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ABSTRACT

In the context of climate change, countries in West Africa are faced with recurrent flooding with catastrophic

consequences, that makes it imperative to have access to rainfall information on fine spatial and temporal scales for

better monitoring and prediction of these phenomena, as could be provided by weather radars. Based on an extensive

archive of data from the X-band polarimetric radar and rain gauges observations gathered during the intensive AMMA

campaigns in 2006–2007 and the Megha-Tropiques satellite measurement validation programme in 2010 in West Africa, we

(i) simulated jointly realistic data for polarimetric radar variables and rain intensity using copula, and (ii) assessed rain rate

estimation methods based on neural network (NN) inversion techniques and non-linearly calibrated parametric algorithms.

The assessment of rainfall rate retrieval by these estimators is carried out using the part of the observations database not

employed for calibration steps. The multiparametric algorithms R(ZH,KDP) and R(ZDR,KDP) perform better than R(ZH,ZDR)

and R(ZH,ZDR,KDP), especially since they are calibrated using copulas with upper tail dependencies, with KGE ranging

in 0.68–0.75 and 0.79–0.82, respectively versus ranges of 0.40–0.64 and 0.20–0.51, for the two latter estimators. The

neural network-based estimators RNN(ZDR,KDP) and RNN(ZH,KDP), show KGE score characteristics comparable to those

obtained from the best parametric relations, specifically optimized for the synthetic copula-based dataset. However, the

neural network-based estimators were shown to be more robust when applied to a specific rainfall event. More specifically,

neural network-based estimators trained on synthetic data are sensitive to the copulas’ ability to capture the dependence
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between the variables of interest over the entire distribution of joint values. This leads to a near-cancellation of sensitivity

to variability in the raindrop size distribution, as shown the coefficients of correlation near 1, especially for RNN(ZDR,KDP),

and for less extent RNN(ZH,KDP).

Keywords: Quantitative Precipitation Estimation; Copulas; Polarimetric Radar Data; Multiparametric Algorithms; Artificial

Neural Network; Non-Linear Fitting

1. Introduction

In West Africa, climate change is leading to an increase

in the occurrence of extreme events [1, 2] that causes recurrent

flooding in the cities associated with catastrophically high

casualty rates and material damage each year [3]. As a result,

government investments and the households of the local pop-

ulation are wiped out, as road and drainage infrastructure and

housing are destroyed, rendering many cities more vulnera-

ble to those phenomena. The impact of floods and extreme

rainfall events could be reduced with better monitoring and

prediction of these phenomena [3] through access to rainfall

information on a fine spatial and temporal scale.

In this respect, real weather radar measurements are an

important contribution to complement the in-situ rain gauge

sparse networks which are inadequate for meteorological

and hydrometeorological applications at the catchment scale,

such as warnings for intense rainfall and operational fore-

casting. Because quantitative precipitation estimates (QPE)

from polarimetric capabilities have become a mandatory

standard for weather radars [4, 5], several West African coun-

tries, including Senegal and Côte d’Ivoire, have taken the

initiative to equip themselves with polarimetric radar for

rainfall monitoring and hydrometeorological applications.

As a prelude to the installation and exploitation of these

radar measurements, we propose to use the large archive of

X-band polarimetric radar data gathered from specific mea-

surement campaigns by programs such as the African Multi-

disciplinary Monsoon Analysis (AMMA) [6, 7] and Megha-

Tropiques [8, 9], to derive new data-driven radar-based QPE

algorithms providing reliable precipitation estimates. Com-

pared with C- and S-band radars, X-band radar has been

preferred because of its compactness, smaller size (small an-

tenna) and portability over these several experimental fields,

and its low power consumption. However, X-band radar,

with its higher transmission frequencies, experiences signifi-

cant signal attenuation due to rain. To solve this problem and

make this type of radar attractive, various methods based on

polarimetric radar observables that are insensitive to attenua-

tion effects, such as differential phase shift (ϕDP) or specific

differential phase shift (KDP), have been used. Attenuation

correction at X-band is done using two approaches involving

self-consistent procedures (i.e., ZPHI methods) [10–12] and

the more direct methods based on a nearly linear fit between

attenuation and the differential phase shift (PIA-ϕDP)
[13–15]

that make it possible to efficiently determine the specific

horizontal AH and differential ADP attenuations affecting the

horizontal reflectivity ZH and differential reflectivity ZDR,

respectively.

Based on the benefits of this type of radar, in the West

African tropical environment characterized by heavy con-

vective rainfall, an X-band radar (X-port) has been used dur-

ing various campaigns such as the African Multidisciplinary

MonsoonAnalysis (AMMA) [6, 7], the Megha-Tropiques mis-

sion [8, 9], as mentioned above. Several theoretical [16] and

experimental studies [8, 9] have demonstrated its ability to

estimate rainfall in this rainy tropical environment. The

challenge now is to design more efficient algorithms for the

quantitative estimation of rainfall, particularly for intense

rainfall that is often not included, or only partially included,

in the samples used to determine these estimators [17]. To go

beyond traditional algorithms using the Z− R relationship

for the quantitative estimation of rainfall by radar, Ryzhkov

et al. [18] and Bringi et al. [19] have argued that the differential

reflectivity ZDR and the specific differential phase shift KDP

provide additional information on the shape and distribution

of drops, so an algorithm based on the horizontal reflectiv-

ity ZH and the differential reflectivity ZDR, R(ZH,ZDR) or

R(KDP, ZDR) would be a better choice, provided of course

that these radar observables are corrected for calibration and

attenuation issues. Specifically, Zhang et al. [20] noted that

because ZDR and KDP can be used to retrieve the raindrop size

distribution (DSD), their utilization enables understanding

of the physical processing in precipitation and so improve-
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ments in QPE. Furthermore, due to its independence with

regard to the calibration and attenuation problem, the R(KDP)

algorithm appears more suitable to produce accurate rainfall

maps if a robust relationship can be established according to

the rainfall climatology of the study area [4] and especially

for heavy rainfall [7] since KDP is affected by the noise signals

that characterize low-intensity rainfall. It is easy to imagine,

if we disregard the problems associated with measurement,

that the combined use of polarimetric observables could be

an advantage likely to improve the performance of multipara-

metric algorithms compared with single-parameter ones [21].

However, the question of designing high-performance algo-

rithms is still open for investigation, especially for efficient

estimation of all types of rainfall including intense rainfall.

Due to the spatiotemporal variability in DSDs [5, 20], it ap-

pears difficult to present the parametric functional relation

in a simple form. Analyzing the observed DSD from ty-

phoons and squall lines in Southern China, Zhang et al. [20]

indicated the importance of fitting the rainfall estimator ac-

cording these precipitation types to enhance estimation. In

this way, they also proposed a piecewise fitting method using

R(ZH,ZDR), R(KDP, ZDR) and R(KDP) estimators according

to the rainfall rate (R< 6 mm/h, 6 mm/h < R < 50 mm/h and

R > 50 mm/h classes) by dividing DSD data into three parts

as corresponding to rainfall rate classes.

Zahiri et al. [17] conducted a study that revealed the lack

of reliability in algorithms used formodelling the relationship

between variables and rainfall rate. They found that the com-

monly used Gaussian framework is not effective in capturing

the non-linear relationships between these variables, espe-

cially for extreme rainfall events. Similarly, a previous study

by Tokay et al. [22] noted a significant discrepancy between

radar variables and rainfall rate in the tails of the distribution,

indicating aweak linear correlation in the upper tail for higher

rainfall rate values. Furthermore, the traditional parametric

algorithms heavily rely on the range of rainfall rates used

to determine the coefficients [6, 7]. Since precipitation events

often exhibit a scarcity of heavy precipitation events, this can

result in the model’s tendency to exhibit limited capability

in estimating these types of precipitation [23]. Consequently,

the resulting parametric estimators lead to poor accuracy for

heavy precipitation events. Overall, the lack of robustness in

these parametric algorithms is attributed to the difficulty in

modelling variable dependence and non-linear relationships

due to their sensitivity to variability in the raindrop size dis-

tribution, as well as the inadequate representation of intense

rainfall rates in the calibration samples.

