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ABSTRACT
During daylight laser polarization sensing of high-level clouds (HLCs), the lidar receiving system generates a  

signal caused by not only backscattered laser radiation, but also scattered solar radiation, the intensity and polarization 
of which depends on the Sun’s location. If a cloud contains spatially oriented ice particles, then it becomes anisotropic, 
that is, the coefficients of directional light scattering of such a cloud depend on the Sun’s zenith and azimuth angles. 
In this work, the possibility of using the effect of anisotropic scattering of solar radiation on the predictive ability of 
machine learning algorithms in solving the problem of predicting the HLC backscattering phase matrix (BSPM) was 
evaluated. The hypothesis that solar radiation scattered on HLCs has no effect on the BSPM elements of such clouds 
determined with a polarization lidar was tested. The operation of two algorithms for predicting the BSPM elements is 
evaluated. To train the first one, meteorological data were used as input parameters; for the second algorithm, the azi-
muthal and zenith angles of the Sun’s position were added to the meteorological parameters. It is shown that there is no 
significant improvement in the predictive ability of the algorithm.
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1. Introduction

The study of atmospheric processes is crucial for 
understanding environmental change, predicting climate 
variations, and developing strategies to mitigate the effects 
of dangerous natural phenomena. To this day, despite sig-
nificant advances in atmospheric science, many aspects of 
the atmosphere’s behavior remain poorly understood due 
to its complexity. The process of identifying connections 
between atmospheric characteristics and external factors  
affecting its state is a challenging and multidimensional 
task [1,2]. Lidar (Light Identification, Detection, and Rang-
ing) systems are a powerful tool for remote sensing of 
aerosol formations in the atmosphere including high-level 
clouds (HLCs). However, processing and interpreting lidar 
data often requires complex analysis methods. In this con-
text, it is relevant to consider the use of machine learning 
(ML) techniques for processing the data of the experiments 
on remote sensing of natural environment, as well as for 
solving inverse problems in atmospheric physics, ecol-
ogy, etc. These methods allow detecting and investigating 
of interrelationships between various parameters in large 
volumes of data that would be difficult to identify through 
classical statistical analysis [3–6].

The solar radiation flux reaching the Earth’s surface 
is formed by a combination of direct and scattered compo-
nents. Scattered radiation is formed because of the interac-
tion between direct radiation and atmospheric gases (mo-
lecular scattering), water droplets in clouds and fog, ice 
crystals in clouds, and aerosol particles. Most of the solar 
radiation energy that reaches the Earth’s surface is in the 
short-wavelength spectral region, with wavelengths rang-
ing from approximately 300 to 4,000 nm [7]. The scattered 
radiation flux depends on the transparency of the atmos-
phere and is primarily determined by the number of clouds 
in the sky and their optical and microphysical properties. 
Aerosol particles in the atmosphere scatter and absorb 
solar radiation, directly changing the amount of radiation 
reaching a particular location. In addition, aerosol particles 
act as condensation nuclei of water vapor contained in the 
air, and, thereby, accelerating the process of cloud forma-
tion [8]. Under clear weather conditions, scattered radiation 
accounts for approximately 15–20% of the total radiation 
in warm and cold weather [9].

The relationship between the energy flow of solar 
radiation entering the Earth’s surface and the transparency 
of the atmosphere is being studied by the world scien-
tific community because a change in the Earth’s radiation 
budget may indicate increased air pollution associated 
with increasing anthropogenic emissions, which leads 
to changes in weather in certain regions of the Earth and 
global climate [10]. For example, in [11], the characteristics of 
solar radiation in the surface layer of the atmosphere were 
studied under various air pollution conditions over Nan-
jing, China. The change in the flow of radiation affects the 
surface temperature, the processes of evaporation and con-
densation of water vapor, the water cycle and, in general, 
the Earth’s ecosystem [12]. Cirrus clouds have less effect 
on the transmission of direct solar radiation compared to 
other clouds due to their insignificant optical thickness. At 
the same time, the large horizontal extent of such clouds, 
which takes values up to a thousand kilometers [13], as well 
as the presence of horizontally oriented ice particles in 
HLCs (such clouds are called specular) significantly affect 
the fluxes of scattered solar radiation.

