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ABSTRACT

This study examines the spatiotemporal evolution of Tibetan villages in western Sichuan through state transition

models and predictive simulations to understand their complex dynamics and key driving factors. Using a combination of

multivariate time-series analysis and chaotic attractor identification, the research identifies forest cover, economic growth,

employment rates, road density, and communication network coverage as critical determinants of village trajectories. For

instance, Molo Village recovers rapidly with a 10% increase in regional economic growth, while Xisuo Village becomes

unstable with employment rate fluctuations above 2%. Shenzuo Village benefits from improved road density, and Minzu

Village’s stability depends on forest cover. Jiangba Village relies on the growth of irrigated farmland and communication

network coverage, whereas Kegeyi Village exhibits periodic dynamics and high sensitivity to employment variations.

The findings underscore the inherent complexity and nonlinearity of rural systems, revealed through chaotic attractor

analysis, which highlights the system’s sensitivity to initial conditions and external shocks. The article provides actionable

insights into resilience mechanisms and offers practical recommendations for the sustainable development of culturally and

ecologically sensitive regions. Emphasis on tailored management strategies is essential to meet the challenges faced by

these unique systems in the face of modernization and environmental change.
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1. Introduction

Traditional Tibetan villages in western Sichuan have ex-

perienced complex and dynamic evolution throughout history

and the modernization process, shaped by social, economic,

cultural, and ecological factors [1]. As vital cultural heritage

components, these villages lie at the intersection of modern-

ization and traditional culture [2]. Functioning as complex,

large-scale systems, village spatial systems encapsulate geo-

graphic and social information while exhibiting pronounced

nonlinearity and complexity [3]. However, most existing stud-

ies rely on linear models, which fail to adequately capture

the nonlinear dynamics, critical turning points, and multi-

faceted interactions that characterize the long-term evolution

of these systems. Such limitations hinder our understanding

of how various internal and external forces drive the unique

developmental trajectories of individual villages, particularly

their resilience and adaptability to changing conditions [4–6].

This study addresses these gaps by employing nonlin-

ear analysis and chaotic attractor identification techniques to

explore the dynamics and driving factors of Tibetan village

spatial systems in western Sichuan. By integrating spatial

data from Geographic Information Systems (GIS) with so-

cioeconomic datasets [7], the research applies multivariate

time series analysis and Recurrence Quantification Analysis

(RQA). These advanced methods surpass traditional linear

models by uncovering the nonlinear and chaotic behaviors in-

herent in complex systems. These methods enable a detailed

examination of dynamic changes across different develop-

mental stages, the identification of critical turning points,

and the detection of chaotic attractors within the village sys-

tems [8, 9]. Chaotic attractor analysis highlights the systems’

inherent complexity and sensitivity to initial conditions, of-

fering insights into their adaptability and potential instability

under external shocks.

Through systematic sensitivity analysis, this study iden-

tifies key variables influencing Tibetan village systems’ be-

havior, providing theoretical contributions and practical rec-

ommendations for their sustainable development [10]. The

innovation of this research lies in its application of advanced

nonlinear analytical tools, which bridge critical gaps in cur-

rent scholarship and present fresh perspectives for under-

standing and managing the resilience of Tibetan village

systems amid modernization pressures and environmental

changes.

2. Literature Review

In recent years, nonlinear dynamic system analysis

methods have gained prominence in studying rural spatial

systems and ecosystems. These complex systems, shaped by

multiple interacting factors, exhibit diverse and dynamic be-

haviors, including distinct patterns of fluctuation and stabil-

ity across different developmental stages [11–13]. Techniques

such as multivariate time series analysis and Recurrence

Quantification Analysis (RQA) have proven particularly ef-

fective in identifying key turning points, evaluating system

stability, and uncovering sensitivity to external shocks. This

theoretical and methodological foundation provides the nec-

essary background for this study’s exploration of Tibetan

village systems in Western Sichuan.

The application of chaos theory in nonlinear dynamic

system research has further advanced our understanding of

these systems. Chaos theory highlights their heightened sen-

sitivity to initial conditions and the unpredictable behaviors

that emerge from deterministic processes. Recent studies have

demonstrated that chaos theory not only explains the emer-

gence of seemingly random evolutionary patterns, referred to

as chaotic attractors but also serves as a diagnostic tool for de-

tecting system instability and predicting potential transitions

under external pressures [14, 15]. It explains how seemingly

random evolutionary patterns—chaotic attractors—can arise

within structured systems. These insights have facilitated a

deeper understanding of the long-term evolution of rural spa-

tial systems, offering valuable perspectives on their resilience,

adaptability, and responses to external perturbations [16–18].

Rural spatial systems are widely recognized as com-

plex nonlinear systems whose evolution is influenced by

a multitude of factors, including land use, population mo-

bility, and infrastructure layout. With the acceleration of

urbanization, these systems have become increasingly dy-

namic, exhibiting pronounced changes in spatial structure

under the influence of rural-urban integration [19–21]. Geo-

graphic Information Systems (GIS) and spatial analysis tools

have facilitated the quantification of dynamic features such

as rural land use changes, village layouts, and functional

transformations. These tools have also revealed evolutionary

trajectories of rural systems shaped by external conditions,

particularly social and economic changes introduced during

urbanization phases [22]. However, such approaches often fail

to account for the nonlinear dynamics and chaotic behaviors
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inherent in complex systems, making it difficult to identify

sudden shifts and critical transitions.

Despite the growing adoption of nonlinear methodolo-

gies, much of the existing research continues to rely on tradi-

tional linear models. Thesemodels are limited in their capacity

to capture the full range of dynamic behaviors and system di-

versity in rural areas [23–25]. For example, many studies focus

on isolated time points, neglecting the cumulative effects of

long-term disturbances on system evolution. Linear models

are particularly inadequate in addressing complex interactions

and stability shifts under strongly correlated noise, as high-

lighted by scholar [26], who demonstrated the critical role of

nonlinear approaches in quantifying resilience and predict-

ing regime shifts. This limitation is particularly evident in

Tibetan rural areas, where cultural and environmental fac-

tors are deeply intertwined [27]. Moreover, existing literature

lacks sufficient cross-regional comparisons and fails to address

the diverse ethnic and ecological contexts of these systems,

thereby restricting the generalizability of findings [28, 29].