In recent years, there has been growing interest in the

use of artificial neural networks, as an alternative to para-

metric methods for estimating rainfall rates [23–26]. This is

part of the rapid development of deep learning techniques,

that have been successfully implemented in many applica-

tions [27, 28]. Non-parametric approaches, such as artificial

neural networks, attempt to directly capture the relationship

between the radar parameters (as input data) and the rain

gauge measurements (target variable) by exploring the com-

plex functional relation based on the training method that

reduce the need for any physical assumption. The perfor-

mance of these deep learning methods has boosted the use of

single-polarization radar using radar reflectivity to estimate

rainfall. However, since conventional relationships between

reflectivity and rainfall rate are not sufficient to capture

the complex space - time variability in precipitation micro-

physics that impacts the QPE based on single-polarization

radar, some authors have developed more sophisticated non-

parametric methods based on machine learning techniques.

Thus, two independent variables, that are radar reflectiv-

ity and radar echo-top height observed data are related to

the rainfall rate on the ground from a Gate Recurrent Unit

(GRU) neural network [24]. The assessment of this algo-

rithm based on 200 rainfall events indicated that it performs

better than optimal Z-R relationship and the GRU neural net-

work with only reflectivity data. Zhang et al. [26] proposed

an offline spatiotemporal deep fusion model that uses the

reflectivity data, the precipitation data from national and

automatic weather stations and capturing the time depen-

dence of the precipitation from the long short-term memory

network, whereas the spatial features of radar data from

multi-elevation and multiscale are extracted and merge us-

ing the feature fusion network. Chen et al. [27] constructed a

hybrid deep neural network that links point-wise rain gauge

measurements, ground-based, and spaceborne radar reflec-

tivity data. In this case, ground radar was used to overcome

scale discrepancies between the space-based precipitation

radar (PR) and rain gauges and for subsequent training of the

second multi-layer perceptron (MLP) model matching PR

and ground radar observations. Although these approaches

produced better rainfall estimates compared to the standard
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PR and conventional QPE algorithms, substantial or dense

gauge networks and ground-based radar data are necessary;

that is not available in West African countries where the

state of the in situ hydrometeorological networks is inade-

quate for this kind of approach [3] and radar measurements

are scarce and limited to specific experiments of AMMA

and Megha-Tropiques. Furthermore, the performance of

radar-derived QPE strongly depends on the physical model

of the raindrop size distribution (DSD) and the relation be-

tween the physical model and radar observables [27] so that

only the reflectivity parameter is not able to catch. Thus,

Huangfu et al. [29] proposed a deep learning method based on

two deep learning-based QPE networks including a single-

parameter network and a multi-parameter network. They

integrated a self-defined loss function during the training

of the networks and distinguish specific precipitation types

(heavy and light rain) setting KDP to 0.5 °/km as a threshold

value, to subsequently design 12 deep learning-based QPE

models. This could be considered as a way to mitigate the

effects DSD variability according to rainfall regimes. Better

estimates were found using estimators that involve a specific

type of precipitation and the self-defined loss function dur-

ing modeling, compared with models that do not distinguish

precipitation intensity and use the root mean square error as

the loss function. Moreover, the deep learning-based mod-

els are found to outperform traditional empirical methods

considering Z-R relationship and ZH-KDP-R method.

Vulpiani et al. [30] conducted a prior study using neural

networks (NN) to estimate automatically DSD parameters

based on polarimetric radar measurements. They employed

simulations of polarimetric radar variables through the T-

matrix scattering model [31] and subsequently computed the

corresponding more reliable rainfall rates by deriving them

from the NN-based technique estimated DSD parameters.

Vulpiani et al. [32] assessed this NN-based technique along-

side experimental weather radar dataset jointly comparing

the indirect and direct method used for estimating rainfall

from two or three polarimetric observables as input of the

neural network model. Because the NN approach requires a

large amount of data including a wide range of rainfall types

and concurrent radar variables for the training process, this

crucial step was achieved using radar polarimetric variables

computed through the T-matrix method assuming assump-

tions regarding the raindrop microphysical parametrization

(axis ratio of drops, temperature range of the medium, rain-

drop size distribution, and the canting angle). However, a

framework of simulated data for the learning process of the

neural network technique would deviate from that trained

by observational data rarely characterized by various types

of precipitation, with the consequence of significantly af-

fecting experimental validation. This is particularly true

since, in the training process, the dataset from the calibra-

tion sample is repeatedly used with different configurations

until the network reaches a stable state where the synaptic

weights no longer change [32]. To minimize this impact, sim-

ulations should be as realistic as possible. Recently, Zhang

et al. [25] studied polarimetric radar QPE focusing on land-

falling typhoon events in Southern China and using deep

learning methods. They designed a convolutional neural

network (CNN) characterized by three hybrid dataset of

volume scan data of ZH, ZDR and KDP considering 13 × 13,

25 × 25, and 41 × 41 radar range bins surrounding each

rain gauge location, to better involve the spatial character-

istics of precipitation from radar measurements and thus

map the link between multidimensional radar observations

and ground rainfall. Dual-polarization radar QPE based on

deep learning leads to better performance than traditional

parametric DSD-based nonlinear fitting algorithms, for mod-

erate and heavy rainfall, whereas for light rainfall (R < 5

mm/h) performances are comparable. Comparison of the

three versions of the deep learning shows the model trained

with radar dataset binned 25 × 25 as having the best global

performance. But, for training their deep-learning models,

18 national and 1041 regional automatic weather stations

were used as target labels. To enhance the mapping capa-

bility from radar observations to precipitation, Li et al. [23]

proposed a 3-D star neural network (StarNet) for polarimet-

ric radar QPEs including two main aspects of improvement:

(i) the above-mentioned spatiotemporal feature extraction

of successive radar volume scanning data derived from re-

current neural networks (RNN) to better handle the dynamic

characteristics of precipitation regimes, (ii) a reweighted

loss function was designed to efficiently attenuate the prob-

lem of unbalanced distribution between heavy, moderate and

light precipitation. Based on the mean absolute error (MAE)

and considering all samples, their model was 34% lower

than the best conventional QPE method R(KDP). Recently,

the same authors developed a more extensive assessment
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of the deep learning model’s precipitation estimation per-

formance by focusing on diverse rainfall amounts [33]. To

do this, they proposed an improved deep learning method

using a second module in the model that introduces an ad-

ditional explanation method for quantitative precipitation

estimation to assess the influence of each radar observable

on model estimation for various rainfall intensities. All the

methods mentioned agree on the fact that the use of neural

networks is still faced with a number of challenges such as

the availability, representativeness, and sufficiency of the

training data set and learning the relationship between radar

observations and surface precipitation.

Zahiri et al. [17] proposed the use of copulas for two

purposes: (i) to determine the relationship between the KDP

specific differential phase shift and rain intensity, and (ii)

to extend the algorithm calibration samples to all ranges

of rainfall, particularly heavy rainfall. They achieve this

through simulations based on copulas and the establishment

of R(KDP) algorithms using the quantile method applied to

synthetic data. Their results show that the low quantiles of

the synthetic data derived from the simulations of the Stu-

dent, Gumbel, and HRT copulas provided better algorithms

for estimating heavy rainfall (R sup 30 mm/h) compared to

conventional methods. The normal copula required consid-

ering the 0.8 quantile to achieve comparable results. The

copula approach was valuable as the algorithms based on

the realistic synthetic data outperformed those based on ob-

served data, regardless of the fitting methods used. But the

highest scores came from the quantile method, which offers

the possibility of sampling the entire distribution, unlike the

traditional use of least mean squares method, which targets

the mean distribution close to the 0.5 quantile. Although the

authors’work was limited to a single-parameter algorithm, it

opens a way for examining the performance of other multi-

parameter algorithms such as R(ZH,KDP), R(ZDR,KDP), R

(ZH,ZDR), and R(ZH,KDP,ZDR), using a similar approach.

