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ABSTRACT

Floods are among the most severe and frequent natural disasters, impacting numerous countries worldwide. This study

investigates flood mapping methodologies utilizing Google Earth Engine (GEE) with Sentinel-1, Sentinel-2, and Landsat

data, focusing on the January 2021 Tetouan flood in Morocco. Three approaches were assessed: Sentinel-1 thresholding

and NDWI (Normalized Difference Water Index) methods applied to Sentinel-2 and Landsat imagery. The analysis revealed

flooded areas of 891 hectares (Sentinel-1), 814 hectares (Sentinel-2), and 1237 hectares (Landsat), validated against

ArcGIS (Geographic Information System) results estimating 900 hectares. Sentinel-1 demonstrated superior accuracy with

only a 9-hectare deviation and proved effective under cloudy conditions. Sentinel-2 provided a balance between spatial

resolution and error levels, with moderate commission and omission errors. Landsat detected the largest flood extent but

exhibited a slight overestimation. The study emphasizes the advantages of GEE’s cloud-based platform, which significantly

reduced processing time, facilitating rapid flood extent mapping. This scalability and efficiency make GEE an invaluable

tool for disaster management. The results underline the potential of these methodologies for accurate and timely flood

monitoring, enabling informed decision-making in resilience planning and emergency response. Such advancements are

critical for mitigating the impacts of flooding and supporting sustainable disaster management strategies in vulnerable

regions worldwide.
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1. Introduction

Floods are among the most frequent and destructive

natural disasters worldwide, posing significant risks to lives,

infrastructure, and economies. This risk is heightened in

regions like Morocco, where mountainous terrain, intense

precipitation, and rapid urbanization contribute to severe

flooding, particularly in vulnerable areas such as the Tanger-

Tetouan-Al Hoceima region. The January 2021 Tetouan

flood event underscored the need for effective, timely flood

mapping to support disaster management and resilience plan-

ning.

Field surveys for flooded areas are challenging and im-

practical for extensive regions, making satellite observation

a realistic choice for near-real-time flood monitoring. Nu-

merous flood mapping techniques have been developed in

recent years, utilizing various data sources, including satel-

lite, aerial, and in-situ data. Satellites such as Sentinel-1,

Sentinel-2, and Landsat, currently in orbit, capture a wide

range of data, allowing for multi-temporal, multi-sensor, and

multi-scale analyses [1]. These satellites offer unique capa-

bilities for flood monitoring due to their high spatial and

temporal resolution, global coverage, and free availability [2].

Combined with the Google Earth Engine cloud computing

platform, which provides a wide array of tools and algo-

rithms for flood mapping, a powerful and flexible solution

for processing and analyzing these Geospatial Big Data is

available [3]. The GEE platform has been instrumental in

addressing urgent environmental issues such as drought and

deforestation [4], natural disasters [5], climate and environ-

mental problems, and food security [6].

Researchers worldwide have conducted extensive re-

search on flood mapping from optical and radar images.

Sentinel-1, with its Synthetic Aperture Radar (SAR) technol-

ogy, has proven effective in detecting flood areas with approx-

imately 90% accuracy, as SAR can capture high-resolution

images regardless of cloud cover or lighting conditions [2, 7–9].

Sentinel-2, with its 10-meter multispectral resolution, allows

for detailed flood mapping using indices such as NDWI,

achieving an overall accuracy rate of 85−90% under clear

skies [1, 10]. Landsat, though less frequent in revisits, has been

effective for historical flood analysis with spatial resolutions

up to 30 meters and accuracy rates of around 80−85% in

cloud-free conditions [11–13].

This study builds upon the strengths of Sentinel-1,

Sentinel-2, and Landsat in flood detection by utilizing GEE

for enhanced processing speed and scalability. By imple-

menting thresholding on Sentinel-1, NDWI on Sentinel-2,

and NDWI on Landsat, the presented methodologies aim

to improve both the accuracy and response time of flood

mapping. These approaches were tested during the Tetouan

flood event, providing critical flood extent data that aligns

with ArcGIS benchmarks, thus supporting the reliability of

each method for rapid flood assessment.

The article is structured as follows: Section 1 provides

a general introduction. Section 2 presents the study area and

data used. Section 3 outlines the flood mapping methodology

for each data type. Section 4 presents results and compares

different methodologies. Finally, Section 5 discusses results

and implications, providing a detailed synthesis.

The findings of this study will enhance the accuracy and

efficiency of flood mapping, contributing to better disaster

management and resilience planning.

2. Materials

2.1. Study Area

The study area covers approximately 50 km², situated

in northern Morocco, precisely within the Tetouan Province

and M’diq-Fnideq Prefecture (see Figure 1).

Figure 1. Study area—Tetouan city.

With a population exceeding 3.9 million inhabitants in

2022, the Tanger-Tétouan-Al Hoceima region is among Mo-

rocco’s most densely populated areas. In terms of hydraulic

resources, the region is crisscrossed by significant water-
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courses and experiences high levels of rainfall, endowing it

with a considerable renewable water potential estimated at

around 4 billion m³ per year [14].

This area has suffered several damages in the past due

to flooding associated with its geographic characteristics.

Extreme hydrological events like the December 1998 flood,

with a peak flow reaching 1927 m³ s–1, and the December

26, 2000 flood, with a peak flow of 2674 m³ s–1, resulted

in significant human losses: 8 deaths and 2 missing per-

sons (according to local authorities). The January 17, 2006

floods caused substantial material damages estimated at 83

million Dirhams, submerging 2400 ha [15]. The most recent

flood occurred in January 2021, when Tetouan city experi-

enced heavy rainfall and thunderstorms, severely affecting

infrastructure and roads. Approximately 9 km² of land were

potentially submerged by water [16].

2.1.1. Terrain

The Martil river basin consists of two zones [17]:

• The upstream zone comprises Paleozoic terrains located

at the western end of the basin, with ridge heights not

exceeding 400 meters.

• The downstream zone corresponds to the Martil river plain,

which is a flood-prone area.