Existing atmospheric models, including the global 
model of the European Centre for Medium-Range Weather 
Forecast (ECMWF), do not take into account the special 
features of the atmospheric microstructure. Determining 
the parameters of the microstructure of clouds is a non–
trivial task due to the variety of shapes of ice particles in 
them and the complexity of the mathematical description 
of their size distributions. As a rule, the concept of an ef-
fective radius based on the equality of one of the charac-
teristics of particles and a certain model sphere is used [14]. 
This simplification allows the Mi theory to be used in cal-
culating the HLC radiation characteristics, but, apparently, 
it leads to errors in weather and climate forecasts.

The maximum information about the microphysical 
parameters of the particle ensemble available for obtaining 
in a light scattering experiment is contained in the scat-
tering phase matrix (SPM) [15]. A lidar allows the SPM to 
be obtained only for angles close to the direction of 180 
degrees, which is called the backscattering matrix (BSPM). 
The polarization laser sensing method [16], which is based 
on determining the BSPM, is informative on the shape and 
orientation of ice particles in HLCs. During laser polariza-
tion sensing of such clouds in the daytime, the lidar receiv-
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ing system receives not only a lidar signal caused by back-
scattered laser radiation, but also solar radiation scattered 
by HLCs, the intensity and polarization of which depends 
on the Sun’s position in the sky. If the cloud contains spa-
tially oriented ice particles, it becomes anisotropic, that 
is, the coefficients of directional light scattering of such a 
cloud depend on the Sun’s zenith and azimuth angles.

The article employed the machine learning (ML) 
tools to investigate the correlation between HLC BSPM 
elements and meteorological conditions[17]. In the present 
work we evaluate the effect of solar radiation scattered by 
HLCs on the performance of these algorithms when us-
ing them to process data on the laser sensing of clouds in 
the daytime. The hypothesis of the absence of the effect of 
scattered UV radiation on the BSPM elements determined 
with the polarization lidar was tested with appropriate 
correction of experimentally obtained lidar signals. It was 
assumed that the intensity of solar radiation scattered by 
clouds was measured independently. The operation of two 
algorithms for predicting the BSPM elements was evalu-
ated. To train the first one, meteorological data was used 
as input parameters; for the second algorithm, the Sun’s 
azimuth and zenith angles were added to the meteorologi-
cal parameters. It is shown that there is no significant im-
provement in the predictive power of the algorithm.

2. Materials and Methods

In the present work, the data obtained with the high-
altitude matrix polarization leader (HAMPL) developed at 
the National Research Tomsk State University (NR TSU) 

were used [18]. It should be noted that the HAMPL database 
contains the results of experiments performed from 2009 to 
2024. To assess the meteorological situation at the altitudes 
of the examined clouds, data from the ERA5 reanalysis of 
the European Centre for Medium-Range Weather Forecasts 
were used. The lidar is located in Tomsk and is oriented 
vertically in the zenith direction. The HAMPL block dia-
gram is shown in Figure 1.

The HAMPL design is equipped with a Nd: YAG 
laser operating at a wavelength of 532 nm with a pulse en-
ergy of up to 400 mJ, and a pulse repetition rate of 10 Hz, 
which is used as an optical radiation source. A Cassegrain 
mirror lens with a primary mirror diameter of 0.5 m and 
a focal length of 5 m is used as a receiving antenna. The 
lidar receiving system includes the ThorLabs FL532-1 in-
terference filter with a central wavelength of 532 ± 0.6 nm 
and a half-width of the transmission spectrum of 3 ± 0.6 m. 
Then the Wollaston prism, which divides received back-
scattered radiation into two orthogonally polarized beams, 
is mounted. These radiation beams are registered with two 
photomultiplier tubes (PMTs) operating in the photon-
counting mode with time strobing of the signal, which 
provides the altitude resolution from 37.5 to 150 m [19].  
To suppress active backscattering interference from the 
near lidar zone (up to 3 km), electro-optical shutters (EOSs) 
based on a potassium dideuterium phosphate (DKDP) 
crystal are installed in front of the PMTs. The use of EOSs 
allows the PMT characteristics to be maintained linearly 
even during lidar operation in the daytime with the maxi-
mum energy of the sensing pulse.