To address these gaps, this study employs nonlinear

dynamic models and chaotic attractor analysis to examine

the spatial evolution characteristics of traditional Tibetan

villages in western Sichuan. By focusing on the system’s

nonlinear and chaotic behaviors under the influence of di-

verse factors, the research identifies key turning points and

complexities through the detection of chaotic attractors. This

approach enables a more precise evaluation of resilience and

adaptability, offering valuable insights into how Tibetan vil-

lages can achieve sustainable development within culturally

and ecologically sensitive contexts. Furthermore, it enhances

our understanding of the resilience mechanisms and sustain-

ability of these unique village systems [10, 15, 30].

The primary innovation of this study lies in the appli-

cation of advanced nonlinear dynamic analysis tools to the

evolution of complex rural systems. By bridging gaps in

existing research, this study provides empirical evidence to

support the long-term development and sustainability of ru-

ral spatial systems, contributing both theoretical insights and

practical recommendations.

3. Research Area and Method

3.1. Research Location

The study focuses on traditional Tibetan villages in

western Sichuan—Molo, Kegeyi, Xisuo, Shenzuo, Minzu,

and Jiangba (as shown in Figure 1). These high-altitude

villages, situated between 1,200 and 4,500 meters above sea

level, are home to diverse Tibetan communities, including the

Kham, Jiarong, Amdo, Baima, and Ersu groups. Classified

as ecologically sensitive and restricted development zones,

these areas are characterized by unique cultural and environ-

mental features. The majority of residents practice Tibetan

Buddhism (primarily the Gelug and Nyingma schools) or

the Bon religion, deeply embedding spiritual traditions into

daily life. The local economy is predominantly based on agri-

culture and animal husbandry, which sustain the livelihoods

of these communities. Cultural tourism has recently been

introduced as a supplementary industry to promote economic

growth, enhance social participation, and support community

development. This initiative also aims to preserve traditional

cultural practices while balancing modernization and cultural

heritage.

3.2. Research Path

3.2.1. Data Collection

This study employed a random sampling method to

select six representative village samples, aiming to minimize

selection bias and improve the generalizability of the find-

ings. The sampling process utilized the RANDBETWEEN

and INDEX functions in Excel, ensuring equal probability of

selection for each village from a predefined list of potential

study locations [31].

The dataset spans 2015 to 2023 and encompasses vari-

ables related to the natural environment, socioeconomic fac-

tors, and cultural attributes. To address challenges in data

collection, some variables were replaced with county- or

township-level averages to maintain data reliability. Data

sources include field surveys, experimental measurements,

government databases, and existing literature, while spatial

data were derived from 30-meter resolution Digital Eleva-

tion Models (DEM) and Points of Interest (POI). To ensure

data completeness and consistency, missing values were im-

puted using mean substitution, text data were converted to

numeric formats, and all variables were standardized [32, 33].

These rigorous data processing steps produced a comprehen-

sive, high-quality dataset, forming a robust foundation for

subsequent modeling and analysis (See Figure 2).
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Figure 1. Research location.

Source: Self-illustrated.

Figure 2. Research process flowchart.

Source: Self-illustrated.

3.2.2. Model Simulation and Analysis

The model simulation and analysis of the study are di-

vided into three major steps: variable selection and state tran-

sition model construction, quantitative analysis, and multi-

variate nonlinear analysis, to capture critical socio-ecological

dynamics unique to Tibetan village systems, such as envi-

ronmental stability, infrastructure accessibility, economic

drivers, and agricultural productivity. By incorporating these

factors, the state transition model effectively simulates the

dynamic behavior of village spatial systems across different

developmental stages. The state transition process of the

model is represented as:

S(t+ 1) = f(S(t), E(t)) (1)

Here, S(t) denotes the state of the system at time t, E(t)

denotes the external factors that affect the state of the system

at time t, and f is a transition function that describes how the

state changes over time [34].

Subsequently, SPSS statistical tools were used to an-

alyze model outputs by calculating the mean, standard de-

viation, and autocorrelation of the system to evaluate its

stability and periodicity. The mean provides insight into the

system’s typical behavior over its long-term evolution, while

the standard deviation reflects stability, with lower values

indicating greater system stability [35]. Autocorrelation as-

sesses the dependency within the time series, aiding in the
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detection of periodic characteristics and memory effects in

the system [36, 37].

To more accurately pinpoint key turning points within

the system, the Top Entropy method was employed, calculat-

ing entropy values at different time points to quantify system

uncertainty. Higher entropy values signify greater instabil-

ity, and changes in entropy values reveal trends in system

behavior across various stages. The equation is as follows:

H(X) =
∑n

i=1
P (xi) log2P (xi) (2)

Here, H(X) is the entropy of the random variable X;

P(xi) is the probability that the random variable X takes

the value xi; and n is the number of possible values of the

random variable [34].

Finally, multivariate phase space reconstruction and Re-

currence Quantification Analysis (RQA) were employed to

perform nonlinear analysis, aiming to identify chaotic attrac-

tors and their key driving factors within the system. Phase

space reconstruction maps the time series into a phase space,

providing a visual representation of the system’s dynamic

behavior [38]. Recurrence plots were utilized to examine the

system’s periodicity and potential chaotic characteristics,

with RQAmetrics including the following: Recurrence Rate

(RR), which quantifies the recurrence of system states over

time and reflects overall periodicity; Determinism (DET),

which measures the proportion of diagonal structures in the

system and indicates determinism; Laminarity (LAM), which

describes the proportion of laminar states and reveals inter-

mittent characteristics; and Entropy (ENT), which reflects

the system’s complexity and chaotic behavior through the

entropy of diagonal length distribution [39, 40]. Variables were

progressively removed, and RQAmetrics were recalculated

to determine which variables most significantly influenced

the system’s dynamic behavior, thereby identifying the key

factors driving chaotic behavior [41].