The Martil river basin is one of the Mediterranean

basins characterized by a relatively large area and varied

morphology, with a fairly dense hydrographic network. Its

surface area is 1126 km², with a perimeter of 183 km. This

watershed is subdivided into 8 significant sub-basins [15]. Sig-

nificant drops occur due to the proximity of the mountains to

the sea. Three-quarters of the river’s tributaries pass through

the Tétouan city gorge, with the main river receiving wa-

ters from three major tributaries: Mhajrat, Khemis, and

Chekkoûr, depicted in Figure 2, before flowing through

Tetouan city and emptying into the Mediterranean in the

southern part of Martil city, with a minimum flow rate dur-

ing low-water periods of 0.23 m³ s−1 [15].

2.1.2. Climate 

The climate of the study area is characterized by two

distinct seasons: the first, humid and cool, extends from Oc-

tober to April, while the second, sub-humid and hot, begins

in May and lasts until the end of September. Precipitation

varies in height, intensity, and geographical distribution, with

alternating long periods of drought followed by torrential

and irregular rainfall. Figure 3 displays the precipitation

averages of the study area from 2020 to 2023.

Figure 2. Hydrographic network map of Martil river basin [15].

Figure 3. Precipitation averages of the study area from 2020 to

2023 (CHIRPS precipitation data from the Climate Hazards Group).

This analysis of the study area underscores the immense

need for flood maps, which can aid in post-disaster manage-

ment activities and resilient disaster planning.

2.2. Materials

For flood mapping, three types of data available within

the Google Earth Engine platform will be utilized: Sentinel-1,

Sentinel-2, and Landsat.

2.2.1. Sentinel-1 Data

Sentinel-1 is a satellite from the European Union’s

Copernicus monitoring mission, considered among the first

in a series of Earth imaging satellites. Sentinel-1A was

launched in April 2014, followed by Sentinel-1B in April

2016 [12]. It is equipped with a SAR sensor capable of cap-

turing images of the Earth’s surface at any time, even in

challenging weather conditions or low light. Sentinel-1 is

employed for monitoring coastal areas, maritime zones, ice

zones, deforested areas, and areas at risk of natural disasters.
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Sentinel-1 satellite data is operationally acquired in

four imaging modes: Strip Map (SM), Interferometric Wide

Swath (IW), Extra-Wide Swath (EW), and Wave Swath

(WV), each with different acquisition configurations [16]. The

Sentinel-1 can transmit signals in horizontal (H) or vertical

(V) polarization and receive in both H and V polarizations

(see Figure 4).

Each of the two Sentinel-1 satellites orbits the globe

every 12 days, enabling a potential joint revisit frequency

of 6 days over the equator and a revisit frequency of 3 days

when considering both ascending and descending orbits [12]

(see Figure 5).

Figure 4. Areas mapped with Sentinel-1, showing high level infor-

mation (mode, polarisation, cycle validity period) [18].

Figure 5. Revisit and coverage frequency of the Sentinel-1 constel-

lation, showing which areas are mainly covered with descending or

ascending imagery [18].

The IW mode was utilized in our study as it is the pri-

mary mode for acquiring land surface imagery that meets con-

temporary service requirements with long-term archives [19]

(see Figure 4). Furthermore, the IW mode of Sentinel-1

is employed to monitor floods as it can detect water height

variations in flood-prone areas using interferometric radar

techniques. This allows for real-time flood tracking and pre-

diction of potentially affected areas. Additionally, the IW

mode of Sentinel-1 can operate even in low-visibility condi-

tions, such as clouds and rain, making it particularly useful

for monitoring floods in climatically unstable areas [19].

Moreover, SAR polarization is a key factor in flood de-

tection. Previous studies [20, 21] have shown that horizontally

polarized (HH) images are considered more suitable for flood

detection than vertically polarized (VV) or cross-polarized

(VH) images. However, for this study, the available image

during the flood had a VV and VH intensity polarization.

Anusha and Bharathi [22] and Psomiadis [23] reported that VV

polarization had potential in flood mapping because the co-

polarized VV band has stronger backscatter intensities than

the cross-polarized VH band. In our case, VH polarization

was preferred over VV polarization as it was more suitable

for our study area. In total, from a collection of 850 images

taken for the study area since 2014, four scenes were selected

to enable flood monitoring during the period from January

6 to January 15, 2021: two scenes before the flood and two

scenes after the flood (see Figure 6).

Figure 6. (a) Selected images before and after the flood and (b)

Console sentinel-1 script [24].

The Sentinel-1 Ground Range Detected (GRD) images

obtained from the GEE platform are already preprocessed [25],

with a pixel size of 10 × 10 m and an image band width equal

to 250 km. As Sentinel-1’s orbital information is accurate,

the terrain-corrected SAR images also have subpixel geolo-

cation accuracy [26]. The specifications of the SAR images

used in our work are provided in Table 1.

2.2.2. Sentinel-2 Data

With a mass of 1,140 kg, the European observation

satellite Sentinel-2A was launched on June 23, 2015, from

Kourou aboard a Vega rocket. Its twin, Sentinel-2B, joined it

on the same orbit at an altitude of 786 km on March 6, 2017.

Publicly accessible, the Sentinel-2A (Sentinel-2 MSI: Mul-

tiSpectral Instrument, Level-1C) [27] and Sentinel-2B (Har-
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Table 1. Image dataset Sentinel-1.

Satellite/Sensor Image Captured Mode Acquisition Date Polarisation Swath Width Spatial Resolution Size in Gb

Sentinel-1A Before flood IW 06/01/2021 VH 250 km 10 × 10 m 4.0411

Sentinel-1A Before flood IW 07/01/2021 VH 250 km 10 × 10 m 4.0338

Sentinel-1A After flood IW 12/01/2021 VH 250 km 10 × 10 m 4.0269

Sentinel-1A After flood IW 13/01/2021 VH 250 km 10 × 10 m 4.0312

monized Sentinel-2 MSI: MultiSpectral Instrument, Level-

2A) [27] satellite data from the European Space Agency (ESA)

are capable of monitoring conditions on the Earth’s surface.

