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ABSTRACT

The municipality of Hammam N’bails, located 37 km east of the capital of Guelma province (eastern Algeria), is

accessible via RN20 and CW19 roads. It borders the municipalities of Khemissa and El Henancha in Souk-Ahras province.

With a population of approximately 16,000 and covering an area of 164 km², this region is characterized by mountainous

terrain, with elevations ranging from 112 to 292 meters. The area experiences cold, snowy winters and hot, dry summers,

with an average annual rainfall of about 600 mm. Renowned for its natural thermal springs, Hammam N’bails is also

a notable tourist destination. The rugged topography of the region leads to frequent landslides, particularly on medium

and low slopes. Landslide susceptibility is assessed using raster calculators in ArcGIS and efficient machine learning

algorithms, such as Decision Trees, Bagging, Random Forest, SVM, and MLP. Factors considered in the analysis include

slope, elevation, geology, aspect, proximity to streams and roads, land cover, and rainfall. The performance of these models

is evaluated using ROC-AUC curves, providing a robust method to understand and mitigate geological risks in this area.
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1. Introduction

Landslides pose a significant and complex global threat,

endangering lives, infrastructure, and transportation net-

works [1–3]. Each year, slope failures cause substantial direct

and indirect economic damages, often amounting to millions

of dollars [4, 5]. In the past two decades, the development of

global landslide susceptibility maps has become an invalu-

able tool for identifying landslide-prone areas in both urban

and rural settings

Numerous methodologies have been developed for

evaluating and mapping landslide susceptibility [6, 7], encom-

passing probabilistic models such as frequency ratio, weight

of evidence [8]; logistic regressionmodel [9]; Didier andTritch

model [10], Djerbal and Melbouci model [1], and data mining

utilizing fuzzy logic and artificial neural networks [11].

Qualitative methods are based on direct field observa-

tions and expert judgment rooted in experience, providing

straightforward techniques for assessing landslide suscepti-

bility. In contrast, quantitative methods use statistical and

mathematical approaches, offering objective ways to analyze

landslides [12].

Similarly, quantitative methods can be classified into

several categories, including statistical, deterministic, and

machine learning approaches [12]. Deterministic methods,

also known as geotechnical methods, have been extensively

utilized in research. These methods rely on site-specific

geotechnical parameters and engineering principles of slope

instability, often expressed in terms of safety factors. How-

ever, deterministic methods have limitations as they require

detailed geotechnical and hydrological data, which can be

challenging to collect over large areas, and they are typically

suitable for mapping small regions [13].

The emergence of machine learning has revolutionized

landslide prediction by leveraging algorithms to analyze large

datasets and identify complex patterns contributing to slope

instability. Machine learning models, such as decision trees

and neural networks, enhance accuracy by integrating vari-

ous environmental and terrain variables, thereby improving

the understanding and prediction of landslide occurrences

with higher precision and efficiency.

Moderate and low slopes can experience significant

landslides covering extensive areas. Therefore, modeling

these terrains involves either observing the high degree of

low slope across the entire area with the potential for land-

slides on these slopes or studying the overall susceptibility

and utilizing GIS tools to assess specific susceptibility in

these areas.

The objective of this approach is to demonstrate that

moderate slope terrains, while not showing specific land-

slides, can still be susceptible based on spatial analysis and

numerical modeling provided by machine learning.

Determining landslide susceptibility in moderate and

low slopes is crucial for public decision-makers. It allows

for planning public infrastructure that cannot, due to safety

and accessibility reasons, be feasibly constructed on steep

terrain. This approach ensures safer and more accessible

development projects in suitable areas.

2. Materials and Methods

2.1. Case Study

The municipality of Hammam N’bails (Figure 1) is

located to the east of the capital of the Guelma province

(Figure 2), 37 km away from Guelma-ville via RN20 and

then CW19. It shares borders with the municipalities of

Khemissa and El Henancha in the Souk-Ahras province.

Figure 1. Hamam Nbail.

Hammam N’bails, with a population of approximately

16,000 inhabitants and covering an area of 164 km², is char-

acterized by mountainous terrain with elevations ranging

from 112 to 292 meters. The region experiences cold and

snowy winters and hot, dry summers, with an average annual

rainfall of around 600 mm. Known for its natural thermal

springs, the area is also recognized for its tourism activities.

The topography, characterized by steep slopes reach-

ing up to 62 degrees, and the soil cover consisting of recent

formations from the continental Cretaceous and Pontian pe-
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riods, confirm a high susceptibility to landslides. These have

been identified both on-site and through the consultation of

satellite photos from Google Earth.