To ensure model robustness, we employed K-fold cross-

validation and Lasso regression using MATLAB R2022b.

Given the small sample size, the cvpartition function was

used to divide the data into five folds (K = 5), and the cross-

val function was applied to perform multiple iterations of

training and validation. This method produced more reli-

able average performance metrics [42] but also ensured that

each subset contained sufficient data for meaningful evalua-

tion, thereby improving the generalizability of the findings

to similar datasets. Model performance was evaluated using

Mean Squared Error (MSE) and the coefficient of determi-

nation (R²). A lower MSE indicates reduced prediction error,

while a higher R² reflects stronger explanatory power of the

model [43].

Through this approach, we aim to uncover the dynamic

characteristics and complex behaviors of village systems,

constructing a reliable predictivemodel that provides a robust

quantitative foundation for deeper insights into the nonlinear

and chaotic properties of these systems.

4. Analysis and Results

This section utilizes a state transition model to analyze

the dynamic evolution processes experienced by sample vil-

lages under the influence of environmental, social, economic,

and cultural factors. The village spatial system is composed

of material and immaterial subsystems, whose interactions

shape the evolutionary characteristics of villages at different

stages and reveal the system’s complex diversity [44]. Us-

ing model predictions across various years, we analyzed

the future dynamic trends of each village, supporting the

assessment of system stability and periodicity [45].

By examining the volatility and recurrence of predicted

values, this study identifies intrinsic behavioral patterns

within the system, reflecting its sensitivity to external factors

and its response characteristics. Additionally, using Recur-

rence Quantification Analysis (RQA) along with visualized

recurrence plots, we identified key attractor types in the

system and assessed the periodic and chaotic properties of

each village under different conditions [41]. The results reveal

core behavioral characteristics and primary driving factors

in the system across various developmental stages, provid-

ing theoretical support and empirical evidence for a deeper

understanding of the long-term evolutionary trajectories of

Tibetan village spatial systems in western Sichuan [46].

4.1. Dynamic Behavior Analysis

4.1.1. Preliminary Stage Division

The dataset encompasses variables from four dimen-

sions: environmental, social, cultural, and economic. State

variables represent core characteristics of the village systems,

such as village area, elevation, terrain features, building area,

road density, and religious affiliation, while influence vari-

ables reflect external conditions driving system changes, in-
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cluding annual precipitation, urbanization rate, economic

growth rate, and forest coverage [34].

To analyze the internal dynamic trends within village

systems, the study preliminarily divided the period from

2015 to 2023 into four stages based on variable change char-

acteristics: 2015–2016 (growth period), 2017–2019 (relative

stability), 2020–2021 (fluctuation period), and 2022–2023

(reorganization period). This stage division, informed by

time-series data trends and analysis of key events, lays a

foundation for further examination of the dynamic behav-

ioral characteristics of village systems across each stage.

4.1.2. Calculation and Evaluation of StateMod-

els

Based on the time series data, this study used a linear

regression model to estimate the state of the village system

at a future point in time [47], as follows:

S(t+ 1) = α0 + α1S(t) + β1E (t) + ε (3)

Where S(t) denotes the current state variable, E(t) de-

notes external factors, and α0, α1,   β1 are model parameters

determined by data fitting. ϵ is the error term.

Using fitted calculations based on data from 2015 to

2023, we obtained predicted state values for each village

system at future time points. Analyzing the differences and

trends in these predictions allows us to further examine the

distinct dynamic behaviors of various villages across differ-

ent stages. This model analysis offers a quantitative basis

for understanding the dynamic characteristics of each vil-

lage over time, aiding in revealing each village’s response

mechanisms to changing external conditions (see Figure 3).

Figure 3. System dynamics process prediction value.

Source: Self-illustrated.

As shown in Figure 3, dynamic behavior analysis re-

veals distinct patterns in the evolution of village systems under

varying external shocks and internal attributes. Key findings

for each village system are summarized in Table 1 as follows:
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Table 1. Comparison of village system phases and key findings.

Village Growth Phase Release Phase Reorganization Phase Key Characteristic

Moluo 2015–2016: Steady

growth.

2016–2022:

Fluctuating decline

2023: Stable growth. Highly sensitive to external shocks, showing prolonged

instability during the release phase but stabilizing in 2023.

Kegeyi 2015–2019:

Fluctuating decline

2019–2021:

Declining trend

2022–2023: Gradual

recovery.

Displays cyclical behavior with clear recovery in 2023

despite previous instability and external influences.

Shenzuo 2015–2019: Steady

growth.

2020: Slight decline 2021–2023: Stable

growth.

Exceptionally stable with minimal fluctuations, indicating

strong resilience to external disturbances.

Xisuo 2015–2019: Slight

decline.

2020–2021: Reached

a peak

2022–2023: Gradual

stable.

Maintains adaptability and recovers quickly after peak

fluctuations, demonstrating consistent system recovery.

Minzu 2015–2018:

Fluctuating decline.

2018–2022:

Substantial decline

2022–2023: Starting to

grow after continued

downward adjustments

Experiences prolonged decline but shows signs of recovery

and reorganization towards stability in the final phase.

Jiangba 2015–2017:

Significant decline

2017–2021:

Fluctuating growth

2021–2023: Gradual

stable.

Marked by significant fluctuations but stabilizes gradually

during the reorganization phase.

The table above visualizes and compares the distinc-

tive patterns of the evolution of village systems in Tibet.