The revisit time is 10 days with one satellite and 5 days with

two satellites. Its spatial resolution is 10 m (bands: 2, 3, 4,

and 8), 20 m (bands: 5, 6, 7, 8a, 11, and 12), and 60 m (bands:

1, 9, and 10), and it can provide images with a ground width

of 290 km [28].

These satellites are used to support a variety of services

and applications offered by Copernicus, including land man-

agement, agriculture, forestry, disaster monitoring, humani-

tarian relief operations, risk mapping, and security issues [29].

In this study, bands 3 and 8 of Sentinel-2-L2A satellite

data were used for flood mapping. From a collection of 949

images taken for the study area since 2017, we selected six

images during the period from January 1 to January 18, 2021:

four before the flood and two after the flood (see Figure 7).

Figure 7. (a) Before image true color, (b) After image true color,

and (c) Console Sentinel-2 script [30].

The details of the Sentinel-2 images used to prepare

the flood map of the study area are presented in Table 2.

Table 2. Images dataset Sentinel-2.

Satellite Image Captured Acquisition Date Band Name Swath Width Spatial Resolution Size in Gb

Sentinel-2 Level 2A Before flood 01/01/2021 Band 2, Band 3 290 km 10 × 10 m 1.6005

Sentinel-2 Level 2A Before flood 03/01/2021 Band 2, Band 3 290 km 10 × 10 m 1.6096

Sentinel-2 Level 2A Before flood 06/01/2021 Band 2, Band 3 290 km 10 × 10 m 1.6099

Sentinel-2 Level 2A Before flood 08/01/2021 Band 2, Band 3 290 km 10 × 10 m 0.6028

Sentinel-2 Level 2A After flood 13/01/2021 Band 2, Band 3 290 km 10 × 10 m 0.9246

Sentinel-2 Level 2A After flood 16/01/2021 Band 2, Band 3 290 km 10 × 10 m 1.4628

2.2.3. Landsat Data

The Landsat missions currently comprise eight oper-

ational Earth observation satellites equipped with remote

sensors to collect data and images of our planet as part of

the United States Geological Survey (USGS) National Land

Imaging (NLI) program [31]. Since the launch of Landsat 1 in

1972, the Landsat mission has provided the longest continu-

ous record of the Earth’s surface from space. From Landsat

4 onwards, each of the satellites has captured images of the

Earth’s surface with an optical resolution of 30 meters, ap-

proximately once every two weeks, using multispectral and

thermal instruments [32]. Thanks to the open data policies

of USGS and NASA, datasets from Landsat 4 (1982–1993),

Landsat 5 (1982–1993), Landsat 7 (1999–2021), and Land-

sat 8 (2013–2021) are available free of charge as part of the

Google Public Cloud Data program. They can be accessed

by anyone through the Google Cloud platform [32].

In this study, Landsat 7 and Landsat 8 satellites were

used, which are Earth observation satellites utilized for map-

ping, environmental monitoring, and other applications re-

lated to observing the Earth’s surface. The complete orbital

cycle of Landsat 7 and 8 is 16 days. From a collection of 388

Landsat 7 images and 239 Landsat 8 images taken for the

study area, we selected two images during the period from
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January 1 to January 15, 2021: one before the flood and the

other after the flood (see Figure 8).

Figure 8. (a) True-color composite Landsat 7, (b) true-color com-

posite Landsat 8, and (c) Console Landsat script [33].

The Landsat images obtained from the GEE platform

are already preprocessed and calibrated with a pixel size of

30 × 30 meters [13]. Table 3 shows the characteristics of the

Landsat images used.

3. Methods

In this study, we employed a three-step geospatial analy-

sis workflow to map flood extents using Sentinel-1, Sentinel-

2, and Landsat data within the Google Earth Engine (GEE)

platform. Each data source was processed independently

through a structured methodology, tailored to the unique

characteristics of optical and radar data. The workflow be-

gan with data acquisition and pre-processing, where images

were filtered by acquisition date and atmospheric or radar-

specific conditions. This ensured that only images relevant

to the flood event in January 2021 were selected, minimizing

noise and maximizing detection accuracy.

Next, each data source underwent image analysis to de-

tect flooded areas. For Sentinel-1, thresholding was applied

to detect changes in backscatter intensity before and after

the flood, highlighting inundated areas. Sentinel-2 and Land-

sat images were processed using the Normalized Difference

Water Index (NDWI), allowing for water detection based on

spectral differences in visible and infrared bands. Finally, a

validation process was conducted by comparing each flood

extent map with results obtained from ArcGIS analysis.

Table 3. Images dataset Landsat.

Satellite Image Captured Acquisition Date Band Name Spatial Resolution Size in Gb

Landsat 7 Before flood 04/01/2021 Band 2, Band 3 30 × 30 m 1.6005

Landsat 8 After flood 12/01/2021 Band 2, Band 3 30 × 30 m 1.6096

3.1. Flood Detection Method with Sentinel-1

Data

The Sentinel-1 data required for this study comes from

the “COPERNICUS/S1_GRD” dataset provided by the GEE

cloud platform, as previously explained. GEE can execute

multiple tasks flawlessly, from data retrieval to flood map-

ping, as it operates on a parallel processing architecture [26].

The methodology followed involves detecting flooded

and non-flooded pixels by calculating the difference between

images before and after the event to generate a flood extent

map for assessing affected areas. The flood mapping process-

ing chain steps have been divided into five modules, namely:

3.1.1. Retrieval of Sentinel-1 Data

A collection of images of the study area used for flood

mapping is directly extracted from the Sentinel-1 GEE data

catalog [34] to the GEE processing platform using the Earth

Engine ee.FeatureCollection() operator.