Figure 2. Location map.

2.2. Thematic Map Layers

Initially, Google Earth imagery was used to identify

areas prone to landslides. Subsequent field expeditions vali-

dated potential landslide sites, assessed their dimensions and

configurations, determined types of movement, conducted

on-site inspections, and categorized their activity status (ac-

tive, dormant, etc.).

For training, 43 specific locations were pinpointed and

digitally mapped into raster format within a Geographic In-

formation System (GIS), using a grid size of 30 meters by

30 meters. This grid size was chosen based on the Digital

Elevation Model (DEM) extracted from the Shuttle Radar

Topography Mission (SRTM) database, which was used to

generate slope and elevation maps. Additional vector data

layers such as lithology, curvature, and aspect were integrated

into the analysis.

Stream maps were also rasterized using the same grid

size. Machine learning models achieve optimal results when

multiple relevant input variables are considered. Therefore,

only significant variables with substantial impact on estimat-

ing the target value were included in the analysis [14].

Ten landslide-triggering parameters were selected for

this study: lithology, elevation, slope, aspect, plan curvature,

profile curvature, distance to streams, distance to roads, land

cover, and rainfall. These parameters were chosen based

on relevant literature, expert knowledge, and the specific

characteristics of the study area.

• Elevation

This factor exerts a significant influence on landslide

occurrences, consequently impacting various other

factors such as slope, erosion, precipitation, soil depth,

and land use. Conducting a comprehensive analysis

of the topographic relief is beneficial, enabling the

identification of both the highest and lowest elevation

areas within the terrain [15].The elevation ranges from

112 to 1292 meters (Figure 3) (Table 1).

Figure 3. Digital elevation model.

• Lithology

The study area features a variety of geological for-

mations, each with unique characteristics that signif-

icantly influence landslide occurrence [16]. The geo-

logical data were extracted from the 1/200,000 scale

geological map of Algeria. The geology has been

divided into 6 classes, namely: marine Triassic, Pon-

tian, marine Cretaceous, continental Eocene, marine

Oligocene, and alluvium (Figure 4) (Table 1).

These formations play a critical role in understanding

and predicting landslides within the study area.

Figure 4. Lithology.
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• Slope

The slope gradient is widely recognized as the primary

factor predisposing areas to landslides, influencing

the accumulation of moisture and pore pressure lo-

cally. At a broader regional scale, it governs hydraulic

connectivity and is a fundamental parameter for Ge-

ographic Information System (GIS)-based mapping.

The slope angle closely correlates with landslide sus-

ceptibility, with steeper angles indicating higher vul-

nerability to landslides [17]. The slope angle ranges

from 0 to 61.95 degrees (Figure 5) (Table 1).

Figure 5. Slopes.

• Proximity of streams

The proximity of a site to a nearby stream, known

as “distance to stream,” is a crucial factor in slope

stability. Streams influence slope stability primarily

through erosion and by saturating the lower part of the

slope, which can lead to increased water levels and

reduced soil mechanical properties [15]. The distance

to streams ranges from 0 to 2881 meters (Figure 6)

(Table 1).

Figure 6. Distance to streams.

• Plan curvature

Plan curvature, also known as cross-sectional curva-

ture, measures the curvature of topographic contours

or the curvature formed by the intersection of an imag-

inary horizontal plane with the ground surface. This

metric quantifies curvature perpendicular to the di-

rection of the steepest slope, providing insights into

the horizontal configuration of the terrain. Positive

plan curvature indicates convex shapes, whereas neg-

ative plan curvature suggests concave shapes. In land-

slide analysis, areas with negative plan curvature are

typically considered more susceptible to landslides

because they feature concave slopes that can collect

water and sediments, thereby increasing instability

risks [18]. In our case study, plan curvature ranges from

−355364 to 318541 degrees (Figure 7) (Table 1).

Figure 7. Plan curvature.

• Profile curvature

Known as longitudinal curvature, this metric evalu-

ates the change in slope along the path of the steepest

descent, offering insights into whether the landscape

is concave, convex, or flat. A notable positive profile

curvature indicates ridges, while a significant nega-

tive profile curvature suggests valleys or depressions.

Regions with pronounced negative profile curvature

may exhibit increased susceptibility to landslides, as

concave slopes can retain water and potentially facili-

tate instability. In our specific context [19], the profile

curvature ranges from −643082 to 447453 degrees

(Figure 8) (Table 1).