Moluo and Kegeyi demonstrate pronounced sensitivity to

external shocks, characterized by prolonged release phases

followed by moderate recovery. In contrast, Xisuo and Shen-

zuo exhibit high stability and adaptability, with minimal

fluctuations throughout the study period. Minzu and Jiangba

display cyclical behaviors, marked by significant fluctua-

tions during their release phases and gradual stabilization

over time. These findings underscore the importance of inte-

grating time-series data with system-specific attributes when

managing village systems. Developing tailored strategies

that account for each village’s unique characteristics can

significantly enhance resilience and adaptability to external

disturbances [48–50].

4.2. System Dynamics andAttractor Identifica-

tion

4.2.1. Stability, Periodicity and Turning Points

of Systems

The pattern of predicted system values provides essen-

tial insights for analyzing periodicity and stability. When

predicted values display a regular pattern of increases and

decreases within a specific time frame, this suggests periodic

behavior in the system [51]. Additionally, sharp fluctuations

or trends toward stability in the predicted values reflect the

system’s volatility and stability [52].

This section calculates the mean to determine the sys-

tem’s central tendency and uses standard deviation to assess

its volatility: a smaller standard deviation generally indicates

greater stability, while a larger standard deviation suggests

higher volatility and lower stability [53]. Furthermore, calcu-

lating autocorrelation evaluates the dependency within the

time series, revealing whether the system exhibits signifi-

cant relationships and periodic characteristics [47, 54]. Entropy

analysis provides further insights into system order and un-

certainty. Low entropy indicates a stable, orderly systemwith

minimal internal changes and low uncertainty, while high

entropy signifies a disordered, unstable system with substan-

tial internal variation and lower adaptability [55]. Changes

in entropy values over time also indicate adjustment trends

within the system, serving as reference points for identifying

potential turning points (see Figure 4).

An analysis of the dynamic behavior of each village’s

system reveals significant differences in stability, period-

icity, and complexity. The systems of Moluo and Kegeyi

villages exhibit moderate volatility, with standard deviations

of 0.3202 and 0.3603, respectively, indicating relatively weak

stability in their time series. Moluo village’s negative auto-

correlation (–0.0236) suggests a lack of significant period-

icity, potentially even indicating countercyclical behavior.

Additionally, its high entropy value (–10.3460) reflects con-

siderable internal uncertainty, highlighting complexity and

instability in response to external shocks [56]. Kegeyi village,

while having positive autocorrelation (0.0619), only shows

a weak cyclical trend, and its high entropy value (–2.6867),

along with large extreme-value differences, further indicates

system complexity and limited adaptability. These results

suggest that Moluo and Kegeyi villages may lack sufficient

resilience and stability to respond to external changes effec-

tively.
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Figure 4. Comparison of metrics across villages.
Note: The mean value indicates the central tendency of the system, and the standard deviation assesses the volatility of the system; the larger the standard deviation, the higher

the volatility. The autocorrelation is used to determine the periodicity and temporal correlation of the data, and the entropy value assesses the orderliness of the system; a low

entropy value indicates stability, and a high entropy value indicates disorder and high uncertainty.

Source: Self-illustrated.

In contrast, the villages of Xisuo and Shenzuo demon-

strate significantly different characteristics. Xisuo village

has the highest standard deviation (0.4817), indicating the

greatest volatility. Its autocorrelation of 0.7232 suggests

strong periodic behavior, yet the extremely low entropy value

(–23.8718) implies high internal complexity and extreme sen-

sitivity to initial conditions, reducing the system’s predictabil-

ity [57]. Shenzuo village, by contrast, displays exceptional

stability, with a standard deviation of only 0.0336 and mini-

mal extreme-value differences, indicating low volatility and

strong resilience. Its autocorrelation of 0.6907 reveals clear

periodic behavior, while a positive entropy value (2.1938)

suggests a high level of order, reflecting effective manage-

ment strategies and strong resistance to external shocks.

In summary, Shenzuo village exhibits the best perfor-

mance regarding system stability, periodicity, and order, sug-

gesting that its management strategies are effective and pos-

sess strong system resilience. Xisuo village, while showing

clear periodicity, has high volatility and complexity, indi-

cating that the system is in an unstable dynamic state. The

systems of Moluo and Kegeyi villages show high volatil-

ity and uncertainty, lack significant periodicity, and exhibit

relatively poor stability. Minzu and Jiangba villages are

intermediate in terms of periodicity and complexity, display-

ing some adaptability. The differences in dynamic behavior

across villages reflect varying levels of management effec-

tiveness and resilience to external shocks, offering valuable

insights for further exploration of long-term village system

development.

In the evolution of complex dynamic systems, identi-

fying key turning points is crucial—not only for capturing

transitions from one state to another but also for revealing

the system’s driving mechanisms [58]. To identify these turn-

ing points, we assessed the magnitude of dynamic changes

each year by calculating the absolute change in the system,

defined as ΔS(t) = |S(t)−S(t−1)|. Assessing the magnitude

of change in the dynamics of the system across years [38].

Larger absolute changes often indicate that the system under-

went a significant dynamic shift during that year, potentially

signaling the start of a new phase.

As shown in Figure 5, each village exhibits notice-

able fluctuations in absolute change values in specific years,

reflecting different sensitivities and response patterns to ex-

ternal influences. These changes are often closely associated

with geographic environment, social structure, economic

factors, and policy shifts.
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Figure 5. Absolute Annual Change and Identification of Turning Points.
Note: This figure shows the annual trend in the amount of absolute change in the system for each village from 2016 to 2023 and is used to identify system turning points. Years

with higher amounts of change can be considered potential turning points, indicating that the system experienced a significant change or external shock in that year. Trends in

change across villages reflect their differences in volatility and stability.

Source: Self-illustrated.