Furthermore, copulas are increasingly being used in hy-

drometeorology for numerous applications such as multivari-

ate frequency analysis, geostatistical interpolation, drought

analysis, modelling extreme precipitations and risk assess-

ment [34–42]. In short, this interest in copulas is motivated by

its ability to find the whole bivariate or multivariate distribu-

tion, understand the relationship between variables and how

they interact with each other [43] by estimating their marginal

distributions and the copula functions separately. However,

one challenge is choosing a suitable copula for the problem

at hand. Zahiri et al. [17] propose a method that considers

and tests different families of copulas, such as elliptical,

Archimedean, and survival copulas, to address the issue of

selecting the most appropriate copula for their given prob-

lem. They specifically focus on copulas that can accurately

reproduce null-tail and non-null-tail distributions, as well as

extreme values, in order to simulate a wide range of rainfall

characteristics realistically.

In this present study, we extend the copula method

from Zahiri et al. [17] drawing a framework to simulate suffi-

cient representativeness, and realistic rain rate and polari-

metric radar observables dataset. The goal of this work is to

assess polarimetric multivariate algorithms for rainfall esti-

mation based on neural networks (NN) that are trained with

the large synthetic dataset involving the link between rain

rate and the radar polarimetric parameters designed from

copula method. For comparison, multiparametric power

laws determined in an optimized manner using a non-linear

approach are also assessed. To achieve these ends, the sim-

ulations of radar observables and rainfall rates are based on

observation data gathered during the AMMA intensive cam-

paigns in northern Benin (2006–2007) andMegha-Tropiques

(2010) in Niger, respectively. For comparison, the experi-

mental training process for NN-based technique and non-

linear optimization of parametric algorithms are also based

on the above-mentioned observed dataset. Neural network-

based and parametric polarimetric radar rainfall estimations

are validated using observational data from the validation

sample.

The remainder of this paper is organized as follows: a

description of the basic rainfall and radar data, the method-

ology for simulating synthetic data using copulas and the

various methods for estimating rainfall using polarimetric

radar is provided in Section 2. The Results and Discussion of

the validation of the realistic nature of the simulated variables

by selected copulas, and the rainfall estimates by the vari-

ous multiparametric and neural network-based algorithms,

are the subject of Section 3. The relevant conclusions are

provided in the final Section 4.
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2. Materials and Methods

2.1. Description of Basic Radar and Rainfall

Data

In the West African region (Figure 1, top panel), most

of the rainfall-producing weather systems are mesoscale con-

vective systems (MCS) moving typically westward and are

often strengthened by deep convection. According to Atiah

et al. [44], these MCS contribute approximately 80%–90%

of the Sahel’s and about half of the Sudan Savannah’s an-

nual rainfall. The most recent experiments investigating

these rain-fall systems date back to the intensive measure-

ment campaigns of the AMMA program in northern Benin

(2006–2007) and the Megha-Tropiques mission in Niger

(2010 experiment) that included X-band radar experiments.

In Niger, the observation site is located in the square degree

of Niamey, in the Sahel region. The rainfall in this area

varies between 450 and 600 mm per year, with mesoscale

convective systems being the primary carriers of rain. In

northern Benin, the data was collected from the Observa-

toire Hydrométéorologique de la Haute Vallée de L’Ouémé

(OHHVO), which covers the Donga basin (Figure 1, bot-

tom panel). This region has a Soudanian climate [2], with

rainfall occurring from March to October and peaking in

July and August. The average annual rainfall in this area is

approximately 1,500 mm. Radar measurements data used in

this study are obtained from the X-band polarimetric radar

(X-port) which operated at Djougou during the 2006–2007

experiments and at Niamey in 2010. The main observables

measured at a time step of 5 minutes are the horizontal re-

flectivity (ZH) and differential reflectivity (ZDR), as well as

the differential phase shift (ϕDP). The specific differential

phase shift (KDP) was calculated from ϕDP and used in com-

bination with the other variables to determine radar rainfall

estimation algorithms. The data underwent attenuation cor-

rection and ground echo removal using methods previously

established by Koffi et al. [7]. The attenuation correction

involved using a linear relationship between the total path

horizontal attenuation (PIAH) and differential attenuation

(PIADR) and the total differential phase shift ϕDP, which was

not affected by attenuation or calibration issues. Addition-

ally, coherence analysis was performed to detect and correct

radar calibration issues [10, 45]. The radar variables were com-

pared to each other and checked against theoretical reference

curves to ensure their consistency. The latter are obtained

from numerical simulations of polarimetric variable pairs

of interest based on real DSDs as carried out by Koffi et

al. [7] and Zhang et al. [46]. To take advantage of the fact that

KDP is calibration-independent, the relations used are mainly

KDP-ZH and ZH-ZDR for reference.

For the ground-based rainfall taken as a reference or

‘ground truth’, we considered rainfall data for North Benin

from a network of 54 rain gauges installed as part ofAMMA-

CATCH and stretching over the Donga basin covered by the

X-port radar. The rainfall data for Niger comes from a net-

work of 54 rain gauges installed as part of the EPSAT-NIGER

experiment and spread over the square degree of Niamey.

The data used are sampled at a time step of 5 minutes using

the method described by Russell et al. [47].

All these devices provided us with a fairly large dataset,

consisting of radar data, namely the observables ZH, ZDR

and KDP, which are respectively horizontal reflectivity, dif-

ferential reflectivity and specific differential phase shift, and

rainfall data providing the rain rate. All the data collected

is used and divided into two parts, one of which is used

to calibrate the copulas and rainfall estimators (two-thirds

of the dataset) and the second used to assess quantitative

rainfall estimation methods (one-third of the dataset). For

the validation study, we compare 5-minutes gauge and radar

rainfall rates over gauge locations from both experimental

areas.

2.2. Simulated Synthetic Rainfall and Radar

Data Using Copulas

As previously stated, the methodology outlined in this

study is based on the generation of realistic synthetic data re-

flecting diverse rainfall rates and associated radar variables,

including those that are sparsely observed. These datasets

will be used to determine the polarimetric rainfall algorithms

at a later stage. In order to achieve this objective, the present

section provides a description of the principles of copulas

and the resulting simulation methods. For this purpose, we

may refer to the detailed description of bivariate copulas

provided by Zahiri et al. [17] and De Luca and Rivieccio [43].
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Figure 1. Global map showing the West Africa region swept by mesoscale convective systems as show MSG image (top panel) and

geographical location of measurement sites and position of Xport at Djougou (OHHVO), in northern Benin during the AMMA intensive

campaigns (2006–2007), Niamey (Squared degree) during the Megha-Tropiques mission (2010) (bottom panel). In this bottom panel,

NANG is the position of the rain gauge whose measurements are used for the times series rainfall shown in this study.

A copula is a multivariate distribution function that

links the probability distribution functions (PDFs) of two or

more random variables, in particular their one-dimensional

marginal distributions [48]. The basic theory of copulas was

first introduced by Sklar in 1959 in order to solve a probabil-

ity problem identified by Schweizer and Sklar (1958) in their

research on random metric spaces [49]. Subsequently, many

studies have focused on this statistical method [50–52]. The

copula is used to develop non-Gaussianmodels and is defined

as a powerful statistical tool for extracting the dependence
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structure of a joint distribution and for separating the notion

of dependence from marginal behavior. Technically, copula

is defined as joint distribution of unit uniform variates. Let

us consider, for example, p-uniform random variables (which

we will assume to be non-independent) U1,...,Up in the set

∪(0,1). The relationship between these variates is described
through their joint distribution function such as [34, 43]:

C (u1, . . . , up) = Pr(U1 ≤ u1, . . . ,Up ≤ up) (1)

In this expression, we call the function C a copula. To com-

plete the construction, we arbitrarily select marginal distri-

bution functions F1(x1),..., Fp(xp). The copula is therefore a

multivariate distribution function, estimated for the variables

x1,..., xp:

C (F1 (x1) , . . . , Fp (xp)) = F(x1, . . . , xp) (2)

The difficulty of finding an appropriate copula for the

problem at hand has led us to test different families of theo-

retical copulas, as Zahiri et al. [17] have done:

• Elliptic copulas (Gauss and Student copulas) because they

are symmetrical and have the advantage of being easy to

simulate. In addition, the Student copula, depending on

the value of the degree of freedom, can admit tail depen-

dencies;

• Archimedean copulas (Frank, Clayton and Gumbel copu-

las) constructed from generating functions [17, 53] and hav-

ing the ability to better simulate tail dependencies. In

particular, Frank’s copula is symmetrical in the lower and

upper tails, and therefore tends to correlate with both small

and large events. Thus, it is stronger with regard to the

mode. The Clayton copula is suitable for studying the

dependency between low-intensity events and is therefore

useful in the lower tail, while the Gumbel copula is a

good representation of events with a more accentuated

dependency structure in the upper tail.