3.1.2. Metadata Filtering

• Selection of time period and sensor parameters

During this step, a filter is created to narrow down the

data volume based on the work objective as the Sentinel-1

image collection extracted from the previous step contains

vast information about each image such as data acquisition

mode, acquisition time, satellite pass, polarization, etc. Thus,

all Sentinel-1 images will be filtered with a descending pass

(DESCENDING), wide interferometric mode (IW), and po-

larization parameters (VH) using the Earth Engine filterMeta-

data() operator. Additionally, the filterDate() operator will

be used by setting the start and end dates to retrieve only

images before and after the flood event. Thus, metadata and
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spatial filtering play a crucial role in limiting data volume

and processing time.

• Smoothing filter

A smoothing filter is applied to the selected images to

smooth pixel values [35]. This filter is used to reduce noise

or undesirable variations in the data, which can improve

readability and interpretation of results. The Earth Engine

focal_mean. (SMOOTHING_RADIUS, “circle”, “meters”)

function applies a spatial mean filter with a smoothing radius

and circular shape. The smoothing should be strong enough

to reduce noise but not so strong as to remove important de-

tails. The value (SMOOTHING_RADIUS = 50) was chosen

after several tests and proved to be suitable for smoothing

small irregularities while preserving larger features. It can

be adjusted and optimized based on project specifics and

desired results.

3.1.3. Detection of Flooded Pixels

• Calculation of the difference

Here we will use a simple and direct approach for

change detection. The mosaic after flooding is divided by

the mosaic before flooding using the divide() function. By

using pixel-wise division, each pixel in the afterVH image

is divided by the corresponding pixel in the beforeVH im-

age. The resulting output is a raster layer showing the de-

gree of change per pixel. This relative difference is useful

for detecting significant changes that occurred between the

two periods. High values (bright pixels) indicate significant

change, while low values (dark pixels) indicate little change.

It can highlight areas where radar backscatter has increased

(e.g., due to water) or decreased (e.g., due to changes in soil

or vegetation). Subsequently, this relative difference is used

for thresholding to identify potentially flooded areas in the

script.

• Thresholding the difference

Now we will create a binary mask based on the rel-

ative difference between images before and after flooding

obtained earlier using the selfMask() function that masks

the original image using the provided boolean values. This

mask highlights areas where the radar backscatter difference

exceeds a fixed threshold (DIFF_UPPER_THRESHOLD).

This means that only pixels above the threshold will be visi-

ble in the resulting image, and others will be masked. The

predefined threshold of 1.25 is applied by assigning 1 to all

values above 1.25 and 0 to all values below 1.25. Pixels

with values above the threshold are considered flooded, and

the binary raster layer created by this process will show the

potential extent of flooding. The threshold of 1.25 was cho-

sen through trials using the GEE Inspector panel and could

be adjusted. These highlighted areas will be used to detect

and visualize potentially flooded areas in the next step of the

script (see Figure 9).

Figure 9. Choice of threshold for identifying flooded areas with

Sentinel-1 data.

3.1.4. Refining the Flood Extent Layer

Several additional datasets are used to eliminate false

positives in the flood extent layer:

• Calculate pixel connectivity and remove isolated pixels

A connected pixel is a pixel that is adjacent to at least

one other change pixel. The connectedPixelCount() function

is used to calculate the number of connected pixels. Only

change pixels with 8 or more connected pixels will be kept.

This operation reduces noise in the flood extent product. The

chosen value of 8 has a relationship with the 10 m resolu-

tion of Sentinel-1. The 10 m resolution means that each

pixel in the image represents a 10 m × 10 m area on the

ground. Therefore, a change pixel with 8 or more connected

pixels must represent a change area of at least 80 m × 80

m. This size is generally considered large enough to exclude

changes due to noise. Indeed, noise is typically limited to

areas smaller than 80 m × 80 m [36].

• Remove misclassified pixels in areas where the slope is

higher than the average slope

Another refinement level is applied to remove areas

with a slope higher than the average slope as they are con-
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sidered steep where water would flow away from them

and could not be flooded. For this purpose, a Digital El-

evation Model (DEM), based on Shuttle Radar Topogra-

phy Mission (SRTM) data with a resolution of 30 m [1],

extracted from archived data of the USGS, is used. The

ee.Terrain.slope(srtm) and ee.Algorithms.Terrain(srtm) func-

tions are used to calculate the average slope (average slope

= 3.75%) of the study area and exclude resulting flooded

change pixels with a slope higher than 4%.

• Remove misclassified pixels in areas where there is per-

manently free water

To clean classification errors due to permanent water,

the Copernicus Global Land Service (CGLS), which pro-

vides a global map of land cover at a spatial resolution of

100 m, will be used [37]. In this map, regions of pixels with a

class value of 80 (inland water bodies) and a class value of

200 (ocean) will be identified, which have been detected as

flooded pixels, and removed.

3.1.5. Calculation of Flood Extent Area

To calculate the flood extent area, a new raster layer is

created by multiplying the thresholded image by the area in

m2 of each flooded pixel, using the multiply(ee.Image.pixe-

lArea()) function. By summing all the pixels, information

about the area is derived and converted to hectares via the

reduceRegion() and getNumber() functions.

Figure 10 illustrates the flowchart of the proposed

methodology for rapid flood mapping using Sentinel-1 and

GEE.

3.2. Flood Detection Method with Sentinel-2

Data

Sentinel-2-L2A images are corrected for atmospheric

effects. L2A data are preferred for applications requiring

precise atmospheric correction, such as water quality moni-

toring, soil mapping, natural resource management, and envi-

ronmental monitoring [38]. The procedural approach adopted

for Sentinel-2-L2A data involves extracting the flood area

using the Normalized Difference Water Index (NDWI) from

the Sentinel-2 satellite via the GEE environment. Numerous

studies have demonstrated that NDWI is highly suitable for

extracting water bodies [39, 40]. This approach can be summa-

rized as follows.

Figure 10. Flowchart of the proposed methodology for flood map-

ping using Sentinel-1 and GEE.

3.2.1. Definition of Study Area

A collection of images of the study area used for flood

mapping is directly extracted from the Sentinel-2 data cata-

log [27] to the GEE processing platform using the Earth En-

gine ee.FeatureCollection() operator.

