134.7 m,

and 188 m, respectively. On the other hand, the expansion

region of the medium active region is mainly observed in the

hilly areas, characterized by an average altitude of 520 m.

The low activity areas are mainly distributed in mountainous

regions with an average altitude of 837.9 m.

Figure 4. Changes in human activity levels and coverage.

Table 2 shows the observed changes in land use. Over

the last 21 years, there has been a significant decrease in

cultivated land and grassland, connected with a significant

increase in water bodies and artificial surfaces. Specifically,

the area of cultivated land has decreased by almost 7%, while

the area of grassland has decreased by 136.28 km2. On the

other hand, water bodies have increased by 36.3 km2 and

artificial surfaces by a significant 334.79 km2. The wood-

land area, however, has changed only slightly. Comparing

the land use in the subdistrict between 2000 and 2020, the

following changes have occurred.

Table 1. Type of land use (unit: km2).

Type
Year

2000 2005 2010 2015 2020

Cultivated land 3233.06 3182.13 2972.08 2974.93 3005.70

Forest land 1527.58 1511.46 1625.64 1509.59 1527.31

Scrub 14.65 16.51 13.36 13.86 7.44

Grassland 282.00 261.11 247.76 250.45 145.72

Water bodies 29.04 48.78 56.92 63.26 65.34

Bare land 0.03 0.03 0.18 0.06 0.05

Artificial surface 699.65 765.98 870.06 973.86 1034.44
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The high activity region is mainly characterized by arti-

ficial surfaces, which increased from 77.0% in 2000 to 93.1%

in 2020. The share of cultivated land decreased from 22.6%

to 6.6%. The expansion zone of the high activity region has

shifted from predominantly cultivated land to primarily con-

sisting of artificial surfaces. Cultivated land has decreased

from 70.2% to 43.6%, while the area occupied by artificial

surfaces has increased from 29.1% to 55.1%. The medium

active region is mainly composed of arable land, with arti-

ficial surfaces in second place. Arable land has decreased

from 74.7% to 70.2%; however, the area of artificial surfaces

has increased from 14.6% to 21.0%. The expansion region

of the medium active area has mainly affected forest and

cultivated land, resulting in minimal changes. The area of

cultivated land has increased from 37.1% to 39.2%, while the

area of forest land has increased from 48.5% to 49.2%, and

the area of grassland has decreased from 9.8% to 5.5%. The

low activity region is mainly characterized by forest land,

followed by cultivated land. The forest area has increased

from 84.9% to 85.8%, while the cultivated area has increased

from 8.1% to 9.0%. The area of grassland decreased from

5.6% to 3.5%.

4.3. Impact of Climate on Changes in NPP

The overall climate change in the study area from 2000

to 2020 is shown in Figure 5a,b. (1) The annual precipi-

tation showed a fluctuating and gradually increasing trend,

with a growth rate of 0.97 mm a–1. From 2000 to 2004, the

minimum value was 423.5 mm in 2001, while the maximum

value was 860.9 mm in 2003, with a range of 437.4 mm.

Subsequently, from 2004 to 2011, the precipitation level was

relatively stable, along with small fluctuations in the fol-

lowing period. (2) The annual average temperature in the

study area showed a fluctuating upward trend, with a growth

rate of 0.01 °C a–1. Over the period from 2000 to 2020, the

temperature variations were minimal and evenly distributed,

with the lowest value of 13.8 °C in 2003 and the highest

value of 14.9 °C in 2006.

The spatial distribution of mean annual precipitation

and temperature is shown in Figure 6a and Figure 6b, re-

spectively. Due to the altitude factor, the distribution of

precipitation and temperature is very different. The differ-

ence between the maximum and minimum values is 171.5

mm for precipitation and 7.1 °C for temperature, respectively.

The spatial distribution of both factors shares similarities,

with high precipitation and low temperature in the moun-

tainous regions and low precipitation and high temperature

in the plains. The elevation of the plain remains relatively

consistent, but there are several small areas of anomalous

temperature and precipitation, and these areas display slightly

high values in both precipitation and temperature compared

to the surrounding regions.