Specifically, Moluo village experienced significant

fluctuations in 2016 and 2018, with a particularly high

change value in 2016, suggesting that the village may have

been impacted by substantial external influences or internal

adjustments that affected its resilience. Similarly, Kegeyi

village displayed high absolute change values in 2016 and

2023, likely due to environmental shifts, policy adjustments,

or changes in management practices. Xisuo village’s key

turning point occurred in 2021, where the absolute change

was far higher than in other years, potentially reflecting a

sudden event or strong external shock. In contrast, Shenzuo

village remained relatively stable throughout the analysis

period, though minor fluctuations in 2018 and 2020 may

indicate potential system change trends or the influence of

external interventions. The key turning points for Minzu and

Jiangba villages appeared in 2016 and 2020, respectively; no-

tably, the fluctuation in 2016 may be associated with policy

adjustments, environmental pressures, or shifts in economic

development, revealing vulnerabilities in these villages when

facing external shocks [59].

These turning points reveal that different villages dis-

play diverse response patterns when confronted with similar

or distinct external factors. Identifying these turning points

not only highlights significant changes in the system dur-

ing specific years, but also provides valuable evidence for

understanding dynamic system evolution and identifying

key driving factors [43, 58]. These findings suggest that pay-

ing greater attention to turning points in management and

decision-making can help develop more adaptive strategies,

thereby enhancing the stability and resilience of village sys-

tems.

4.2.2. Attractor Identification and Verification

In complex dynamical systems, an attractor represents

the long-term state toward which the system converges. At-

tractors are generally classified into three types: fixed-point

attractors (where the system stabilizes at a specific state), peri-

odic attractors (where the system follows a cyclical trajectory),

and chaotic attractors (where the system exhibits complex,

non-periodic, yet bounded behavior). Identifying attractors

is critical for understanding a system’s dynamic characteris-

tics, particularly chaotic attractors, which reveal heightened

complexity and sensitivity to initial conditions [60]. Insights

into attractor types not only illuminate system behavior but

also provide valuable guidance for controlling and optimizing
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complex systems. This section focuses on the identification

of chaotic attractors to deepen understanding of the nonlinear

dynamics underlying rural systems [61, 62]. Traditional linear

analysis is insufficient to capture the full scope of a system’s

dynamic complexity. The identification of chaotic attractors

offers critical insights into potential instabilities and sensi-

tivities, which are essential for understanding and managing

system behavior. Preliminary analysis of system periodicity

and stability forms the foundation for attractor identification,

with an emphasis on detecting chaotic dynamics to enhance

our understanding of system evolution.

In this study, six key variables representing environ-

mental, social, and economic dimensions were selected for

multivariate nonlinear analysis. These variables include

the “growth rate of irrigated farmland area”, “forest cov-

erage”, “road density”, “communication network coverage”,

“regional economic growth rate” and “annual growth rate

of the employed population”. Multivariate phase space re-

construction was employed, with principal component anal-

ysis (PCA) used to project the high-dimensional data onto

a two-dimensional space for visualization. A multivariate

recurrence plot (RP) was then generated (as illustrated in

the accompanying figure), which highlights diagonal struc-

tures, scatter distributions, and empty regions indicative of

the system’s dynamics [63]. The diagonal structures, scatter

distributions, and empty regions in the recurrence plot help

determine whether the system exhibits periodic or chaotic

characteristics.

Next, recurrence quantification analysis (RQA) was

performed to calculate indicators such as recurrence rate

(RR), determinism (DET), laminarity (LAM), and entropy

(ENT), which quantify the recurrence behavior and complex-

ity of the system. If RQA indicates a high entropy (ENT)

and low recurrence rate (RR), the system likely has a chaotic

attractor, reflecting high complexity and unpredictability.

Conversely, a system with a high recurrence rate and de-

terminism suggests a periodic attractor, indicating strong

periodicity and stability [64]. This analysis offers deeper in-

sights into the system’s attractor characteristics and potential

evolutionary trends (as shown in Figure 6).

(a) Molo village (b) Kegeyi Village (c) Xisuo Village

(d) Shenzuo Village (e) Minzu Village (f) Jiangba village

Figure 6. Identification of system dynamic attractors.
Note: This figure displays multivariate recurrence plots for each village, illustrating indicators such as recurrence rate (RR), determinism (DET), laminarity (LAM), and entropy

(ENT), which help assess system complexity and periodicity. These indicators enable an assessment of each village system’s dynamic behavior type, offering deeper insight into

system stability and uncertainty.

Source: Self-illustrated.
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The recurrence plot for Moluo village reveals an in-

complete diagonal structure with some irregular scatter, sug-

gesting periodicity and stability in certain periods but overall

indicating high dynamic complexity and uncertainty [65].

In contrast, Kegeyi village’s recurrence plot is relatively

orderly, showing continuous diagonals, which implies high

short-term predictability and stability, with lower uncertainty

and chaotic tendencies. However, its entropy value (1.987)

indicates that dynamic complexity may still be present over

the long term.

The recurrence plots for Xisuo and Jiangba villages also

show prominent diagonal structures, reflecting strong short-

term periodicity and determinism. The high determinism

(DET) in their RQAmetrics further confirms this. Nonethe-

less, both villages exhibit high entropy values (1.987), sug-

gesting that although stable in the short term, more complex

dynamic behaviors or even chaotic tendencies could emerge

over a longer timeframe [66]. Jiangba village’s short-term

stability and periodicity provide a basis for prediction and

management, though more complex dynamics may appear

in the long term [67].

Shenzuo village’s recurrence plot shows strong period-

icity and stability, but scattered points indicate the system is

not entirely stable. Its entropy (1.99) and lower laminarity

(LAM = 0.31) suggest a degree of complexity, with intermit-

tent or irregular dynamic behavior in certain states. Overall,

Shenzuo exhibits periodicity and predictability, though un-

certainty may arise in specific situations.

Minzu village’s recurrence plot and RQAmetrics re-

veal mixed dynamic characteristics. The regular, continuous

diagonals indicate predictability on certain time scales, while

scattered points suggest complex and uncertain behavior in

specific states. The high entropy value (1.99) supports the

idea that the system may be influenced by external distur-

bances or changes in resource management, showing signs

of chaotic behavior [68].