3.2.2. Filtering Images for Pre- and Post-

Flooding Periods

Sentinel-2-L2A images are first filtered by date to ob-

tain images for two distinct periods of the event:

• Before period: From January 1st to January 11th, 2021.

• After period: From January 12th to January 18th, 2021.

Then, within each period, the images are sorted by the

“CLOUDY_PIXEL_PERCENTAGE” property in descend-

ing order to select images with the least cloud cover. Finally,

the selected images are merged into a single composite image

using the mosaic() function.

3.2.3. Calculation of NDWI

The NDWI is a frequently used index for detecting the

presence of water in satellite images. It is calculated for the

pre and post-flooding periods from band 3 (B3) and band 8
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(B8) of the Sentinel-2-L2A images using the normalizedDif-

ference() function, which subtracts band B3 from band B8

and divides by their sum:

NDWI = (B8 − B3)/(B8 + B3).

Band 3’s red reflection is sensitive to chlorophyll con-

tent in vegetation. Healthy vegetation reflects more red light

than near-infrared. Band 8’s near-infrared reflection is sensi-

tive to surface moisture. Water reflects more near-infrared

light than red. Therefore, the difference between red and

near-infrared reflection indices is an indicator of water pres-

ence.

3.2.4. Identification of Flooded Areas

Here, the difference between NDWI indices from pre

and post-flooding periods is calculated using the subtract()

function. The diff.gt(DIFF_THRESHOLD) function creates

a binary image (0 or 1) where pixels with an NDWI differ-

ence greater than the “DIFF_THRESHOLD” threshold are

considered flooded. The threshold value of 0.1 used in this

code was chosen based on the desired sensitivity of flooded

area detection using the NDWI difference map and GEE’s

Inspector panel (see Figure 11).

Figure 11. Threshold selection for flood zone identification using

NDWI Sentinel-2.

A higher threshold value (e.g., 0.2 or 0.3) will detect

larger flooded areas but may also generate false positives, i.e.,

detect areas as flooded when they are not. A lower threshold

value (e.g., 0.05 or 0.01) will detect smaller flooded areas

but may also generate false negatives, i.e., not detect flooded

areas when they are. The threshold of 0.1 is a good com-

promise between sensitivity and accuracy. It detects most

flooded areas while reducing the risk of false positives.

3.2.5. Calculation of Flooded Area

The flooded area is calculated by multiplying the area

of flooded pixels by the area of each pixel using the multi-

ply(ee.Image.pixelArea()) function. Then, the sum of the

flooded area is calculated for the area of interest and con-

verted to hectares using the reduceRegion() and getNumber()

functions. Figure 12 illustrates the flowchart of the proposed

methodology for rapid flood mapping using Sentinel-2 and

GEE.

Figure 12. Flowchart of the proposed methodology for rapid flood

mapping using Sentinel-2 and GEE.

3.3. Flood Detection Method with Landsat

Data

To extract water masses from different Landsat optical

images we will use the NDWI index. The main steps to

identify flooded areas based on Landsat data are as follows:

3.3.1. Data Loading and Study Area Definition

Firstly, using the ee.FeatureCollection() function, a col-

lection of geometric entities representing the area of interest

is loaded. Then, the filterDate() function filters Landsat 7 and

Landsat 8 images by date to retain only those taken during

the period from January 1st to January 15th, 2021.

3.3.2. Cloud Masking

The cloudfunction() function is used to mask clouds in

the images based on the cloud probability score. It calculates

371



Journal of Environmental & Earth Sciences | Volume 07 | Issue 01 | January 2025

a cloudiness score using the ee.Algorithms.Landsat.simple-

CloudScore() function. Then, it creates a cloud mask by

selecting pixels with a cloudiness score above a defined

threshold. This threshold is used to decide which pixels are

considered cloud-covered and should therefore be masked.

3.3.3. Band Selection and NDWI Calculation

The NDWI Index is calculated for each image from the

appropriate bands B2 (green), B4 (near-infrared) for Landsat

7 and B3 (green), B5 (near-infrared) for Landsat 8 using the

normalizedDifference() function. Bands 2 and 4 of Landsat

7 and bands 3 and 5 of Landsat 8 are chosen to calculate

the NDWI because they respectively measure visible light

reflection and near-infrared reflection. By using bands 2 and

4 of Landsat 7 or bands 3 and 5 of Landsat 8, water can be

effectively distinguished from other surfaces. The NDWI is

calculated by subtracting green band reflectance from near-

infrared band reflectance. High NDWI values indicate water

presence, while low values indicate other surfaces:

NDWI = (Green band − Near-infrared band)/(Green band +

Near-infrared band)

3.3.4. Data Fusion and Flooded Area Detection

The Landsat 7 and Landsat 8 image collections are

merged into a single collection using the ee.ImageCollec-

tion() function. Also, the 10th and 90th percentiles of NDWI

are calculated to define “before” and “after” flood condi-

tions using the reduce(ee.Reducer.percentile) function. This

means that 10% of pixels will have an NDWI value less than

or equal to the pre-flood value and 90% of pixels will have

an NDWI value less than or equal to the post-flood value.

The 10th percentile is chosen here to represent a reference

value for non-flooded water, as it generally corresponds to

permanent or semi-permanent water areas. Conversely, the

90th percentile is chosen to represent a potentially higher

value related to flooded areas, as floods tend to increase

NDWI value in previously non-flooded areas. A difference

threshold (DIFF_THRESHOLD) is defined to distinguish

flooded from non-flooded areas. The difference between

NDWI values of “before” and “after” events is calculated

using the subtract() function. An NDWI difference greater

than the threshold is considered an indication that the area

has experienced flooding.

The threshold of 0.11 used in this code was chosen

based on the desired sensitivity of flooded area detection

using the NDWI difference map and GEE’s Inspector panel

(see Figure 13).

Figure 13. Threshold selection for flood zone identification using

NDWI Landsat.