• Land cover

Land cover exerts a significant influence on the sus-

ceptibility of an area to landslides, influenced by fac-

tors such as soil composition, vegetation type, and

human activities. Various factors highlight the impact
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of land cover on landslide vulnerability, including the

density of vegetation, deforestation rates, urban de-

velopment, soil degradation, water management prac-

tices, climatic factors, and land management strate-

gies [20]. The study area was classified into eleven

categories based on land cover: 1. Nodata, 2. Water

bodies, 3. Areas covered by trees, 4. Grasslands, 5.

Flooded vegetation, 6. Cultivated crops, 7. Scrub-

lands, 8. Built-up areas, 9. Bare ground, 10. Snow-

covered areas, 11. Clouds (Figure 9) (Table 1).

Figure 8. Profile curvature.

Figure 9. Land cover.

• Rainfall

Precipitation plays a pivotal role in triggering land-

slides, particularly during periods of heavy rainfall

.Rainfall induces several detrimental mechanisms that

affect slope stability. Firstly, the infiltration of rainwa-

ter and subsequent soil saturation increase pore pres-

sure, reducing the soil’s shear strength. Additionally,

runoff and soil erosion, both initiated by precipitation,

further compromise soil stability. The accumulation

of water within the ground can also lead to mudflows

and mud avalanches, adding extra load and exacer-

bating stress within the soil, thereby increasing the

likelihood of landslide occurrence [21]. In our case

study, rainfall ranges from 550 to 600 mm annually

(Figure 10) (Table 1).

Figure 10. Rainfall.

• Aspect

Slope aspect, indicating the compass direction a slope

faces, is measured in degrees from north in a clock-

wise direction, ranging from 0° to 360°. This aspect

significantly influences various environmental fac-

tors, such as sunlight exposure and prevailing wind

direction. These factors, in turn, play a crucial role

in shaping conditions that contribute to landslides,

including precipitation patterns, snow accumulation,

soil moisture levels, vegetation distribution, and soil

depth [22].

To demonstrate the influence of slope aspect, we cre-

ated an aspect map of the study area, dividing it into

nine distinct classes: flat, N (North), NE (Northeast),

E (East), SE (Southeast), S (South), SW (Southwest),

W (West), and NW (Northwest). Researchers, partic-

ularly in mid and high latitudes, generally agree that

north-facing slopes (or south-facing in the southern

hemisphere) and northwest-facing slopes are partic-

ularly prone to landslides. The aspect factor in our

study ranges from −1 to 359.79 degrees (Figure 11)

(Table 1).

• Proximity of roads

Previous studies consistently highlight the proximity

to roads as a significant factor influencing landslide

occurrence. Especially in mountainous regions where

roads often run alongside slopes, the excavation and

construction processes can disrupt the natural soil bal-

ance, potentially triggering instability. Conversely,

greater distances from roads reduce stress on the ter-
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rain and slope bases, thereby decreasing landslide risk.

Consequently, the layout of road networks plays a crit-

ical role in determining landslide susceptibility [23].

In this case study, distances to roads range from 0 to

11742 meters (Figure 12).

Figure 11. Aspect.

Figure 12. Distance to roads.

Table 1. Factors description.

Factor Description-Value

Slope (º) 0−61.95

Lithology

marine Triassic, Pontian, marine Cretaceous,

continental Eocene, marine Oligocene,

alluvium.

Elevation (m) 112−1292

Distance to streams (m) 0−2881

Curvature profile (º) −443082−447453

Curvature plan (º) −355364−318541

Landcover

1—nodata, 2—water, 3—trees, 4—grass,

5—flooded vegetation, 6—crops, 7—scrub,

8—built, 9—bareground, 10—snow,

11—clouds

Rainfall (mm) 550−600

Aspect (º) −1−359.79

Distance to roads (m) 0−11742

2.3. Inventory Map and Conditional Factor

Using Landsat imagery from Google Earth and field

survey, there were 43 important landslides. The conditional

factor is the delimitation of slopes to a maximum of 18 de-

grees (Figure 13).

Figure 13. Moderate slopes map.

3. Methodology and Results

3.1. Bagging

Bagging, short for bootstrap aggregation, is a robust en-

semble machine learning technique introduced by Breiman

in 1996, (Figure 14). This method involves creating multiple

subsets of the training data through a statistical resampling

approach known as bootstrapping. By doing so, each subset

becomes unique, fostering diversity within the ensemble In

bagging, a base learner is trained on each bootstrap sample

to generate individual predictions. These predictions are

then combined using a majority voting strategy to determine

the final prediction of the ensemble method. While various

base learners can be employed [24, 25], decision trees are com-

monly favored due to their simplicity, high variance, and

computational efficiency [26].