(a) (b)

Figure 5. Interannual variation of (a) precipitation and (b) temper-

ature.

On a zonal scale, climate differences are shown in Fig-

ure 6. The lowest average temperature was 12.3 °C in the

low active region, and the average temperature gradually

increased from the low active region to the high active re-

gion, with the highest temperature being 15.4 °C. Annual

precipitation is highest in the low active area and lowest in

the medium active area. The precipitation in descending

order was low active region (643.8 mm), expansion region

of the medium active region (612.9 mm), high active region

(600.3 mm), expansion region of the high activity region

(586.4 mm), and medium active region (584.3 mm).

(a) (b)

Figure 6. Spatial distribution of climate factors: (a) precipitation

and (b) temperature.

4.4. Impact of HumanActivity on Changes in

NPP

The variation of NPP among different active regions

differs significantly. The mean NPP values of the medium ac-

tive region and the expanding region were similar and higher

than those of the low active region. The average NPP in the

medium active region was slightly higher than that in the
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expansion region of the medium active region (324.46 gC

m–² > 323.37 gC m–²). The average NPP of the expansion

region of the high active region were much higher than that

of the high active region (235.62 gC m–² > 58.67 gC m–²),

but still lower than the levels in all regions.

The spatial distribution of NPP changes is shown in

Figure 7. The average NPP of all regions increased at dif-

ferent rates between 2000 and 2020, and the proportion of

pixels in a region shows an increasing trend, which deter-

mines the rate of growth. In the medium active region and

the expansion region, the NPP of more than 73% of the pixels

significantly increased. Only 1.2% of the pixels in the whole

region showed a deteriorating trend, mainly distributed in

the high and medium active regions. Pixels with no signif-

icant change accounted for 33.9% of the total study area,

85.9% of the high active region and 69.3% of the low active

region. The NPP of 66.3% of the pixels in the expansion

region of the high activity region showed no obvious change

or degradation trend. Over the last 21 years, the NPP of most

pixels in the high and low active regions remained stable or

did not change significantly. The NPP of most pixels in the

medium active region and the expansion region increased

significantly.

Figure 7. NPP trend overlaid with active regions.

The correlation analysis of average NTL and average

NPP in the region showed that NTL and NPP in the highly ac-

tive region exhibited a low negative correlation (r = –0.1923,

p = 0.4035). There was a low positive correlation between

NTL and NPP in the expansion region of the high activity

region (r = 0.2237, p = 0.3294). There was a significant

positive correlation between NTL and NPP in the medium

activity region and its expanding region, and the correlation

and significance in the medium activity region’s expanding

region (r = 0.4805, p = 0.0274) were slightly stronger than

those in the medium activity region (r = 0.4033, p = 0.0698).

There was little correlation between NTL and NPP in low

active regions (r = 0.1002, p = 0.6655).

From 2000 to 2020, both the highly and medium active

regions expanded in a large area. In the process of expansion

of highly active region, the number of degraded pixels in-

creased. Simultaneously, the average increasing rate of NPP

decreased, despite this the artificial surface expansion did

not cause large-scale damage to vegetation. Thus, NTL did

not show a significant negative correlation with NPP. The

NPP in the medium active region and the expansion region

showed a significant increase over a large range, and the

average increasing trend was higher.

4.5. Impact of Climate on Changes in NPP

In general, NPP was highly correlated with precipita-

tion (r =0.5506, p = 0.0119) but poorly correlated with air

temperature (r = 0.1271, p = 0.5933). There is a significant

positive correlation between annual precipitation and NPP

in all regions. The low active region was the strongest (r =

0.6448, p = 0.0021), and the high active region was the weak-

est (r = 0.4123, p = 0.0708). The medium active region (r =

0.5317, p = 0.0158) was stronger than the expansion region

of the medium active region (r = 0.4815, p = 0.0316), and

the expansion region of the high active region was stronger

than that of the high active region (r = 0.5428, p = 0.0134).

The correlation between NPP and mean annual temperature

varied between regions. The correlation between NPP and

temperature was weak in the high and low active regions (r =

0.2680, p = 0.2533 and r = 0.2367, p = 0.3294, respectively),

and lowest in the low active region (r = 0.1002, p = 0.6655).