• Acopula of extremeHRT (Heavy Right Tail) values, better

known as Clayton’s survival copula [53].

This study focuses on using selected copulas to deter-

mine the relationship between three and four variables. The

use of the copula allows the researcher to exert a considerable

degree of control over the specific aspects of the distributions

that are more strongly associated with the variables in accor-

dance with the chosen copula. One key focus of this study is

the issue of controlling the strength of the relationship in the

upper tails of the distributions which are rarely targeted.

The process of generating synthetic data for these vari-

ables is explained in four steps. Firstly, the optimum theoret-

ical marginal distributions are determined for the variables

by testing around twenty different distribution functions and

fitting them using the maximum likelihood method. The re-

liability of these theoretical functions is then assessed using

the Akaike criterion, as suggested by Frees and Valdez [54].

Secondly, the copula parameters are estimated using the

Marginal Inference Method (MIM), and their reliability is

assessed by comparing themwith the parameters of the empir-

ical copulas derived from observed data using the Canonical

Likelihood Method (CLM). Next, the p-uniform random

variates Up associated with the variables of interest are sim-

ulated using the determined copulas. Finally, the simulated

uniform random variables are transformed into values of the

variables of interest (Xp) using the inverses of the calibrated

marginal distribution functions. The simulation methods

used in this study are similar to those used by Zahiri et al. [17]

and are applicable to multivariate copulas with three or four

related variables. The methods involve using the method

of distributions to simulate variables based on the Gauss

and Student copulas. The conditional distribution method is

used to generate variables using Frank’s, Clayton’s, and HRT

copulas, which are used to link the rainfall variable to two

radar variables. When simulating more than three variables,

the Marshall and Olkin [55] method is used in combination

with Frank and Clayton copulas to produce synthetic data.

Regardless of the number of variables, the same method is

used for simulating data based on the Gumbel copula. To cre-

ate a substantial database of synthetic data with a sufficient

number of strong values, 10,000 realizations of the copula’s

joint laws are simulated.

2.3. Polarimetric Rainfall Rate Retrieval Algo-

rithms

The present study is concerned with the use of mul-

tiparametric rainfall rate retrieval algorithms, which are

mathematical equations employed for the estimation of rain-

fall based on radar data. The general form of these algo-

rithms is given by the equation R = aZb
HZ

c
DRK

d
DP

[6, 56]. The

study explores different variations of the algorithm based

on the cancellation of exponents for different variables. For
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example, the R(ZH,ZDR) algorithm proposed by many au-

thors [5, 20, 32, 57] uses two radar polarimetric variables assum-

ing a relationship between differential reflectivity and the size

parameter of the raindrop size distribution (DSD), i.e., the

median volume diameter D0. Many other researchers [5, 57]

have suggested using the combination of KDP and ZDR to

compensate for DSD variability [6, 58]. Huangfu et al. [29]

used R(ZH,KDP) as traditional empirical formula method

to compare with deep learning-based QPE. Additionally, a

three-parameter algorithm has been proposed, which takes

into account DSD variability in terms of size and concentra-

tion [15, 56, 57]. All these authors argued that the use of two or

three radar observables has been shown to reduce errors in

rainfall estimation caused by DSD and drop shape variability.

Thus, the parametric rainfall rate algorithms

R(ZH,KDP), R(ZDR,KDP), R(ZH,ZDR) and R(ZH,ZDR,KDP)

were selected. The coefficients for these algorithms were

determined through non-linear multiple regression, which

involved complex iterative numerical procedures. The con-

vergence of the estimators towards optimal values was used

to assess the effectiveness of this approach. The subspace

algorithm, based on the Gauss-Newton method [59, 60], was

used to determine the coefficients of the algorithms. The

coefficients were optimized through iterative calculation, us-

ing the coefficients obtained from multiple linear regression

as the starting point for the iteration procedure.

Mindful of the fact that in the quantitative rainfall esti-

mation by radar the assumption of linearity between the vari-

ables of interest is very quickly undermined when it comes

to integrating heavy values, we thought it would be useful

to free ourselves from this parametric approach through the

neural network technique. Vulpiani et al. [32] judged this

NN-method to be a powerful approach for designing a more

flexible and robust algorithm than the linear regression para-

metric methods commonly used.

As they did, the multilayer perceptron neural network

(MLP), organized in several layers including an input layer,

several hidden layers facilitating the modelling of non-linear

links between the input variables (ZH, ZDR, KDP) and the out-

put variable (R), are used. For the crucial learning process,

we apply calibration or training samples from the synthetic

data of the copula-based simulations. A similar exercise is

also carried out on part of the real data (i.e., calibration sam-

ple from observational data) used for training the network, as

a comparison. This will enable us to assess the contribution

of the copula-based simulations to the rainfall estimations

using the neural network method, drawing on the validations

carried out on the real data. Formally, we can write these

algorithms as follows:

RNN1 = NNR (ZH,KDP) , (3)

for the neural network tested by using the radar variables ZH

and KDP as inputs, and

RNN2 = NNR (ZDR,KDP) , (4)

that corresponds to the algorithm based on the neural net-

work with ZDR and KDP as inputs. NNR indicates the neural

network operator for direct rainfall rates retrieval.

2.4. Assessment Metrics

The performance of these estimators derived from

copula-based simulation method is assessed using polari-

metric radar data and ground rainfall measurements from

northern Benin and Niamey. Similar assessments are also

done with observed data from the calibration sample, for

comparison. The assessments are mainly based on scatter

plots comparing estimated and measured rainfall, as well as

on a specific rainfall event that occurred in northern Benin

during a certain period of time. Statistical scores such as the

Kling and Gupta efficiency coefficient (KGE) [61] and root

mean square error (RMSE) are used to assess the accuracy of

radar-based rainfall estimations. The KGE is employed for

overall assessment using the entire validation dataset sam-

pled at 5-min time step, while the RMSE is used to assess

the accuracy of the estimations during the specific 25–26

September 2007 rainfall event observed in northern Benin.

These metrics are defined as follows:

KGE = 1−
√
(1− r)

2
+ (1− αe)

2
+ (1− βe)

2
, (5)

where r is the correlation coefficient, αe is the ratio of stan-

dard deviations of estimated and observed rainfall and βe is

the ratio of their respective means; and

RMSE =

√√√√ 1

N

N∑
k=1

(Rr − Rg)
2

(6)

where Rr and Rg are the values estimated by the radar and

observed by the rain gauge, respectively. For these assess-

ments we consider 5-min QPE estimates to keep the quasi-

operational setup, as done during radar measurements.
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3. Results and Discussion

3.1. Assessment of Copula Simulations

As copulas provide a convenient way to model and

simulate correlated variates, in order to test its efficiency,

simulated fields of pseudo-observations are compared to the

original radar and rain gauge measurements. For illustrative

purposes, Figure 2 shows the 3-D scatterplot of the simu-

lated values (grey dots) of the triplet (ZH, KDP, R) for the

different copulas considered. Black dots stand for observa-

tion data set from the calibration sample. Analysis of this

figure highlights the good agreement between the simulated

and observed cluster, at least for the well-fitted copulas that

match those aspects of the data. This agreement is more

obvious for the Gumbel, Frank and Student copulas, where

we note a good superposition of the black and grey point

clouds, and to a lesser extent for the HRT copula. In addition,

the synthetic samples provided are richer in strong extreme

values than in the observations. Such samples are important

for determining efficient rainfall estimation algorithms since

they include a wider range of rainfall types [17, 20].