Figure 14. Global susceptibility—bagging model.

The bagging process is divided into steps with formulas:

1. Bootstrap Sampling
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Dm = {(xi, yi)}Ni = 1 (1)

• For each base model m , a bootstrap sample Dm is

drawn with replacement from the original dataset D

• The size of each bootstrap sample is the same as the

original dataset, denoted as N

• The process is repeated M times to generate M boot-

strap samples.

2. Model Training

fm(x) = Model trained on Dm (m = 1, 2, 3, ...,m) (2)

3. Aggregation of Predictions (Classification):

Y = argmax
∑m

m = 1
(fm (x) = y) (3)

For classification tasks, the final prediction for each

instance x in the original dataset.

3.2. Multi Layer Perceptron (MLP)

AMulti-Layer Perceptron (MLP) is a type of artificial

neural network (ANN) that consists of multiple layers of

interconnected nodes, or neurons [27]. It is a versatile and

powerful model used for supervised learning tasks such as

classification and regression [28] (Figure 15). Here is a break-

down of the key components and functionalities of an MLP:

Figure 15. Global susceptibility—MLP model.

1. Input Layer

• The input layer comprises neurons that receive the

initial data or features. Each neuron represents one

feature of the input data.

2. Hidden Layers

• Between the input and output layers, there can be

one or more hidden layers, each containing a certain

number of neurons.

• Neurons in the hidden layers perform computations

by taking weighted sums of inputs from the previ-

ous layer, followed by the application of an activa-

tion function. The activation function introduces non-

linearity to the network, allowing it to learn complex

patterns in the data .

• The number of hidden layers and neurons in each layer

is a hyperparameter that needs to be determined based

on the complexity of the problem and the available

computational resources.

3. Output Layer

• The output layer produces the final predictions or out-

puts of the network. The number of neurons in the

output layer depends on the type of task.

• For instance, in a binary classification task, there

would typically be one output neuron representing the

probability of belonging to one class. In a multi-class

classification task, there would bemultiple output neu-

rons, each representing the probability of belonging

to a different class.

4. Activation Functions

• Activation functions introduce non-linearity into the

network, enabling it to learn complex relationships in

the data.

• Common activation functions include sigmoid, tanh,

and Rectified Linear Unit (ReLU) (Rumelhart et al.,

1986). Each has its advantages and is suitable for

different types of problems.

An MLP can learn and generalize from data through

backpropagation, a method used for training the network by

adjusting weights to minimize the error between predicted

and actual outputs.

5. Training

• Training an MLP involves adjusting the weights and

biases of the connections between neurons to mini-

mize the difference between the predicted outputs and

the actual targets.

• This is typically done using optimization algorithms

such as gradient descent and computer vision back-

propagation, which calculate the gradients of the loss

function with respect to the weights and biases and

update them accordingly (Rumelhart et al., 1986).

MLPs are widely used in various domains, including

natural language processing, and financial forecasting, due to
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their ability to model complex relationships in data and their

scalability to large datasets. However, they may require care-

ful tuning of hyperparameters and regularization techniques

to prevent overfitting, especially for deep architectures with

many layers.

Input function

j  =  
∑n

i = 1
w

ij

(1)
xi +  bj

(1) (4)

Activation function

Output of hidden node j = f(input to hidden node j)

Hidden to output layer

Input to output node k =
∑m

j = 1
w

jk

(2)
hj +  bk

(2) (5)

Output function

Output of output node k = g(input to output k) (6)

Where

wij is the weight of the connection between input node

i and hidden node j in the first layer; xi is the input to input

node i;

‘f’ is the activation function (sigmoid, tanh, relu);

wjk
(2) is the weight of the connection between hidden

node j and out put node k in the second layer;

“g” is the activation function applied element wise; hj

is the output of hidden node ‘j’; bk
(2) is the bias of output

node k.

3.3. Random Forest (RF)

Random forest, an ensemble learning algorithm intro-

duced by Breiman in 2001, stands out as one of the most

powerful methods in machine learning (Figure 16). As the

name suggests, random forest employs multiple decision

trees as base learners, each trained on bootstrap samples de-

rived from the training dataset. What sets random forest apart

from basic bagging techniques is its method of introducing

diversity among trees. At each split within a tree, a random

subset of features from the full set is considered as candidates

for the split, enhancing the algorithm’s robustness. Predic-

tion in random forest is based on a voting process among the

ensemble of trees.