Journal Name | Volume x | Issue x | Month Year

1
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Figure 1. HAMPL: (a) block diagram: 1—laser; 2—Glan–Taylor prism; 3—collimator; 4—stepper motor; 5—polarization 
transformation unit; 6—Cassegrain telescope; 7—field stop; 8—lens; 9—interference filter; 10—Wollaston prism; 11—PMTs; 12—
EOSs; 13—computer-based data recording and displaying equipment [19]; (b) view of the receiving and transmitting part; (c) view on 
the roof of the building; (d) view from the roof of the building.
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During each sensing cycle, pulses of radiation with 
four different polarization states (three linear and one 
circular) were sent to the atmosphere one by one. The 
polarization state of backscattered radiation described by 
the Stokes vector was determined for each pulse. Thus, 
16 intensity vertical profiles, from which BSPM elements 
were calculated, were measured in each sensing cycle. The 
HAMPL provided the registration of lidar returns from 
HLC in the parallel accumulation regime of 16 arrays of 
single-electron pulses. This regime allows the intensity 
of all mentioned intensities to be estimated with the same  
error. During sensing in the parallel accumulation regime, 
the polarization elements in the transmitting and receiv-
ing systems of the lidar are constantly changing, as a re-
sult of which, at a repetition rate of 10 Hz sensing pulses,  
the minimum time of a complete measurement cycle for 
determining all BSPM elements is 2 seconds [18, 19]. Lidar 
signal processing is based on the application of the laser 
sensing equation (LSE). In vector form, it is represented as 
follows [16]:

 
    = 1

2
0


2 ()exp −2 0

0 (',,)'

 = 1
 =1

 ( −  )2
    = 1

2
0


2 ()exp −2 0

0 (',,)'

 = 1
 =1

 ( −  )2

 (1)

Where P(z) and s(z) are the power and the normalized 
Stokes vector parameter of radiation incident on the input 
of the lidar receiving system from the scattering volume 
located on the sensing path at a distance z from the source, 
respectively; c is the speed of light in the medium; W0 = 
P0Δt is the pulse energy of the lidar transmitter (P0 and Δt 
are the power and duration of the laser pulse, respectively); 
A is the effective area of the receiving antenna; G(z) is the 
geometric factor (when sensing high-level clouds, G(z) 
is usually equals to 1); Mπ(z) is the normalized BSPM of 
the scattering volume; s0 is the normalized Stokes vector-
parameter of sensing radiation; ε(z’,θ,φ) is the attenuation 
coefficient; θ and φ are the polar and azimuthal angles, 
respectively. Note that the value of P(z) in (1) is corrected 
for additive interference caused by solar radiation scattered 
by HLCs. The intensity of this radiation is measured for 
each laser pulse sent into the atmosphere and, accordingly, 
the amount of scattered solar radiation entering the lidar 
receiving system can be subtracted from the total flow.

As mentioned above, information about the optical 

and microphysical characteristics of a cloud is available 
from lidar experiments, is contained in the MORS. From 
a mathematical point of view, it is an operator for convert-
ing the Stokes vector-parameter describing the polarization 
state of sensing radiation into the Stokes vector-parameter 
of backscattered radiation received by the lidar. Wherein, 
the polarization state of scattered radiation depends on the 
scattering volume properties, namely, on the concentration 
and composition of scattering particles, on their size, shape 
and spatial orientation. In other words, the BSPM physi-
cally contains information about the microstructure of the 
cloud. 

The procedure for determining the noise level in the 
lidar receiving channel is relatively simple and, at the same 
time, original. For this purpose, the time interval between 
two consecutive sensing laser pulses is used. Since HLCs 
in the middle latitudes are located at altitudes from 5 to 
10–12 km, it can be assumed that the backscatter signal 
from such clouds lasts no more than 100 microseconds 
from the moment the probing pulse is sent. Therefore, in 
the time interval from 100 to 1000 microseconds, the lidar 
receiving system will register a background radiation flux, 
which in the daytime is mainly due to the brightness of the 
daytime sky and the stream of scattered solar radiation en-
tering the lidar receiving system.