Figure 2. 3-D scatterplots of the triplet (ZH, KDP, R) for 10,000 simulated values (gray dots) for the different copulas considered and

reference data (black dots): (a) Normal copula; (b) Student copula; (c) Clayton copula; (d); (e) Gumbel copula; (f) HRT copula.
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However, another objective the Goodness of Fit (GoF)

test performed to select a specific copula is the K-function test,

which is a non-parametric method. The best-fitting copulas

are determined based on the mean square distance between

the empirical and theoretical K-function values. The Kendall

diagram (also called K-K plot) is a tool used to assess visu-

ally the accuracy of copula matching on original data, i.e.,

it allows for a direct comparison between the empirical cop-

ula (based on reference data) and the simulated theoretical

copulas. Figure 3 shows the K-K plot diagrams for each of

group of variables considered, which is a plot of the empirical

K percentiles as function of Copula K percentiles. A closer

curve to a straight line, specifically the first bisector, indicates

a better fit between the dependency structure of the sample

and the empirical copula estimated from the same sample. As

mentioned above, the mean standard error or distance (MSE)

is used to measure the distance between the empirical copula

and the simulated copula for each copula and the smallest

MSE score means the best fit. From Figure 3, it can be ob-

served that the copulas closest to the empirical copula are

Student’s, Gumbel’s, HRT’s, and Frank’s, regardless of the

triplets or quadruplets of variates used for the simulations.

The Gumbel, HRT, and Student copulas also effectively repli-

cate the dependence in the upper tails, as indicated by the

relative overlap of their Kendall curves with the first bisector.

Thus, by better determining the relationships between

radar polarimetric observables and ground rain rates, for rain-

fall estimators based on synthetic data from these copulas,

we would expect better estimates of intense rainfall. Zhang

et al. [25] demonstrated that this could better learn the rela-

tionship between multidimensional radar observations and

corresponding surface rainfall to improve QPE. Conversely,

since the Normal and Clayton copulas are systematically

characterized by higher mean square deviations, we exclude

them because of their relatively poor ability to reflect depen-

dencies between variables, in favor of the other four copulas,

namely the Student, Frank, Gumbel and HRT copulas, which

have the lowest mean square deviations.

Figure 3. K-K plot of the Kendall function K(u) for: (a) (ZH,KDP,R); (b) (ZDR,KDP,R), (c) (ZH,ZDR,R) and (d) (ZH,ZDR,KDP,R) variables

considered.
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3.2. Comparison of Different RadarMultipara-

metric QPEApproaches

The parametric algorithms for rainfall retrieval are

based on empirical non-linear least squares regression

(known as optimal regression) and utilize both measured

data from rain gauges and radar, as well as synthetic data

generated through copula simulations. As many stud-

ies [6, 7, 20, 26, 29] highlighted that the accuracy of these estima-

tors is heavily influenced by the range of rainfall rate con-

sidered for their determination, in this study we decided to

use the entire calibration dataset without assuming a specific

rainfall range. This approach has the potential to enhance

the design of quantitative functional relations between the

surface rainfall and aloft radar observations, which are influ-

enced by the complex spatio-temporal variability in DSD [25]

across precipitation types and regions [20]. The coefficients

of these estimators are provided in Table 1. For comparison

purposes, the coefficients of certain algorithms determined

by Koffi et al. [7] using simulated data from T-matrix are also

presented. These coefficients were calculated based on rain-

drop distribution data collected in Northern Benin from 2005

to 2007 [62], using optical disdrometers. Unlike in our study,

these authors only considered rainfall values greater than 5

mm/h when calculating their coefficients.

This table exhibits a relatively wide difference be-

tween the coefficients deduced from the copulas and those

from the observation sample or the T-matrix simulation for

all the algorithms selected in this present study. Specifically,

the weights given to the various radar parameters (ZH, ZDR,

KDP) in the algorithms by the adjustments to the synthetic

data from the copulas are greater than in the case of the

observations or the T-matrix simulations. These discrepan-

cies are even more striking for the ZDR variable, which is

often poorly weighted in the adjustments on observations

affected by ‘noise’ or random uncertainties on measured

and attenuation-corrected values [7]. In the specific case of

the R(ZDR,KDP) algorithm, the differential reflectivity ZDR

and the specific differential phase shift KDP are identically

weighted (almost similar exponents) for the copulas admit-

ting tail dependence as the association between extreme

values in the same tail. In their deep learning model incor-

porating polarimetric radar variables, Pan et al. [28] demon-

strated that KDP and ZDR provided crucial microphysics and

dynamic structure information of storms that improve sig-

nificantly the skills of the nowcasting model of convective

storms, by acting synergistically. Since these polarimetric

observables directly reflect the microphysical properties of

storms, including DSD, their result probably suggests, as far

as rainfall retrieval is concerned, that equal weight should

be given to these two variables with a bid to improve esti-

mator performance, especially by targeting all rainfall types

including intense rainfall. A recent study noted that KDP is

more important for heavy precipitation estimates [33]. How-

ever, this conclusion assumes ZDR is biased toward larger

hydrometeors in presence of large non-rain hydrometeors in

precipitation, and the ambiguity of the shape information of

hydrometeors provided by the ZDR for those that are bigger

than the radar wavelength. This means that, apart from these

two limiting factors, ZDR can be considered as an essential

contributor to the estimation of heavy rainfall, like KDP.

Unlike adjustments on the basis of copula-based datasets,

by fitting R(ZDR,KDP) with T-matrix simulations and ob-

servations datasets, the contribution of ZDR and KDP are in

ratios of 3 and 8 in favor of KDP , respectively. According to

Koffi et al. [7], the weight given to ZDR is even lower when

the relationships are adjusted with observations because of

high noise level for light rainfall or random uncertainties in

the areal radar data associated with low signal-noise-ratios

(SNRs) and attenuation corrected values of this observable

for heavy precipitation [20]. Finally, fitting done with Frank

copula-based dataset focusing on light to moderate values

leads to a greater weight assigned to ZDR than to KDP to

compensate the lack of heavy values. Li et al. [33] described

a more comprehensive understanding of the microphysical

processes guiding precipitation by analyzing and quanti-

fying the correlation between polarimetric radar variables

at different radar elevation angles and according to vari-

ous precipitation types. They concluded that for light to

moderate rainfall, the contribution of KDP is less important

than ZDR to the estimates of precipitation. This is probably

why ZDR is more important in light to moderate precipita-

tion estimates for the model using Frank’s copula-based

dataset.
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Table 1. Coefficients of the algorithms obtained by the non-linear least squares method applied to the synthetic data from the copula

simulations and the calibration observation data.

R = aZbHK
c
DP R = aZbDRK

c
DP R = aZbDRZ

c
H R = aZbHK

c
DPZ

d
DR

a b c a b c a b c a b c d

Student 1.075 0.412 0.332 21.918 1.000 1.000 1.028 −0.372 0.710 0.028 0.693 0.138 2.000

Frank 1.659 0.222 0.319 22.182 0.678 0.250 1.427 1.125 0.189  3.680 0.098 0.189 1.945

Gumbel 1.084 0.397 0.502 27.359 0.987 0.989 1.059 2.416 0.305  0.171 0.375 0.133 1.885

HRT 1.076 0.407 0.536 24.877 0.988 0.992 1.002 3.000 0.573  0.628 0.259 0.124 2.000

Obs. 3.748 0.182 0.602 51.274 −0.086 0.752 1.008 −0.210 0.710 2.869 0.188 0.564 0.161

Tmatrix* 15.13 −0.29 0.9  9.42 0.05 0.89 −0.34

* Rainfall rates above 5 mm/h have been considered by Koffi et al. [7] to determine these coefficients.