3.3.5. Calculation of Flooded Area

The flooded area is calculated by multiplying the area

of flooded pixels by the area of each pixel using the multi-

ply(ee.Image.pixelArea()) function. Then, the sum of the

flooded area is calculated for the area of interest and con-

verted to hectares using the reduceRegion() and getNumber()

functions.

Figure 14 illustrates the flowchart of the proposed

methodology for rapid flood mapping using Landsat and

GEE.

3.4. Validation Approach of Different Methods

To validate the accuracy of the flood extent maps gen-

erated using Sentinel-1, Sentinel-2, and Landsat data on

Google Earth Engine (GEE), we used results from ArcGIS

as a benchmark. The flood map (Map produced by UNI-

TAR/UNOSAT [16]) created in ArcGIS was developed us-

ing high-resolution data and precise spatial analysis tools,

offering a reliable reference for comparison (Satellite data:

Pleiades, Resolution: 50 cm [16]). In the analyzed area, which

is approximately 50 km2 , a total of 9 km2 of land is poten-

tially submerged by water [16].

The comparison process involved overlaying the flood

extent maps from GEE onto the ArcGIS-generated map

to identify areas of agreement and discrepancy. For each

method (Sentinel-1 thresholding, Sentinel-2 NDWI, and

Landsat NDWI), we calculated the percentage of overlap-

ping flooded areas relative to the total flood extent identified

in ArcGIS:

Overlap Percentage = (Intersected Area/Total Flooded Area
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in Benchmark ) × 100 [41]

This was quantified using metrics Intersection over

Union (IoU) and total area difference, which provided a

clear indication of each method’s detection accuracy:

IoU = Area of Intersection/Area of Union [42]

Area Difference = |AreaMap1  − AreaMap2|

In addition, we calculated the commission and omis-

sion errors for each dataset, giving insight into false positives

(non-flooded areas detected as flooded) and false negatives

(flooded areas not detected):

Commission Error (%) = (FP/(TP + FP)) × 100

Omission Error (%) = (FN/(TP + FN)) × 100 [43]

Figure 14. Flowchart of the proposed methodology for flood map-

ping using Landsat and GEE.

4. Results

In order to visually compare the extent of flooding,

resulting flood maps based on Sentinel-1, Sentinel-2, and

Landsat images for the Tetouan area in January 2021 are

presented in Figure 15.

Figure 15. Flood maps generated by the presented methodologies

based on Sentinel-1, Sentinel-2, and Landsat images for the Tetouan

area.

The flood extent maps obtained were compared and

evaluated. The result of the three methods using a threshold-

ing approach, based on the VH band difference between

Sentinel-1 images before and after the flood and on the

NDWI difference of the study area generated by the Sentinel-

2 and Landsat images is presented in Figure 15, where the

flooded area appears in red and the permanent water appears

in blue. The total extent of flooding was estimated at 891

hectares for Sentinel-1, 814 hectares for Sentinel-2, and 1237

hectares for Landsat which gave flooded hectare values close

to the value obtained by the analysis performed with ArcGIS

as shown in Table 4.

The following Table 5 presents a comprehensive com-

parison of flood mapping metrics for Sentinel-2, Sentinel-1,

and Landsat, using the ArcGIS flood map as a benchmark

with an estimated flood area of 900 hectares. Key met-

rics—including flooded area, area difference, Intersection

over Union (IoU), overlap percentage, commission error,

and omission error—highlight each dataset’s performance

in capturing flood extent and alignment with the benchmark.

These metrics provide a detailed view of each method’s

accuracy, precision, and potential limitations in flood detec-

tion.
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Table 4. Hectares of inundated area using a thresholding approach.

Hectares of

Area Studied

Hectares of

ermanent Water

Hectares of Inundated

Area with ArcGIS Analysis

Hectares of Inundated Area Using a Thresholding Approach

Sentinel-1 Sentinel-2 Landsat

5067 165 900 891 814 1,237

Table 5. Flood mapping performance metrics for Sentinel-2, Sentinel-1, and Landsat compared to ArcGIS benchmark.

Dataset
Flooded Area

(ha)

Area Difference

(ha)
IoU

Overlap Percentage

(%)

Commission Error

(%)

Omission Error

(%)

Sentinel-2 814 86 0.4377 57.26 34.99 42.74

Sentinel-1 891 9 0.2181 35.05 63.41 64.95

Landsat 1,237 337 0.3347 58.95 56.35 41.05

5. Discussion

5.1. Comparison of Results

The quantitative comparison between Sentinel-2,

Sentinel-1, and Landsat datasets against the ArcGIS bench-

mark (900 hectares) reveals distinct performance character-

istics for each method in detecting flood extents.

Sentinel-2 detected a total flooded area of 814 hectares,

resulting in an area difference of 86 hectares compared to the

benchmark. With an Intersection over Union (IoU) of 0.4377

and an overlap percentage of 57.26%, Sentinel-2 provides

moderate spatial accuracy, capturing a significant portion

of the flooded regions. The commission error of 34.99%

and omission error of 42.74% suggest that while Sentinel-2

accurately identifies many flooded areas, some discrepancies

exist in alignment with the benchmark, potentially due to

cloud cover and water misclassification in optical imagery.

Sentinel-1 estimated 891 hectares of flooded area, with

a minimal area difference of 9 hectares relative to the bench-

mark, indicating strong agreement in total flooded area. How-

ever, the IoU of 0.2181 and a lower overlap percentage of

35.05% reflect limited spatial alignment with the benchmark,

likely stemming from radar limitations in differentiating

water from similar surfaces. The high commission error

of 63.41% and omission error of 64.95% imply that while

Sentinel-1’s radar capabilities are beneficial under cloudy

conditions, this method might overestimate or miss specific

flood regions in more heterogeneous landscapes.

Landsat detected the highest flooded area at 1237

hectares, resulting in an area difference of 337 hectares com-

pared to the benchmark, suggesting potential over-detection.