In summary, the dynamic behavior of each village sys-

tem shows a certain degree of periodicity and stability in

the short term yet exhibits varying levels of complexity and

uncertainty over the long term. Identifying attractors should

involve analyzing both short-term periodic characteristics

and long-term dynamic complexity to gain a comprehensive

understanding of each village system’s behavior.

To further identify key “attractors,” we screened, ex-

cluded, and compared the six key variables. The results

reveal significant differences in how these variables affect

the dynamic behavior of each village system, leading to the

identification of chaotic attractors within the system [69]. As

shown in Table 2 and Figure 7:

Table 2. Key variables and dynamic indicators.

Village GRRC FLCF RD CC EGR AGREP

Molo RR:0.2099

DET:2.5882

LAM:0.764

ENT:1.9874

RR:0.1605

DET:3.3846

LAM:0.3077

ENT: 1.9874

RR:0.165

DET:3.36

LAM:0.3077

ENT:1.9874

RR: 0.1605

DET:3.3846

LAM:0.3077

ENT: 1.9874

RR: 0.1605

DET:3.386

LAM:0.307

ENT:1.9874

RR: 0.2099

DET: 2.8235

LAM:0.4706

ENT: 2.1664

kegeyi RR: 0.1852

DET: 2.9333

LAM: 0.6

ENT: 1.9874

RR: 0.1605

DET: 3.3846

LAM: 0.3077

ENT: 1.9874

RR: 0.1358

DET: 4.0

LAM: 0

ENT: 1.9874

RR: 0.1358

DET: 4.0

LAM: 0

ENT: 1.9874

RR: 0.1358

DET: 4.0

LAM: 0

ENT:1.9874

RR: 0.1852

DET: 3.2

LAM:0.2667

ENT: 2.1664

Xisuo RR: 0.136

DET: 4.0

LAM: 0.364

ENT: 1.987

RR: 0.185

DET:2.933

LAM: 0.267

ENT: 1.987

RR: 0.136

DET: 4.0

LAM: 0.364

ENT: 1.987

RR: 0.136

DET: 4.0

LAM: 0.364

ENT: 1.987

RR: 0.235

DET: 2.526

LAM: 1.0

ENT: 2.166

RR: 0.210

DET: 2.824

LAM: 0.765

ENT: 2.166

Shenzuo RR: 0.136

DET: 4.0

LAM: 0

ENT: 1.987

RR: 0.160

DET: 3.385

LAM: 0.308

ENT: 1.987

RR: 0.136

DET: 4.0

LAM: 0

ENT: 1.987

RR: 0.136

DET: 4.0

LAM: 0

ENT: 1.987

RR: 0.210

DET: 2.588

LAM: 0.588

ENT: 1.987

RR: 0.210

DET: 2.824

LAM: 0.529

ENT: 2.166

Minzu RR: 0.210

DET: 2.588

LAM: 0.882

ENT: 1.987

RR: 0.235

DET: 2.737

LAM: 1.316

ENT: 2.324

RR: 0.160

DET: 3.385

LAM: 0.538

ENT: 1.987

RR: 0.160

DET: 3.385

LAM: 0.538

ENT: 1.987

RR: 0.210

DET: 2.824

LAM: 1.118

ENT: 2.166

RR: 0.185

DET: 2.933

LAM: 0.467

ENT: 1.987

Jiangba RR: 0.160

DET: 3.692

LAM: 0

ENT: 2.166

RR: 0.160

DET: 3.385

LAM: 0

ENT: 1.987

RR: 0.160

DET: 3.385

LAM: 0.308

ENT: 1.987

RR: 0.111

DET: 4.889

LAM: 0

ENT: 1.987

RR: 0.136

DET: 4.0

LAM: 0.364

ENT: 1.987

RR: 0.136

DET: 4.0

LAM: 0.364

ENT: 1.987

122



Journal of Environmental & Earth Sciences | Volume 07 | Issue 03 | March 2025

(a) (b)

(c) (d)

(e) (f)

Figure 7. Villages attractor analysis heat map.
Note: List of abbreviations: GRRC Growth rate of irrigated cropland (%), FLC Forest land cover(%), RD Road density(km km–²), CC Communication coverage (%), EGR

Economic growth rate in the region(%), AGREPAnnual growth rate of employed population(%). (%), EGR Economic growth rate in the region (%), AGREPAnnual growth

rate of employed population (%).

Source: Self-illustrated.

The above maps (see Figure 7a–f) illustrate the repro-

ducibility (RR), determinacy (DET), laminarity (LAM), and

entropy (ENT) metrics of the six key variables in each village

system. In each heat map, darker colors represent higher val-

ues, and lighter colors represent lower values. By excluding

and comparing the key variables, the variables that signifi-
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cantly influence the dynamic behavior of the system can be

identified and the chaotic attractor features in the system can

be further extracted.

The figure shows that, after excluding certain variables,

key system indicators (RR, DET, LAM, ENT) for each village

display significant differences. Overall, the growth rate of

irrigated farmland (GRRC) has a critical impact in several

villages, particularly in Molo and Xisuo, where excluding

this variable significantly affects the RR and LAM indicators.

Road density (RD) plays a decisive role in Shenzuo’s DET

indicator, while the annual growth rate of employed popula-

tion (AGREP) notably impacts the LAM and ENT indicators

in Xisuo and Molo, highlighting its role in reducing system

chaos and maintaining laminarity. This analysis suggests that

different variables play distinct roles across villages, under-

scoring the need for tailored management strategies to meet

the unique environmental adaptation needs of each village.

Specifically, the growth rate of irrigated farmland and

the annual growth rate of employed population are key

drivers of dynamic behavior in Molo and Kegeyi villages.