The NR TSU HAMPL is in the southern part of 
Tomsk (56°26′ N 84°58′  E), about 0.5 km from the bank 
of the Tom’ River. Measurements are performed in the ab-
sence of low clouds and precipitation. The duration of one 
series of lidar measurements is usually 16 minutes and 40 
seconds. The description of the distributions of the number 
of lidar measurements and the number of cases of HLC 
registration in them by year and season was previously 
published [18, 19]. In the present article, the data from lidar 
experiments performed in 2020–2023 are considered. Dur-
ing this time period, HLCs were recorded during 40% of 
the lidar measurement series. To evaluate the meteorologi-
cal conditions at the altitudes of the examined clouds, we 
relied on data from the ERA5 reanalysis provided by the 
European Centre for Medium-range Weather Forecasts [19].  
The most reliable source of data on the vertical profiles 
of meteorological parameters is radiosonde observations, 
although the nearest stations to Tomsk where radiosonde 
launches are performed regularly are approximately 200–
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230 km away (Kolpashevo and Novosibirsk). Although the 
meteorological conditions at the altitudes of cloud forma-
tion in the upper atmosphere are usually similar accord-
ing to these data, the ERA5 reanalysis provides a higher 
temporal resolution (1 hour compared to 12 hours). With a 
high spatial resolution (30 × 30 km), the ERA5 reanalysis 
provides vertical profiles of the meteorological parameters 
and Tomsk coordinates [20]. As initial data for the ERA5, 
measurements from various sources around the globe are 
used: satellite radiometers, ground-based, ship-based and 
aircraft weather stations, weather buoys, balloon-borne 
sensors, and ground-based radars [21]. At the HLC forma-
tion altitudes, the vertical resolution of the ERA5 data is 
25–50 hPa, which is approximately equivalent to 0.5–1 
km. To evaluate the meteorological situation at the forma-
tion altitudes of the examined clouds, the altitudes of their 
boundaries are determined based on the lidar measurement 
data, for which the corresponding reanalysis data are then 
adjusted by coordinates, date, time, and altitude.

3. Results

To test the hypothesis that the signals measured dur-
ing lidar experiments are independent of the zenith and 
azimuth angles of the Sun’s position, these angles were 
calculated using a similar method as described in [22]. The 
input parameters for the calculations included the coordi-
nates and time zone of the observation location, as well as 
the specific date and time. There is a known issue in treat-
ing azimuthal and zenith angle values when they approach 
360 degrees – a discontinuity, which can cause errors in 
program calculations due to the large numerical difference 
between angles that are essentially adjacent. For example, 
the angles 359° and 1° are mathematically close, but their 
direct numerical representation introduces a sharp transi-
tion, leading to inconsistencies when performing trigono-
metric calculations. We converted the angular values into a 
continuous distribution by calculating their sine and cosine 
components to ensure that angles, which are next to each 
other on a circular scale, are handled consistently by the 
algorithms. Four continuous variables from the sine and 
cosine of both the azimuthal and zenith angles were com-
puted and then used in the analysis.

In the previous study [17], the relationship between the 
HLC BSPM elements and altitude was investigated, with 

results showing no significant correlation. Based on these 
results, in this study, for each set of lidar measurements, 
the median values from the experimental sample were used 
as the values for the BSPM elements. The article [17] also 
demonstrates that only the elements on the matrix main 
diagonal (m22, m33, and m44) have a specific dependence on 
meteorological variables. 

As previously mentioned, a dataset used in this 
research has been generated from the median values of 
BSPM elements and their associated date, time, coordi-
nates, and altitude values for meteorological parameters 
based on the ERA5 data [23]. This dataset was then en-
hanced by including the sine and cosine values of the Sun’s 
azimuth and zenith angles. After that, the lidar data were 
split into training and validation sets, with the training set 
containing only meteorological data and the validation set 
incorporating solar position data. The results of the trained 
models were then evaluated and compared. Random Forest 
(RF) models were used, including a version with data pre-
processing using principal component analysis (RF+PCA). 
The validation sample that was held out used to assess the 
accuracy of the models’ forecasts for HLC characteristics 
was generated from data covering the period from Febru-
ary 15, 2020, to September 22, 2023 (65 observations). 
This validation set was not used during the training phase, 
allowing for an unbiased assessment of the model’s ability.