With an IoU of 0.3347 and the highest overlap percentage at

58.95%, Landsat aligns moderately with the benchmark in

flood spatial extent but shows a commission error of 56.35%

and an omission error of 41.05%. These values indicate

Landsat’s ability to capture extensive flood areas effectively

but with a tendency toward overestimation, particularly in

large-scale flood events.

These metrics underscore the individual strengths and

limitations of each dataset in flood mapping, with Sentinel-

2 providing balanced spatial accuracy, Sentinel-1 achieving

close area approximation under variable weather, and Landsat

offering extensive coverage at the cost of slight over-detection.

5.2. Methodological Strengths

While real-time flood monitoring plays a crucial role

in rescue operations, flood maps also play an important role

in decision-making, planning, and implementing flood man-

agement options. The choice of algorithm depends on its

implementation complexity and accuracy. For our study, we

used three recently developed flood detection methods for

the following reasons:

• They are simple to implement and effective for rapid real-

time flood mapping.

• They can be easily extended to other regions with minimal

required modifications.

• They have the potential for automated flood mapping.

• They utilize multi-source and publicly accessible datasets:

Sentinel-1, Sentinel-2, and Landsat for result comparison

and accuracy enhancement.

• They can be used with little or no experience in GIS or

coding.

Thus, the methods proposed in this work were com-

pared, leading to the following findings:

• Too often, limited technical expertise deprives the disaster-
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stricken community of needed information. This practice

provided near real-time, cloud-based, easy-to-use flood

extent mapping methods designed to overcome technical

limitations.

• Implementing our algorithm on GEE offers several advan-

tages over conventional flood mapping and monitoring

methods. The GEE platform hosts all available Sentinel-

1, Sentinel-2, and Landsat images at petabyte scale and

provides high-performance parallel computing facilities,

offering researchers a unique opportunity to quickly ac-

cess ready-to-analyze data necessary for flood monitoring

and disaster management.

• Cloud processing on the GEE platform enables the use of

auxiliary datasets to delineate flood extent (e.g., slope).

• By inputting the provided code and simply delineating the

region of interest along with dates before and after, this

methodology produces in seconds what a GIS user may

take hours to accomplish.

• The user has various methodologies for creating flood

maps depending on the availability of Sentinel-1, Sentinel-

2, and Landsat images in their study area.

5.3. Uncertainty Analysis

All available Sentinel-1, Sentinel-2, and Landsat im-

ages were useful for rapid large-scale flood mapping and

monitoring at the study area level. However, uncertainties

exist in the generated flood maps.

The uncertainty of flood extent maps could arise from

the low temporal resolution limited by the satellite revisit

period of Sentinel-1 (6 to 12 days), Sentinel-2 (5 days), and

Landsat 7 and 8 (16 days). Since floodwaters change rapidly,

this temporal resolution may not be sufficient to track flood

progression. This situation is exacerbated when considering

a vast area.

Uncertainty arises in flood-prone areas based on SAR

due to environmental conditions in the studied regions, such

as wind presence at the time of image acquisition, topogra-

phy, vegetation types, and built-up areas. All of these factors

could influence results to some extent [44].

Flood-prone areas depended on the choice of threshold

values, and the choice of these values may lead to under-

estimation or overestimation of the floodplain. Although

threshold values were selected based on suggested and ex-

perimented values, they may limit the ability to detect all

flooded locations.

Although active SAR images are less affected by

clouds, in terms of captured surface information, they are not

as rich as passive optical images at the same resolution [45].

Finally, seasonal variations in land cover and differ-

ences in acquisition parameters of Sentinel-1, Sentinel-2,

and Landsat could result in differences in acquired images

for water areas at the same location and over varying periods.

Thus, using data from all three satellites will allow differ-

entiation and comparison of individual events influencing

floods. Additionally, to overcome these uncertainties, local

knowledge is crucial.

5.4. Limitations and Potential Improvements

Despite the strengths of our methodology and the GEE

platform in near real-time flood monitoring, we encountered

a few limitations:

• We only used Sentinel-1 VH polarization data for flood

mapping as they yielded better results compared to VV

polarization in the thresholding method. We will actively

explore the possibility of combining multiple polarization

bands to improve flood mapping accuracy in the future.

• Optical methods suffer from cloud contamination and

dense vegetation, hindering their application, especially

in tropical regions. However, the flood map based on

Sentinel-2 and Landsat could underestimate the flood-

plain due to lack of data induced by cloud cover during

rainy flood periods.

• Floods are highly dynamic phenomena, and daily informa-

tion is often required for effective disaster response. The

operational revisit intervals of Sentinel-1 (6 to 12 days),

Sentinel-2 (5 days), and Landsat 7 and 8 (16 days) are thus

not sufficient for accurately tracking flood progression

over time [12]. This revisit time means that images are not

always available for a given area.

• A Google Earth Engine account is required to use the code

developed in this study. The account may take a few days

to become active.

• Storage space must be available on Google Drive (20 MB

to 1 GB, depending on the study area size).

• A stable internet connection is required as processing

is done on a cloud-based platform, and results are run

through GEE JavaScript code.
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5.5. Synthesis

The methods developed for mapping flooded areas

seem to have satisfactory results and could be applied to

flood risk management, as well as emergency situations.

Thus, to summarize the results of this comparison, Table 6

represents the strengths and weaknesses of methodologies

based on Sentinel-1, Sentinel-2, and Landsat data.

Table 6. The strengths and weaknesses of methodologies based on Sentinel-1, Sentinel-2, and Landsat data.