Fluctuations in these variables directly affect the stability

of the rural economic base and labor market, causing the

system to display periodic or deterministic behavior at cer-

tain stages. However, when these variables fluctuate, system

complexity and uncertainty increase, making dynamic be-

havior harder to predict [70]. In Xisuo and Shenzuo villages,

the regional economic growth rate and annual growth rate

of the employed population significantly influence dynamic

stability, as shown by changes in recurrence rate and en-

tropy. These variables drive the system to exhibit chaotic

characteristics, indicating sensitivity to external economic

and population changes [71]. In Minzu village, forest cov-

erage and economic growth rate are the primary drivers of

dynamic behavior. Fluctuations in these variables lead to

an increase in recurrence rate and entropy, reflecting pro-

nounced chaotic characteristics and high complexity [72]. In

Jiangba village, the growth rate of irrigated farmland and

communication network coverage are key drivers. The study

finds that excluding these two variables reduces the system’s

recurrence rate and increases complexity, underscoring their

importance in maintaining system stability.

In summary, forest coverage, economic growth rate,

the growth rate of irrigated farmland, the annual growth

rate of employed population, and communication network

coverage are the primary drivers of chaotic behavior in the

system, which play a key role in shaping the resilience and

adaptability. Fluctuations and interactions among these vari-

ables likely contribute to the onset of chaos in the system.

For example, changes in forest coverage not only affect en-

vironmental stability but can also have long-term impacts

on agriculture and climate, leading to complex dynamic be-

haviors. Uncertainty in the economic growth rate directly

influences resource allocation and economic activity, making

the system more prone to chaotic states [16]. The economic

growth rate is also a proxy for development pressures, which

are particularly pronounced in transitioning rural economies.

The growth rate of irrigated farmland, as a key indicator of

agricultural production, affects food production and the rural

economic base, with its fluctuations potentially destabilizing

the system. Communication network coverage drives the

system toward chaotic dynamics by influencing information

flow and market connectivity in rural areas. The annual

growth rate of the employed population reflects changes

in the labor market; when population mobility is high, sys-

tem uncertainty increases, resulting in unpredictable chaotic

behavior [18]. Labor market dynamics are critical in these

regions, where migration patterns and employment oppor-

tunities are closely tied to ethnic practices and economic

stability.

Additionally, although cultural factors (such as reli-

gious beliefs, traditional festivals, and handicrafts) were in-

cluded as state variables in the system, they did not show

significant impact on attractor identification and key variable

extraction. This may be because cultural factors remained

consistent throughout the study period, making their effects

difficult to capture in quantitative analysis. These factors

may influence system dynamics indirectly rather than di-

rectly shaping the evolution process, an area that could be

explored further in future research.

To further clarify the specific impact of each variable,

Figure 8 illustrates the performance of each village on four

system dynamic behavior indicators (RR, DET, LAM, ENT)

after excluding certain variables. The figure provides a com-

parative view that helps identify the critical role of differ-

ent variables across villages, revealing the following key

insights:
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Figure 8. Differential effects of exclusion variables on system dynamics across villages.
Note: The figure illustrates the differences in the performance of the four behavioral indicators of system dynamics across villages after excluding specific variables. The scatter

distribution of the indicators reveals the strength and variability of the impact of different variables on village system dynamics.

Source: Self-illustrated.

• Molo village, GRRC (growth rate of irrigated farmland),

and AGREP (employment growth rate) are essential vari-

ables. GRRC maintains system periodicity and stability,

while AGREP effectively reduces system chaos. This in-

dicates that GRRC is crucial for stability, while AGREP

significantly reduces system uncertainty.

• Kegeyi village, GRRC is the primary influencing vari-

able. Excluding GRRC results in a significant increase in

RR and LAM indicators, suggesting that GRRC strength-

ens system periodicity and coherence, enhancing stability.

This makes GRRC a vital component for Kegeyi’s system

stability.

• Xisuo village, AGREP and EGR (regional economic

growth rate) are primary drivers. AGREP positively im-

pacts system laminarity and stability, while EGR enhances

system determinism.

• Shenzuo village RD (road density) is the determining fac-

tor. After excluding RD, the DET index is significantly

improved, indicating that the presence of road density

increases the order and coherence of the system and im-

proves the overall stability. Shenzuo village shows higher

system coherence and anti-jamming ability under the ef-

fect of RD.

• Minzu village, FLCF (forest cover) and EGR significantly

affect the stability of the system. The presence of FLCF

and EGR reduces the uncertainty and complexity of the

system, suggesting that these two variables play an impor-

tant role in mitigating system fluctuations and supporting

long-term stability.

• JiangbaVillage, GRRC and CC (Communication Network

Coverage) are the key variables. GRRC supports the peri-

odicity of the system while CC helps to reduce the chaos

and complexity of the system, which suggests that these

two variables play an important role in maintaining the

stability of the system and reducing the effects of external

disturbances.
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Combined with the overall trend analysis in Figures 7

and 8, although similar variables influence the dynamic be-

havior of the system in different villages, the specific roles

of each variable differ significantly across villages. This vari-

ability provides data support for tailored village management

and regulation strategies, which can help to take adaptive mea-

sures based on key drivers in each village to enhance system

stability and improve resilience to external disturbances.

To validate the robustness of the model, we used MAT-

LAB to perform 5-fold cross-validation and Lasso regression

analysis. During validation, 5-fold cross-validation was ap-

plied to assess model performance under various parameter

combinations. Specifically, each parameter combination was

trained and tested across five different data partitions, with

mean square error (MSE) and coefficient of determination

(R²) calculated as performance metrics (see Figure 9). From

the cross-validation results, the parameter combination with

the lowest MSE was selected as the optimal Lasso model.

This optimal model demonstrated both high predictive accu-

racy and strong generalization across data partitions. Subse-

quently, the optimal Lasso model was used to train the entire

dataset, and its MSE and R² values on the full dataset were

re-evaluated to confirm the model’s stability and predictive

capability on a larger sample [73].

Figure 9. Model validation fit map.

Source: Self-illustrated.