After training the ML algorithms, the validation data-
set was used to assess the accuracy of the models in pre-
dicting the BSPM elements. In the process of choosing the 
optimal algorithms for predicting the values of the BSPM 
elements, all possible variants of the number of compo-
nents in the PCA method were investigated. 

The performance of the models trained on two data-
sets – one including solar data and one without them – was 
compared using a metric in the form of a mean squared 
error (2). This metric was calculated between the values 
predicted by the algorithm and the actual experimental 
data. The results are presented in Table 1. RF stands for 
the random forest algorithm, while PCA represents the data 
that has been preprocessed using the principal component 
analysis (the number of components used is indicated in 
parentheses). 
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The best results in terms of the predictive ability of 
the algorithms were obtained from the data processed us-
ing PCA with the number of components equal to 9 and 
15. The number of possible components varies from 1, 
which is necessary for the presence of at least one training 
feature, to the total number of available features, which is 
65, among which 5 meteorological values were collected 
at 13 different altitudes. 

Specifically, for element m22, the RF+PCA method 
with 15 components showed an improvement of 2.36%, 
which is a positive result. However, for element m33, a de-
terioration of 6.17% is observed when using RF+PCA with 
15 components, indicating the need for further analysis. 
The RF+PCA method with 9 components also demonstrat-
ed an improvement for element m22 of 1.43% and a slight 
improvement for element m33 of 0.44%. For element m44, 
the results remain close to the initial values, with minor 
changes, which may indicate the stability of this element 
when applying different methods.

The “Percentage of improvement” column provides 
a quantitative description of the correspondence of the 
HLC BSPM elements predicted by machine learning 
methods obtained during lidar measurements using the 
two mentioned data sets. As can be observed from Table 
1, there has been no significant and consistent improve-
ment in the performance of any of the algorithm types. 

There are minor differences in the algorithm’s output when 
comparing results without the use of the Sun’s zenith and 
azimuth angles compared to those with them. Although 
the estimated improvements are up to several percent, the 
differences in the results obtained using both methods are 
small (0.0001–0.001). The change in predictive capability 
is within a range of no more than 7%. This indicates that 
the addition of data regarding the position of the Sun has a 
random effect on the behavior of the algorithms, and none 
of the presented algorithms was able to identify a stable 
dependency for any element or demonstrate more confi-
dent results. Higher performance metrics for algorithms 
using the principal component method may suggest that 
the application of this preprocessing method introduces 
additional randomness, which can lead to slight improve-
ments. However, these improvements are driven by ran-
dom factors and are not significant. Therefore, even signif-
icant differences in the percentage of improvement among 
the three machine learning techniques used, which amount 
to a few percent, are not explainable from the perspective 
of atmospheric optics. The results obtained suggest that 
the inclusion of the Sun’s zenith and azimuth angle in the 
experimental dataset used to train the machine learning 
models does not significantly impact their predictive abil-
ity when searching for correlations between HLC BSPM 
elements and meteorological parameters. 

Table 1. The results of a comparative analysis of the algorithms.

Method
The Predicted 
HLC BSPM 
Element

The MSE Value Obtained 
without Using the Angles of 
the Sun‘s Position

The MSE Value Obtained with Using 
the Angles of the Sun‘s Position

Difference 
Improvement 
Percentage, %

RF

m22 0.03623 0.03635 –0.00012 –0.33 

m33 0.05577 0.05551 0.00026 0.47

m44 0.11618 0.11811 –0.00193 –1.66

RF+PCA (15)

m22 0.0292 0.02851 0.00069 2.36 

m33 0.05621 0.05968 –0.00347 –6.17 

m44 0.09536 0.09524 0.00012 0.13 

RF+PCA (9)