Consequently, when theoretical values of polarimetric

radar observables are used as input, the orders of magni-

tude of the theoretical rainfall calculated for these different

estimators give significant relative deviations from the al-

gorithms calibrated on observations, with values of up to

800% for high values of polarimetric observables, as shown

in Figure 4. We thus encounter two groups of algorithms of

which the first is composed of, R(ZH,KDP) and R(ZH,ZDR)

estimators for which the differences between estimators

based on copulas and those calibrated on the basis of ob-

servations (calibration sample) quickly become significant

from light rainfall characterized by weak radar observables.

For both R(ZDR,KDP) and R(ZH,ZDR,KDP), the comparison

of estimators derived from copulas with those based on T-

matrix simulation and thresholded observations [7] from the

same database as the one used in this study yields wider

discrepancies for heavy rainfall of more than 30 to 50 mm/h.

These results highlight the significant impact of the variabil-

ity of estimators on the accuracy of rainfall retrievals, as

indicated by Zhang et al. [20]. It demonstrates the challenge

of agreeing on consistent climatological relationships, par-

ticularly when using different rainfall measurement methods

and simulation approaches. The differences in estimations

are particularly pronounced for intense rainfall events. For

this type of precipitation characterizing typhoon and squall

lines, Zhang et al. [20] exhibit the importance of fitting the

rainfall estimator for different precipitation types. They

found enhanced estimation when the dedicated estimators

are used for specific precipitation types. The variation in

results for polarimetric parametric algorithms is mainly at-

tributed to the difficulty in determining the variability of the

Drop Size Distributions [5, 20] and characterizing the depen-

dencies between the variables used in these estimators [17].

The copula approach, which measures dependence between

variables, is thus confirmed as a suitable method. It offers

the advantage of representative sample sizes and diversity

across various rainfall categories and radar variable config-

urations, including uncommon values rarely observed. This

approach would enhance the accuracy of rainfall retrieval

models.

Figure 4. Cont.
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Figure 4. Comparison of theoretical rainfall rate as calculated from copula-based and gage/radar-based algorithms: (a) R(ZH, KDP);

(b) R(ZDR, KDP); (c) R(ZDR, ZH); and (d) R(ZH, ZDR, KDP). For panels b and d, theoretical values of rainfall rate from T-matrix and

gage/radar-based algorithms from Koffi et al. [9] are also shown.

Table 2 summarizes, in terms of KGE for the entire

validation sample and RMSE calculated on the specific

rainfall event case, the performance of the various estimators

used in this study to estimate rainfall rates at the 5-minute

time step. For comparison with the work of Koffi et al. [7],

who used the same validation database, we show in this table

for certain algorithms their results obtained by calibrating

the algorithms using synthetic data simulated by the T-matrix

method based on DSD measurements. Among the polarimet-

ric multiparametric algorithms, R(ZH,KDP) and R(ZDR,KDP),

which were calibrated and optimized using synthetic data

from copulas’ simulations, outperformed both the other

algorithms R(ZH,ZDR) and R(ZH,ZDR,KDP). These former

algorithms, especially when using copulas with higher tail

distributions, showed significant improvements in the Kling-

Gupta Efficiency (KGE) around 3% to 15% for R(ZH,KDP)

and 30% to 40% for the R(ZDR,KDP) algorithms, compared to

estimators calibrated on observations. The reliability of the

5-minute time-step rainfall estimations was demonstrated by

the better alignment of the data dots around the first bisector,

as shown in Figures 5 and 6 showing scatterplots of rain

rates versus their estimates from R(ZH,KDP) and R(ZDR,KDP)

optimal relations based on the copulas’ synthetic database

and the calibration sample of the observation dataset. Previ-

ous research had achieved similar performances but at hourly

time steps, although with lower KGEs. The results suggest

that including intense rainfall rates in the calibration samples

is important for accurate rainfall estimation. Thus, estimators

based on Frank’s copula, which poorly reproduces upper-

tail dependence, performed worse than those based on the

observational calibration data sample. The rate of perfor-

mance decline is around 30% for R(ZH,KDP) and increased

to around 80% for R(ZDR,KDP). Figures 7 and 8 display

time series of instantaneous radar-based rainfall rates for the

25–26 September 2007 event over the Nangatchori gauge.

For comparison, the 5-min rainfall rates measurements from

the gauge are included. Considering data from rain gauge

as reference, estimators based on Frank’s copula synthetic

data provide poor performance for the peak retrieval of the

rainy event. The same rate of decrease in performance com-

pared to estimators calibrated on observations, although less

impressive extent, is observed in terms of RMSE with 8%

and 60% for the R(ZH,KDP) and R(ZDR,KDP) algorithms, re-

spectively. It is also noted that estimators based on copulas

with upper-tail dependence such as Gumbel and HRT failed

to estimate lower rainfall rates.

In any case, it is clear from this analysis that a combina-

tion of differential reflectivity and differential specific phase

shift, and the weight given to them in rainfall variability, is

of great benefit. We note that for the R(ZDR,KDP) algorithm,

the best estimators are those in which the weights of ZDR,

and KDP are both identical and close to 1. The advantage

of this algorithm lies in the fact that it capitalizes on two

radar parameters that have been found to be insensitive to

the variability of raindrop distributions [17, 32, 64]. In contrast,

the high number of radar variables (three) does not guarantee
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better performance, as is the case with the R(ZH,ZDR,KDP) al-

gorithm, which, together with R(ZH,ZDR), seems to give the

worst scores of the four algorithms assessed in this study, irre-

spective of the copulas considered. For R(ZH,ZDR), its poor

performance (lower KGE) in relation to ground-measured

rainfall can be linked to the large values of the ZDR exponent,

as explained by Matrosov [65] when they obtained similar

results in comparisons of several polarimetric algorithms. In

this study, estimators derived from the Student copula and

those calibrated by observation data, giving the lowest ZDR

exponents, demonstrated the best performance in terms of

KGE, compared to estimators based on the HRT, Gumbel,

and Frank copulas, which provide coefficients that were 3

to 15 times higher. In addition, uncertainties in attenuation

and calibration corrections, as well as the bright-band prob-

lem, though to a lesser extent in this study due to the use of

a low radar elevation angle, may also contribute to the un-

derperformance of the R(ZH,ZDR) algorithm. These factors

acting collectively more influence the quality of its perfor-

mance. Ryzhkov et al. [63] argued that it is not possible to use

a combination of ZH and ZDR to estimate precipitation from

X-band radar measurements, as their biases due to horizontal

and differential attenuation are too great and difficult to take

into account. For all these reasons, in the following, we con-

sider R(ZH,KDP) and R(ZDR,KDP) to be the best performing

multiparametric algorithms among those tested in this study.

Comparing the performances of these four estimators, Zhang

et al. [20] found that R(ZH,KDP) and R(ZDR,KDP) generated

the best performances. R(ZDR,KDP) had the optimal perfor-

mance because KDP can adapt to the DSDs’ variability and

includes additional information of raindrop diameters across

ZDR.

Table 2. Performance of copula and observed retrieval-based rainfall algorithms relative to validation sample observed in north Benin

(from 2006–2007) and Niamey (Niger) in 2010. In bold, KGE values similar to or greater than those of estimators calibrated from

T-matrix simulations or the calibration sample of actual observations.

Algorithms R (ZH, KDP) R (ZDR, KDP) R (ZH, ZDR) R (ZH, ZDR, KDP)

Scores KGE KGE KGE KGE

Student 0.68 0.82 0.64 0.20

Gumbel 0.75 0.79 0.39 0.51

HRT 0.76 0.81 0.40 0.46

Frank 0.47 0.13 0.21 0.13

Observations 0.66 0.60 0.54 0.68

T-matrix simulation1 0.50 0.52

1 From Koffi et al. [7] using the same data as in the present study.

Figure 5. Cont.
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Figure 5. Performance of the R(ZH,KDP) algorithm through rainfall rate retrieval from estimators calibrated on synthetic data from copula

simulations (grey dots) and on observed calibration data (black dot) vs. “ground truth” rain rate measured by rain gauge (validation data

sample). The statistics scores in the scatterplots are KGE and correlation coefficient r.