The validation results show that the initial model had

an average MSE of 1.14 × 10−22 and an R² of 1, indicating

overfitting despite the extremely low error. After further tun-

ing model complexity, the optimal model achieved an MSE

of 0.139 and an average R² of 0.989, demonstrating excep-

tionally high predictive accuracy. The low MSE and high R²

indicate that this model captures the variance within the data

with high precision, resulting in an excellent fit [74, 75]. These

findings suggest that the combination of cross-validation and

Lasso regression effectively captures the relationship between

features and target variables, demonstrating outstanding pre-

dictive capability. The validation results further indicate that

this model is well-suited for understanding and predicting the

dynamic behaviors of rural systems in this study.

5. Discussion

This study offers a comprehensive analysis of the

evolutionary processes of six Tibetan villages in western

Sichuan, uncovering significant differences in their devel-

opmental stages and dynamic mechanisms. Using nonlinear

and chaotic attractor analysis, we identified key driving fac-

tors for each village’s evolution and highlighted the high

complexity and diversity of their responses to external en-

vironmental changes. These findings underscore the lim-

itations of traditional linear models, which are unable to
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fully capture the nonlinear dynamics and intricate behaviors

inherent in such systems.

Chaotic attractor analysis revealed the high sensitivity

of village systems to initial conditions and their inherent un-

certainty [16]. Villages were observed to reach turning points

at different times when facing environmental pressures, re-

flecting their dynamic and complex evolutionary pathways.

For instance, some villages rapidly entered an adjustment

phase following external shocks, while others exhibited de-

layed recovery, illustrating the nonlinearity and diversity of

system behaviors [71]. This analytical approach has practical

implications for rural planning, emphasizing the importance

of adaptive resource management strategies to address the

unpredictability of village dynamics. Chaotic attractor anal-

ysis, particularly, serves as a diagnostic tool for detecting

system instability, enabling policymakers to anticipate po-

tential disturbances and implement preventive measures in

culturally and ecologically sensitive areas.

Through multivariate nonlinear analysis, this study fur-

ther highlights the distinct cultural and ecological contexts

of Tibetan villages in western Sichuan, revealing significant

differences in their responses to natural and social changes.

Although all six villages share a Tibetan cultural background,

their adaptive behaviors vary considerably. For example,

Molo Village recovers quickly from external shocks, while

Xisuo Village exhibits greater uncertainty and chaotic char-

acteristics. These differences highlight the necessity of lo-

calized management strategies that consider the diversity of

resource management practices and cultural traditions. The

findings not only expand theoretical understanding but also

provide a robust foundation for designing targeted policies.

Building on previous research, this study integrates non-

linear dynamic analysis with multivariate phase space recon-

struction to investigate complex system behaviors. Through

chaotic attractor identification and Recurrence Quantifica-

tion Analysis (RQA), it uncovers hidden dynamic patterns

and critical turning points, offering actionable insights for en-

hancing system resilience and adaptability. Unlike traditional

linear models, nonlinear approaches enable a more nuanced

understanding of dynamic interactions, providing a robust

framework for localized rural governance and sustainable

development strategies [23, 24]. By identifying chaotic attrac-

tors and analyzing multivariate interactions, this research

reveals intricate dynamic behaviors and key turning points,

advancing rural planning and cultural preservation [76]. For

example, stabilizing the growth rate of irrigated farmland

has significantly enhanced resilience in Molo Village, while

managing fluctuations in employment growth has reduced

uncertainty in Xisuo Village. These findings offer action-

able recommendations for cultural heritage preservation and

tailored rural governance strategies, addressing the distinct

needs of each village.

While this study has achieved significant results, cer-

tain limitations remain. First, the limited sample size may

restrict the generalizability of the findings, underscoring the

need for future research to expand the sample scope to im-

prove model robustness [77]. Additionally, comparing the

study’s results with similar research conducted in other re-

gions is particularly important. Such comparisons not only

validate the applicability of the findings but also reveal the

uniqueness and commonalities of Tibetan village systems in

coping with external shocks and adapting to environmental

changes, offering a global perspective. Second, the relatively

short study period limits the ability to capture long-term fluc-

tuations and key turning points, suggesting that extending

the timeframe in future studies could yield more comprehen-

sive insights [78]. Furthermore, future research should aim to

dynamically update research variables and model parameters

to better reflect system complexity [18].

To address these limitations and further deepen the anal-

ysis, interdisciplinary collaboration integrating perspectives

from sociology, economics, and ecology would be invaluable.

Such collaboration could not only enrich our understanding

of Tibetan village systems but also provide comparative in-

sights into similar rural regions worldwide [79, 80]. Incorpo-

rating real-time data and dynamic variable analysis could

further enhance model flexibility, enabling more precise iden-

tification of critical change points and long-term trends. An

interdisciplinary approach would also offer stronger theoret-

ical support for sustainable village development and cultural

preservation [22, 81].

6. Conclusions

In conclusion, this study provides an in-depth explo-

ration of the evolutionary processes of Tibetan villages in

western Sichuan, revealing their high complexity and diver-

sity within dynamic contexts. We identified critical turning
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points and key drivers in each village’s adaptation to external

shocks and internal changes by employing nonlinear analysis

methods and chaotic attractor identification. This approach

highlights the study’s unique contribution to understanding

how village systems evolve and adapt under environmental

pressures.

The findings demonstrate that response patterns and

key variables vary across villages, underscoring the impor-

tance of localized management strategies to enhance system

resilience. Although the study faced limitations in sample

size and study period, it offers valuable insights into the

dynamic characteristics of Tibetan village systems. Future

research should aim to expand the sample size and timeframe

to validate and generalize these findings further. Addition-

ally, integrating more flexible methods and fostering inter-

disciplinary collaboration will enable researchers to capture

better the complexities of system evolution across diverse

environmental conditions. A deeper understanding of each

village’s dynamics and key drivers can inform policies to

enhance adaptability and resilience, supporting sustainable

development in rapidly changing environments.
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