This algorithm has become a cornerstone in the field

of landslide susceptibility mapping, demonstrating remark-

able success [29]. Balancing performance and computational

efficiency, random forest requires minimal hyperparameter

tuning to yield effective models.

Figure 16. Global susceptibility—random forest (RF) model.

1. Bootstrap Sampling

Dm = {(xi, yi)}Ni = 1, i = 1, 2, 3, 4, ..., B (7)

2. Feature Subset Selection:

At each node of each decision tree, a random subset

of features is selected for splitting. This ensures diversity

among the trees.

3. Decision tree training

For each bootstrap sample, a decision tree Ti is grown

using a subset of features selected at random at each node

4. Prediction aggregation—classification

Y = argmax
∑B

i = 1
(Ti (x) = y) (8)

3.4. Support Vector Machine (SVM)

Initially, Support Vector Machines (SVM) serve as bi-

nary classifiers, assigning instances to one of two classes

(Figure 17). However, they can be easily adapted for multi-

class scenarios by transforming them into a series of bi-

nary tasks using either one-versus-all or one-versus-one ap-

proaches [30].

The core concept of the SVM algorithm involves es-

tablishing a hyperplane in the original n-dimensional space

(with xi parameters in vector x) to separate points belonging

to different classes. What distinguishes SVM from other

methods is how this hyperplane is derived from the training

set. The algorithm aims to maximize the margin between

classes (M2 NM1) and positions a classification hyperplane

at the midpoint of this margin (f(x)). Points in Rn̂ above the

hyperplane are labeled as +1, while those below are labeled
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as −1. The classification function is expressed by Equation

(1), where y denotes the class label, w and b are hyperplane

parameters, and sgn is the sign function. Studies have demon-

strated that a maximum-margin classifier exhibits superior

generalization performance on unseen data compared to al-

ternative hyperplane solutions (8).

Figure 17. Global susceptibility—support vector machine (SVM)

model.

Real-world classification datasets often contain noise

and non-linear separability, allowing some points to fall on

the incorrect side of the hyperplane. Consequently, a soft-

margin classifier is designed to strike a balance between

generalization capacity (margin width) and empirical error

(sum of training errors ek). Adjusting a parameter C during

SVM training enables control over this trade-off; higher C

values yield more intricate models.

The optimal hyperplane weights w are determined as a

linear combination of training points, expressed as

y = sgn (f (x)) = sgn
(∑n

i = 1
ωi.xi + b

)
= sgn(wx+b)

(9)

f (x) = sgn
∑n

i = 1
ϕiyi (xi.x) + b (10)

3.5. K-Nearest Neighbors (KNN)

nearest neighbors (KNN) is a machine learning al-

gorithm often employed for predicting landslides [31, 32],

(Figure 18).

Here’s a description of how KNN can be used for land-

slide prediction:

1. Data Collection: Relevant data on factors influenc-

ing landslides is gathered. This might include information

on terrain, soil type, land use, precipitation patterns, geo-

logical features, vegetation cover, and historical landslide

occurrences.

Figure 18. Global susceptibility—K-nearest neighbors (KNN)

model.

2. Data Preprocessing: The collected data is cleaned,

processed, and formatted for analysis. This involves han-

dling missing values, normalizing or scaling features, and

ensuring data consistency.

3. Feature Selection: Key features contributing to land-

slide occurrences are identified. This step involves analyzing

the collected data and selecting the most relevant features

that have a significant impact on landslide susceptibility.

4. Training Data Preparation: The dataset is divided

into two parts: a training set and a testing set. The training

set is used to train the KNN model, while the testing set is

used to evaluate its performance.

5. Model Training: The KNN model is trained using

the training dataset. During training, the model learns the

relationships between the selected features and landslide

occurrences by storing the feature vectors of training data

points.

6. Choosing K Value: The value of K (the number

of nearest neighbors) is chosen. This parameter affects the

model’s performance and generalization ability. Typically,

the optimal K value is determined through experimentation

and validation.

7. Prediction: To predict whether a given location is

susceptible to landslides, the KNN algorithm calculates the

distances between the feature vector of the target location and

the feature vectors of its K-nearest neighbors in the training

dataset.

8. Majority Voting (Classification): For landslide clas-

sification, the algorithm performs a majority voting among

the K-nearest neighbors to determine the landslide suscep-

tibility of the target location. The class with the highest
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number of votes among the neighbors is assigned to the tar-

get location.