However, in the medium active region and its expanding

region, there was a significantly higher positive correlation.

The correlation was even higher in the expanding region of

the medium active region (r = 0.4805, p = 0.0274) than in

the medium active region itself (r = 0.4623, p = 0.0235).

The spatial distribution is shown in Figure 8. In the en-

tire study zone, 92.3% of pixel NPP was positively correlated

with precipitation. 28.7% of the pixel NPP was negatively

correlated with air temperature, and only 8.8% was posi-
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tively correlated with higher NPP, mainly distributed in the

southwest of Jiyuan and the plain. It is worth noting that in

the regions with low human activity, the northern mountain

area of the study area is affected by altitude, and pixel NPP

generally has a strong positive correlation with precipitation,

and a low or negative correlation with temperature. The

southwest of Jiyuan is close to the Xiaolangdi reservoir, and

the correlation between NPP and precipitation is lower, while

the correlation between NPP and temperature is higher.

Figure 8. Correlation between climate factors and NPP.

Note: ●: p < 0.01; ■: 0.01 ≤ p < 0.05; ▲: 0.05 ≤ p < 0.1.

4.6. Analysis of Dominant Factors of NPP

Change

Figure 9 shows the results of contribution analysis.

Across the entire study region, precipitation emerged as the

most influential factor, contributing to 79.4% of the variation

in NPP, whereas air temperature played a negligible role,

contributing less than 1%. Moreover, only a small fraction

(5.6%) of pixels exhibited a temperature-related contribution

exceeding 2%.

Human activity intensity exhibited varying impacts

based on activity patterns, with the contributions of different

factors to NPP changes showing significant regional discrep-

ancies: (1) In the expanding region of the highly active area,

human activities accounted for 47.4% of the NPP change,

significantly higher than the 15.1% observed in the highly ac-

tive area. This disparity underscores the greater influence of

human activities during expansion processes. (2) Within the

moderately active area, human activities contributed 22.9%,

surpassing the 15.3% observed in the expanding segment of

the same region. In contrast to the significant impact of ex-

pansion in highly active regions, the influence of expansion

in moderately active regions on NPP was less pronounced.

(3) The contribution of human activities gradually decreased

from the expanding highly active region to the low activity

region, while the influence of precipitation increased. In the

low activity region, human activities made minimal contribu-

tions, with precipitation accounting for 98.7% of the overall

influence on NPP.

Figure 9. Pie chart of the contribution ratio of the three impact

factors in each sub-region.

5. Discussion

In the southern region of Taihang Mountain, elevation,

topographic factors, and human activities give rise to distinct

vegetation conditions, thereby causing significant spatial het-

erogeneity in the distribution and change of NPP in this area.

Against the backdrop of global climate change and intensify-

ing human activities, the ecological quality assessment of the

southern Taihang Mountains should be comprehensive. Hu-

man activities frequently lead to alterations in land use types,

and diverse utilization modes will have varying influences

on NPP changes [26]. Previous studies have quantitatively

characterized the impacts and extent of human activities on

the land surface through land use in various manners [27, 28].

Nevertheless, human factors such as population density and

urban expansion also have an impact on ecological quality,

which is also an embodiment of human activities. The nu-

merical NTL can extract precise and reliable information

on human activities on a large scale, analyze the long-term

change trend of the scope and intensity of human activities

and the distribution law along with the altitude terrain. Dif-

ferent brightness gradients represent the intensity of human

activities, and the conversion ratio of land types under dif-

ferent intensities of human activities indirectly reflects the

disparities in human production and lifestyles. The combina-
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tion of long time series of PANDA with land use type data

offers insights into the interaction between human activities

and climate change on NPP changes.