Sentinel-1 Sentinel-2 Landsat 7 and 8

Characteristics

of the sensor

affecting flood

mapping

Frequency of

revisit
6 to 12 days 5 days 16 days

Spatial resolution 10 m × 10 m 10 m × 10 m 30 m × 30 m

Imagery type Synthetic Aperture Radar (SAR) Multispectral optics Multispectral optics

Availability and

data processing

on GEE

Image volume Over 2.7 million images Over 21.4 million images

• Over 2.7 million images for

Landsat 7

• Over 1.7 million images for

Landsat 8

Start of image

acquisition
October 3, 2014 November 29, 2015 April 30, 2013

Access to images Free Free Free

Data processing Python and JavaScript Python and JavaScript Python and JavaScript

Benefits

• High spatial resolution

• Independent of weather condi-

tions (cloud penetration)

• Day and night imaging capa-

bility

• Ability to penetrate vegetation

• Close match to benchmark

flood area (891 ha, 9 ha dif-

ference)

• Consistent detection with

lower area difference, show-

ing reliability in flooded area

estimation despite a lower

overlap percentage (35.05%)

and IoU (0.2181)

• High spatial resolution

• Wide range of spectral bands

• Easy to interpret

• High revisit frequency (5

days)

• Relatively high overlap per-

centage (57.26%) and IoU

(0.4377), indicating good spa-

tial agreement with bench-

mark

• Balanced performance

with moderate commission

(34.99%) and omission errors

(42.74%)

• Extensive archive of historical

imagery (since 1972)

• Large spatial and temporal

coverage, suitable for monitor-

ing floods over large regions

and longer periods

• Captures larger areas of flood-

ing (1237 ha) but overesti-

mates compared to bench-

mark

• High overlap percentage

(58.95%) and moderate IoU

(0.3347), useful for extensive

flood coverage

Disadvantages

• Less precise than optical im-

agery

• More challenging to interpret

due to lower IoU (0.2181) and

high omission error (64.95%)

• Significant commission error

(63.41%) suggests overesti-

mation in certain conditions

• Cannot observe through

clouds or at night, limiting

continuous monitoring

• Shows moderate omission er-

ror (42.74%), missing some

flooded areas

• Small area difference (86 ha)

indicates relative accuracy but

still lower than Sentinel-1 in

terms of flood area estimation

• Lower spatial resolution af-

fects fine-scale flood detec-

tion

• Longer revisit frequency lim-

its rapid monitoring

• Sensitive to weather condi-

tions, similar to Sentinel-2, af-

fected by cloud cover

• High commission error

(56.35%) and large area

difference (337 ha) indicate

significant overestimation of

flooded areas

6. Conclusions

Flood management poses a challenging task due to its

inevitable nature, complexity, and magnitude. Rapid extrac-

tion of flood areas has long been a focus of global researchers

in water remote sensing. Recent floods were assessed in this

study using a thresholding approach based on the difference

in the VH band between Sentinel-1 images before and after

flooding, as well as the NDWI difference of the study area

generated by Sentinel-2 and Landsat images. The reliability

of implementing these methodologies was further verified

using the results of the analysis performed by ArcGIS in the

same area.

The study presented flood mapping techniques using
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Sentinel-1, Sentinel-2, and Landsat in Google Earth Engine

(GEE). The study results showed that:

1. The presented methodologies significantly reduce the

time for image selection and preprocessing by integrat-

ing the workflow within the cloud-based GEE platform,

thereby achieving rapid and accurate flood area extrac-

tion.

2. Quantitative Performance and Recommendations:

• Sentinel-1: This SAR-based method achieved a high

spatial accuracy and weather-independent imaging ca-

pability, making it effective for real-time flood map-

ping in cloudy regions. The flood area estimation

showed a close match with the benchmark data (891

ha compared to 900 ha, with only a 9 ha difference),

although it had a relatively lower overlap percentage

(35.05%) and higher omission error (64.95%), which

suggests some areas of flooding may be missed. Rec-

ommendation: Sentinel-1 is highly suited for emer-

gency monitoring, especially in areas with frequent

cloud cover, due to its all-weather imaging capability.

It is recommended for quick assessments when optical

data may be limited.

• Sentinel-2: This optical sensor provided a strong bal-

ance between spatial resolution and frequency, with

an estimated flood area of 814 ha and an overlap per-

centage of 57.26%. Its omission error was moderate

(42.74%), making it effective for moderately accurate

flood detection. Sentinel-2’s 5-day revisit frequency

and higher spatial resolution also make it suitable for

detailed flood mapping in cloud-free conditions. Rec-

ommendation: Sentinel-2 is recommended for areas

requiring high spatial detail and moderate revisit fre-

quency, ideally in cloud-free conditions. It is particu-

larly valuable for mapping smaller, precise flood zones.

• Landsat: Landsat provided the largest flood area esti-

mation (1237 ha), but this included an overestimation

compared to the benchmark, resulting in a high com-

mission error (56.35%) and a significant area differ-

ence (337 ha). However, its extensive historical archive

and large-scale spatial coverage make it suitable for

longitudinal flood assessments over wide areas. Rec-

ommendation: Landsat is recommended for historical

and large-scale flood analysis where long-term trends

are necessary. Its 16-day revisit frequency makes it

less ideal for real-time monitoring but useful for retro-

spective studies and large regional assessments.

• Google Earth Engine has proven to be an efficient

platform for large-scale flood mapping, allowing for

automated processing and rapid analysis across dif-

ferent datasets. Its cloud-based infrastructure enables

researchers and practitioners to overcome hardware

limitations, making it highly suitable for processing

large amounts of satellite data for flood analysis.

The methods developed for mapping flooded areas ap-

pear to yield satisfactory results and could be applied to

flood risk management and emergency situations. The re-

sulting map would further assist decision-makers in defining

technical and regulatory steps and guidelines for potential

anticipatory actions, better land use planning, and flood risk

management. However, since this methodology is intended

for global use and involves inherent uncertainties discussed

in more detail in the preceding section, it is important that

this tool not be used as the sole source of information for

planning rescue interventions.

In conclusion, the use of satellite data available on the

Google Earth Engine platform holds great potential for im-

proving the accuracy and efficiency of flood mapping. This

study has contributed to advancing research in this field and

providing useful information for flood risk management. Fur-

ther research is recommended to refine flood mapping tech-

niques and address the limitations observed in each method,

enhancing the overall robustness and applicability of remote

sensing for flood management worldwide.
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