Figure 6. As in Figure 5, but for the R(ZDR, KDP) algorithm calibrated on synthetic data from copula simulations (grey dots): (a) Student

copula, (b) Frank copula, (c) Gumbel copula, and (d) HRT copula.
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Figure 7. Time sequence of radar rainfall estimates over the Nangatchori gauges during the September 25–26, 2007 event through R(ZH,

KDP) algorithm calibrated by copulas synthetic datasets: (a) Student copula, (b) Frank copula, (c) Gumbel copula, and (d) HRT copula.

For comparison, the 5-min rainfall totals of the rain gauges, converted into rainfall rates, are also shown. Rop stands for estimates through

optimization performed on observed calibration data.

Figure 8. Cont.
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Figure 8. As in Figure 7, but for radar rainfall estimates using R(ZDR, KDP) algorithm calibrated by copulas synthetic datasets: (a)

Student copula, (b) Frank copula, (c) Gumbel copula, and (d) HRT copula.

Nevertheless, all these results clearly illustrate the dif-

ficulties encountered in applying parametric algorithms for

estimating precipitation rates, due to their sensitivity to the

variability in raindrop size illustrated by scatterplots that are

particularly wide. For this reason, the following subsection

assesses the performance of the neural network method us-

ing polarimetric radar variables as input, as an alternative to

parametric methods.

3.3. Comparison of NN-Based Retrieval of

Rainfall Rate with Optimal Multiparamet-

ric Estimators

In this section, the assessment of rainfall estimates

by the neural network method is carried out by comparing

them with the best parametric algorithms R(ZH,KDP) and

R(ZDR,KDP), optimized by nonlinear regression on data sim-

ulated by copulas and observations. The training process of

the artificial neural network is also carried out on the same

data simulated by copulas and those of the calibration sample

derived from observations, for comparison purposes.

A list of the overall (KGE) and event-specific (RMSE)

scores for the tested relationships can be found in Table 3.

Overall, the global performances (KGE) obtained by the di-

rect application of the RNN(ZH,KDP) and RNN(ZDR,KDP) neu-

ral networks are not significantly different from those previ-

ously obtained by the parametric R(ZH,KDP) and R(ZDR,KDP)

polarimetric algorithms when the training data come from

simulations of the HRT, Gumbel, and Student copulas. For

these copulas, the KGE scores of RNN(ZH,KDP) are slightly

improved by 5 to 8% compared to R(ZH,KDP), while those of

RNN(ZDR,KDP) are reduced by 1 to 5% compared to the per-

formance of the optimized parametric R(ZDR,KDP) algorithm.

When the training data for the neural networks are obtained

from calibration observations, the advantages of this method

are obvious, especially for the algorithm using differential

reflectivity and specific differential phase shift, that gives an

improvement rate of about 18% compared to the parametric

algorithm using the same combination of radar parameters.

For the combination of radar observations (ZH, KDP), the

improvement ( 6%), although moderate, remains in favor of

RNN(ZH,KDP) for the network trained by the observational

data for designing algorithms.

From the comparison of the KGE statistical values in

Table 3, the RNN(ZH,KDP) algorithm calibrated with data

simulated by Frank’s copula yields the best overall results

(0.94 in terms of KGE, corresponding to a 100% increase

over its parametric counterpart) among all the quantitative

radar rainfall estimators tested. Similarly, comparing the

performance of RNN(ZDR,KDP) with that of the correspond-

ing parametric algorithm calibrated with the same data from

Frank’s copula, it achieves an improvement ratio of 5, al-

though its KGE remains lower than that of the other esti-

mators trained with synthetic data from the other copulas

and calibration observations (Figure 9). As can be seen in

the K-K plot (Figure 3), the results are not surprising given

that Frank’s copula appeared to have the most successful

transcription of the dependencies between the variables of

interest (lowest MSE). However, it should be noted that
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this copula shows limitations for the upper tail distributions

for (R, ZH, KDP) and the lower and upper tail distributions

for the triplet (R, ZDR, KDP). As the parametric algorithms,

determined by the non-linear least-squares method, are sen-

sitive to these upper-tail values [22], and as no threshold-

ing was applied to the data, but rather all simulated sam-

ples were used for fitting, it is clear that the algorithms are

unable to estimate these types of rainfall, which explains

why the KGE scores are so low. In contrast, for the neural

network method, the learning process is repeated for nu-

merous examples making up the synthetic dataset until the

network reaches a stable state where there are no further

changes in the synaptic weights of the neural network [32].

This would explain the superiority of the RNN(ZH,KDP) al-

gorithm trained using Frank’s copula synthetic data. In the

case of the RNN(ZDR,KDP) algorithm, despite the clear im-

provement in KGE over the corresponding parametric esti-

mator R(ZDR,KDP), it fails to outperform the neural network

trained on observational data (Figure 10) due to the poor

reproduction of dependencies between variables of interest

for the lower and upper tail distributions. To explain the

causes of the precipitation estimates from double modules

deep learning models under different rainfall amounts, Li et

al. [33] quantified the influence of each radar observable on

their model estimations by analyzing various precipitation

intensities. Their results show that ZDR is more critical in

light rainfall, whereas KDP becomesmore important in heavy

rainfall estimates. Thus, the compromised performance of

RNN(ZDR,KDP) in the case of the Frank copula-based dataset

may be explained by the limitation of the functional relation

between R, ZDR, and KDP determined across that copula, for

light and heavy rainfall.

Table 3. Comparison between neural network-based algorithms and parametric ones calibrated from copula-simulated and observed data

(calibration sample). In bold, KGE values similar to or greater than those of estimators calibrated using actual observations data.

Algorithms R (ZH, KDP) RNN (ZH, KDP) R (ZDR, KDP) RNN (ZDR, KDP)

Scores KGE (RMSE*) KGE (RMSE*) KGE (RMSE*) KGE (RMSE*)

Student 0.68 (3.85) 0.72 (4.91) 0.82 (5.70) 0.81 (3.08)

Gumbel 0.75 (3.94) 0.81 (2.92) 0.79 (5.36) 0.75 (3.67)

HRT 0.76 (3.87) 0.81 (3.02) 0.81 (5.50) 0.77 (5.03)

Frank 0.47 (4.84) 0.94 (3.82) 0.13 (8.89) 0.64 (2.94)

Observations 0.66 (4.50) 0.70 (1.83) 0.60 (5.65) 0.71 (3.87)

* RMSE (mm/h) at rainfall event scale considering the 25–26 September 2007 event over Nangatchori (Northern Benin).

At last, the scatterplots of rainfall rates from gauges

measurements versus their estimates from neural network

method with learning process using copula-based synthetic

dataset, regardless of the combination of polarimetric radar

observables, are narrower than NN-method trained with

observational data and parametric algorithms scatterplots.

The correlation coefficients close to 1 indicate that the scatter

points are linearly distributed neural networks trained by

copula-based datasets and corroborate the good agreement

between the values estimated by the neural network method

and ground rainfall observations (Figures 9 and 10). In terms

of correlation coefficients, the quantitative evaluation also

demonstrates the superiority RNN(ZDR,KDP). Except for NN-

method training with Student’s copula dataset, in the case

of RNN(ZH,KDP), our results go beyond those from Zhang et

al. [25] based on a sophisticated deep-learning convolutional

neural network (CNN) algorithm using hybrid volume scan

data of ZH, ZDR, and KDP. Their method was composed of

multiscale convolutional operations designed to achieve the

complex nonlinear mapping from radar measurements to

rainfall rate and showed performance varying according to

different segments of ZH, ZDR, and KDP, denoting depen-

dence on DSD variability, as exhibited in comparison with

DSD-based nonlinear fitting algorithm. Assessment results

of hourly rainfall retrieval from quantitative precipitation

estimates deep-learning network proposed by Li et al. [33] ex-

hibit comparable RMSE of 3.06 mm/h, but their correlation

coefficient remains lowest (0.89). Our findings are striking

results which may indicate that NN-methods calibrated with

copula-based data are insensitive to raindrop size variability,

albeit some useful adjustments may be done to make tan-

gible the intense quantitative precipitation estimations. In
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other words, taking into account joint dependencies between

radar variables and rainfall rate leads to cancellation of the

influence of raindrop size variability. In this respect, we hy-

pothesize that multi-parameter copulas would be appropriate

to better reflect the dependence between radar variables and

rainfall rate, particularly for intense rainfall.