In the plain or hilly regions south of Taihang Moun-

tain, the intensity of human activities continues to increase,

a small part of cultivated land is transformed into building

land, the scope of built-up area gradually expands, and local

vegetation is destroyed. But arable land still dominates. Hu-

man activities interfere with crops through irrigation to make

crops grow within a certain limit without temperature restric-

tion [29], and the progress of agricultural technology will also

promote the significant growth of NPP in this region. Re-

gions with ample water or developed agricultural activities

have water sources other than precipitation, the demand for

precipitation is lower, and higher temperatures also promote

plant growth in these regions. In addition, the conversion of

grassland to arable land or forest land is also the reason for

the increase in NPP. In contrast, high-altitude mountain areas

have more precipitation and lower temperature, but still have

a very high dependence on precipitation. However, the rela-

tionship between temperature and NPP is not clear, and may

even be negatively correlated, which indicates that water

shortage in high-altitude areas where precipitation is the only

water source restricts plants from coping with high tempera-

ture and thus limiting their growth. This confirms that NPP

in most areas of northern Henan has a relatively high growth

trend from 2000 to 2010, but there is a degradation trend in

north Jiyuan and northeast Jiaozuo [30]. NDVI in northern

Henan shows an overall growth trend from 2020 to 2019, but

it is basically unchanged in the Taihang Mountain area [31].

Part of the forest area in Taihang Mountain is 850–1850 m

above sea level. With the increase of sea level, the diversity

and aggregation of plant species decrease [32]. Therefore, the

ecosystem in the high-altitude area is extremely fragile. In

the future, the NPP level in the high-altitude region should

be worried, while the NPP in the water-sufficient region will

continue to increase within a certain temperature range.

In recent years, the government has taken a series of

environmental protection measures, including the reforesta-

tion of South Taihang, and the conversion of farmland back

to forest and grassland, and the implementation of mine man-

agement practices has yielded positive outcomes, and the

observable trend of NPP growth is obvious in the middle

and lower mountainous regions. However, as human urban-

ization breaks through the terrain boundary [33], the urban

scale expands and NPP is destroyed in some areas of plains

and hills. Extreme temperatures and extreme precipitation

caused by continued global warming will pose a great chal-

lenge to most of our cities [34], and action to protect the envi-

ronment cannot be delayed. As a natural carbon reservoir, the

Taihang Mountains have the ability to reduce atmospheric

carbon dioxide concentration and mitigate global warming

in the ecosystem. According to this study, although the NPP

in the southern part of Taihang Mountain has improved since

2000, the damage to the NPP caused by continuous urban ex-

pansion is inevitable, and the trend of the mid-altitude forest

region in addressing global warming appears less optimistic.

Limitations and shortcomings of this study include: (1)

The geographical extent of the study area is large and the

terrain is complex, making it difficult to obtain detailed field

measurements to validate the results of the analysis, poten-

tially leading to the neglect of regional drivers and response

mechanisms. (2) Research on NPP and its response relation-

ship is mainly based on inter-annual changes and does not

take into account seasonal or monthly changes within the

year, which may ignore seasonal influencing factors.

6. Conclusions

(1) The mean NPP within the South Taihang region is deter-

mined to be 307.62 gC m–², accompanied by an annual

growth rate of 3.89 gC m–². The observed trend ex-

hibits an “N” type variation with ascending altitudes.

Notably, regions characterized by elevated and minimal

values are situated in the middle and low mountain areas,

respectively, particularly in the Jiaozuo-Jiyuan plains.

(2) The region characterized by heightened activity on the

plains demonstrated an expansion of approximately four-

fold its 2000 level, whereas the active region at higher

altitudes experienced a contraction of 36%. The growth

of NPP was slowed down by the expansion of the highly

active region and aided by the enlargement of the mod-

erately active region.

(3) The climatic conditions displayed an observable trend

marked by a gradual increase in temperature and mois-

ture levels. The rates of change in temperature and pre-

cipitation were measured at 0.01 °C a–1 and 0.96 mm

a–1, respectively. Notably, precipitation emerged as a
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consistent stimulant for NPP across the entire study area.

In contrast, the influence of air temperature was found to

be significantly positive only within the medium activity

zone and the expanding region.

(4) Precipitation emerges as the predominant factor influ-

encing NPP dynamics across the entire study area. The

collective influence of precipitation and human activi-

ties in the region, on average, accounts for 79.4% and

19.8%, respectively, of the observed changes in NPP.
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