Here are formulas used in the K-nearest neighbors

(KNN) algorithm:

1. Euclidean Distance: The Euclidean distance is com-

monly used to measure the distance between two data points

x_i and x_j in a feature space. It is calculated as:

Euclidean distance =

√∑n

k = 1
(xik−xjk)

2
(11)

2. KNN Classification: In KNN classification, the

class of a new data point x is determined by the majority

class among its K-nearest neighbors. The predicted class y

is calculated as:

Y   =  argmax
∑k

i = 1
(I (Yi)   =  j) (12)

I is indicator function i = 1 if the condition inside is

true, and = 0 otherwise.

3.6. A Decision Tree (DT) Model

A decision tree (DT) model, characterized by its hierar-

chical tree structure, serves as a non-parametric method adept

at uncovering non-linear and non-additive relationships be-

tween input factors and predictive variables [33]. Described

as a pattern recognition tool, DTs delineate structural pat-

terns in data through a series of rules [34]. These rules can

encompass various types of factors, including binary, nomi-

nal, ordinal, and quantitative, while the classes are qualitative

in nature [35] (Figure 19).

Figure 19. Global susceptibility—decision tree model.

For a given dataset comprising factors and their cor-

responding classes, a DT generates a sequence of rules to

classify unseen records. The model’s structure and decision-

making process are illustrated in a tree format, consisting of

a root node representing the primary decision point based

on the most influential predictor variable, internal nodes de-

noting decision points with multiple branches, and terminal

nodes representing final classifications or decisions [36]. Each

node in the decision tree makes a binary decision that parti-

tions classes, with traversal occurring down the tree until a

terminal node is reached.

Several algorithms for decision tree learning exist, such

as Classification and Regression Trees (CART), Iterative Di-

chotomiser 3 (ID3) [37], and C4.5 [38]. These algorithms differ

in their approach to quantifying distinction and diversity cri-

teria but share the hypothesis that entities within the dataset

may be independent.

The fundamental algorithm for constructing decision

trees, ID3, was developed by Quinlan in the mid-1980s. ID3

follows a top-down approach, utilizing entropy and infor-

mation gain as criteria to guide the search process [37]. In

information theory, entropy, denoted as H(D), measures un-

certainty within a dataset. Information gain, represented

as (Gain(D,A)), quantifies the reduction in entropy at sub-

sequent hierarchy levels, where datasets are refined using

supporting attributes [39].

H (D)   =  −
∑n

I  = 1
pilog2pi (13)

Gain(D,A) = H(D)−
∑

v∈V alueA

Dv

D
H(Dv) (14)

3.7. Application to the Specific Case of Low

and Moderate Slopes

The susceptibility to landslides of slopes with low and

moderate gradients results, for each model, from the overlay

of the global susceptibility maps with the map of low and

moderate slopes using the Raster Calculator tools in ArcGIS

(Figures 20–24).

Figure 20. Low slopes susceptibility—bagging model.
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Figure 21. Low slopes susceptibility—random forest model.

Figure 22. Low slopes susceptibility—SVM model.

Figure 23. Low slopes susceptibility—KNN model.

Figure 24. Low slopes susceptibility—decision trees model.

4. Discussion

The susceptibility to landslides affecting the low and

medium slopes of the HamamNbail site is estimated by several

algorithms using Python, including Random Forest, Bagging,

Decision Tree, Support Vector Machine, K-Nearest Neighbors,

and Machine Learning Perceptron. All of them have provided

acceptable performances. The methods adopted to estimate

the performances include the ROC_AUC curve, as explicitly

shown in the figures below (Figures 25–30).

Figure 25. ROC_AUC curve—MLP.

Figure 26. ROC_AUC curve—DT.

Figure 27. ROC_AUC curve—bagging.
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Figure 28. ROC_AUC curve—KNN.

Figure 29. ROC_AUC curve —RF.

Figure 30. ROC_AUC curve—SVM.

5. Conclusions

As the completion of the study on landslide suscepti-

bility for the low and medium slope hillsides of the Hamam

Nbail site in eastern Algeria approaches, it is evident that

among the proposed models, the best performances were

achieved using the Random Forest algorithm (Figure 31),

whether in terms of ROC_AUC. Determining susceptibility

for these low and medium slopes is crucial as significant in-

frastructure development is planned for these areas. Hence,

understanding the vulnerability of these terrains to landslides

is necessary (Figure 31).

Figure 31. Final low slopes susceptibility map using

random forest.
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