Figure 9. Radar rainfall estimates versus gauges measurements using NN(ZH, KDP) algorithms with training dataset from copula (grey

dots) (a) Student copula, (b) Frank copula, (c) Gumbel copula, (d) HRT copula, and observational calibration sample (black dots).
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Figure 10. As in Figure 9, but radar rainfall estimates using NN(ZDR, KDP) algorithmswith training dataset from copula (grey dots): (a)

Student copula, (b) Frank copula, (c) Gumbel copula, (d) HRT copula, and observational calibration sample (black dots).

An essential criterion for assessing the efficiency of

a model is to assess its robustness, defined as its capacity

to provide consistent estimates of precipitation for a given

event. The root-mean-square error (RMSE) scores of the

various estimators applied to the retrieval of the rainfall event

that occurred on September 25–26, 2007 in Benin provide

a means of assessing the aforementioned robustness (Table

3). Thus, Figures 11 and 12 provide a summary of cumula-

tive rainfall comparisons at 5-min intervals between ground

measurements collected by rain gauges and radar for this

event. These comparisons are made possible by parametric

relationships and the neural network trained by synthetic

copula data and calibration observations.

In comparison to parametric algorithms, the RMSE

values demonstrate a notable decrease, irrespective of the al-

gorithms utilizing the ZH-KDP and KDP-ZDR radar parameter

combinations. This suggests that the neural network-based

algorithms exhibit enhanced robustness. Therefore, for this

particular instance of the event derived from the radar mea-

surements, the root mean square errors (RMSEs) relative

to NN(ZH,KDP) are reduced by between 20 and 60%, while

those relative to NN(ZDR,KDP) range between 8 and 70%

reduction rate range when the neural networks are trained

by the synthetic copula data. In the case of neural networks

using observation data for training process, the reduction in

RMSE is relatively important, with a rate of 60% and around
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30% for the (ZH, KDP) and (ZDR, KDP) combinations, respec-

tively, in comparison with parametric algorithms calibrated

on the same calibration data. In other words, considering

only the neural network approach, it can be observed that the

learning process from copula-simulated data performs well

for retrieval models. This is evidenced by the ability to repro-

duce the dynamics and rainfall rates on the ground (Figures

11 and 12), in comparison to improvement provided by real

observation data which is characterized by a lack of repre-

sentativeness and a diversified richness of the configurations

tested during neural network training. Conversely, the likeli-

hood of the synthetic configurations proposed for training

the neural network appears as a critical factor with regard to

the efficiency and robustness of the estimators for specific

events considered individually. Indeed, the HRT and Gumbel

copulas, which demonstrated the least reliability in reflecting

the joint dependency between the variables R, ZDR, and KDP

(Figure 3), in consequence provide the worst rainfall rate

estimations. For these copulas, the neural network model

leads to an increase of 30% and a small decrease of 5% in

terms of RMSE score, compared to training the network with

observed data.

Figure 11. Time sequence of radar rainfall estimates over the Nangatchori gauges during the September 25–26, 2007 event through

NN(ZH, KDP) algorithm calibrated by copulas synthetic datasets vs original dataset: (a) Student copula, (b) Frank copula, (c) Gumbel

copula, and (d) HRT copula. For comparison, the 5-min rainfall totals of
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Figure 12. As in Figure 11, but for NN(ZDR, KDP) neural network method calibrated by copulas synthetic datasets vs original dataset:

(a) Student copula, (b) Frank copula, (c) Gumbel copula, and (d) HRT copula.

4. Conclusions

The main challenge in quantitative rainfall estimation

by radar currently lies in the design of efficient algorithms,

particularly for intense rainfall, which is often excluded or

only partially represented in the samples used to determine

these estimators. In this study, we examine the applicability

of the neural network in polarimetric radar-based quantita-

tive precipitation estimation. Because this method is limited

by the availability of training data in West Africa, leading to

poor training performance, we designed a statistical nonlin-

ear framework through copulas approach, to provide a wide

range of realistic synthetic data samples including different

polarimetric radar variables (ZH, ZDR, KDP) and rainfall rate

(R), high extreme values by choosing copulas with upper

tail distributions such as Student, Gumbel, and HRT. This

was done drawing on a database of radar and rainfall data

collected during pastAMMAintensive multi-year campaigns

in northern Benin and during the Megha-Tropiques pro-

gram aimed at validating satellite measurements, achieved

in 2006–2007 and 2010, respectively. This copula-based

approach appears as a method for modeling the dependence

between polarimetric radar variables of interest (ZH, ZDR,

KDP) and rain rate (R), that is critical to take account of the

complex spatiotemporal variability in DSDs that affects QPE

algorithms. For comparison, we also designed multipara-

metric polarimetric estimators using nonlinear optimization

basing on real observation data and synthetic datasets from
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copulas simulations. These estimators encompass ZH-KDP,

ZDR-KDP, ZH-ZDR, and ZH-ZDR-KDP combinations.

Based on the assessment results for all the rainfall in-

tensities, the multi-parametric algorithms R(ZH,KDP) and

R(ZDR,KDP) demonstrated superior performance compared

to R(ZH,ZDR) and R(ZH,ZDR,KDP) with KGE scores of ap-

proximately 0.8. For these algorithms, the assumption of

embedding intense rainfall corresponding to high values of

the variables of interest in the calibration samples through

synthetic data simulated by copulas with upper-tail distribu-

tions plays a significant role. Given that higher values of the

variables of interest are relatively rare or under-represented in

real data, the usefulness of copula simulations is obvious, par-

ticularly for R(ZDR,KDP), which is significantly influenced

by the presence of high values. Rainfall estimates performed

by the estimator based on extreme-value copulas are more

accurate than those performed by the estimators based on

T-matrix simulations. A comparison of the best paramet-

ric algorithms with their corresponding RNN(ZH,KDP) and

RNN(ZDR,KDP) derived from the neural network reveals that

their copula-based design with tail distributions results in

minimal performance differences in terms of KGE.

Conversely, the neural network-based algorithms

demonstrated greater robustness than the parametric algo-

rithms, particularly given that they were constructed on syn-

thetic rather than observational data. The most striking result

of our study shows that the neural network rainfall estimates

method is virtually insensitive to raindrop size variability,

given that their learning process using a synthetic dataset

combines both the dependencies between the variables of

interest and the influence of rainfall types that are built into

the copula approach.

Although we have demonstrated the beneficial con-

tribution of copulas and neural networks to radar rainfall

estimation using multivariate estimators, the specific results

of Frank, Gumbel and HRT copulas suggest potential av-

enues for enhancing synthetic data simulations using cop-

ulas that more accurately reflect the relationships between

variables across all value distributions. In light of these con-

siderations, it seems reasonable to posit that multi-parameter

extreme value copulas, such as the Hüsler-Reiss copula or

the Galambos copula families [66], may offer a more nuanced

characterization of the dependencies between variables due

to their multi-parametric nature. Another potential avenue

for exploration in future work is the development of com-

posite algorithms that leverage the capabilities of copulas

in specific intensity classes. This approach could involve

the integration of algorithms derived from Clayton’s copula

for light rainfall, Frank’s copula for intermediate rainfall,

and copulas of extreme values or upper tail distributions for

heavy rainfall. In such a way, a comprehensive explana-

tion should be developed to assess the contribution or the

orders of importance of each radar observable used for model

precipitation estimation according to rainfall types.
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