m22 0.02929 0.02887 0.00042 1.43 

m33 0.06383 0.06355 0.00028 0.44 

m44 0.09547 0.09998 –0.00451 –4.72 
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It should be noted that the table presents the results 
of the three most effective models, demonstrating the best 
predictive performance on data that does not contain in-
formation about solar coordinates. Within the framework 
of this study, various algorithms were also tested, includ-
ing neural networks, linear regression, and other machine 
learning methodologies. The analysis showed that the be-
havior of these algorithms remained unchanged when solar 
data was added, indicating the absence of a significant 
improvement in the predictive capability of the models as 
a result of integrating additional information about solar 
activity. The inclusion of information about the position 
of the sun may potentially affect the results of the analy-
sis. Studies show that components based on the principal 
component method may be sensitive to the presence of ad-
ditional factors, such as solar activity, which in turn could 
improve the predictive capability of the model. Such re-
sults can be explained by several factors. Firstly, it is pos-
sible that solar coordinates do not have a significant impact 
on the variable under study, indicating their insignificance 
in this context. Secondly, it is assumed that the model al-
ready sufficiently accounts for other factors that may be 
more critical for prediction. For a deeper understanding 
of this phenomenon and to assess the impact of solar data 
on the predictive capability of the models, further research 
is necessary. It is important to explore the correlation de-
pendencies between solar activity and the target variable, 
as well as to consider the possibility of applying feature 
selection methods to identify hidden dependencies. Ad-
ditionally, it may be worthwhile to use more advanced 
data processing and analysis methods, such as ensemble 
methods or deep learning techniques, which may be more 
sensitive to latent interactions between variables.

4. Conclusions

In the present work, a random forest algorithm 
is considered to determine the dependence of the HLC 
BSPM elements determined in the experiments on polari-
zation laser sensing of the atmosphere on the measurement 
parameters. Previously, meteorological parameters and the 
Sun’s zenith and azimuth were considered as measurement 
parameters. A hypothesis was formulated and verified 
about the absence of an effect of the Sun’s position on the 
signals measured in lidar experiments, and, consequently, 

on the predicted BSPM elements. The results demonstrated 
that the inclusion of the Sun’s angles did not lead to sig-
nificant or consistent improvements in the prediction of 
BSPM elements. In several cases, we have observed that 
algorithms using solar data as an input parameter may ex-
perience a degradation in their predictive capabilities. For 
example, when using the RF + PCA (15) algorithm to pre-
dict the m33 element, we observed a degradation of 6.47%. 
At the same time, if the algorithms were to improve their 
performance, it would not be by more than 1.5%. For ele-
ment m44, the results remain close to the initial values, with 
minor changes, which may indicate the stability of this 
element when applying different methods. The change in 
predictive capability is within a range of no more than 7%. 
This indicates that the addition of data regarding the posi-
tion of the Sun has a random effect on the behavior of the 
algorithms, and none of the presented algorithms was able 
to identify a stable dependency for any element or demon-
strate more confident results. Higher performance metrics 
for algorithms using the principal component method may 
suggest that the application of this preprocessing method 
introduces additional randomness, which can lead to slight 
improvements. However, these improvements are driven 
by random factors and are not significant. Therefore, even 
significant differences in the percentage of improvement 
among the three machine learning techniques used, which 
amount to a few percent, are not explainable from the 
perspective of atmospheric optics. It was concluded that, 
in general, there is no significant tendency for the Sun’s 
angles to affect the algorithm’s predictive ability. These 
findings support the initial hypothesis that the Sun’s azi-
muth and zenith angles do not significantly influence the 
accuracy of lidar-based cloud measurements.

5. Patents

The research was carried out with the support of 
a grant from the Government of the Russian Federation 
(Agreement No. 075-15-2025-009 of 28 February 2025) in 
the part of the potential of using the effect of anisotropic 
solar radiation scattering on the prediction accuracy of ma-
chine learning models for predicting the elements of back-
scattering phase matrix (BSPM) of HLC was explored. 
This research was funded by the Russian Science Founda-
tion, Grant No. 24-72-10127 in the part of studying the re-
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lationship between the optical, microphysical, and geomet-
ric characteristics of high-level clouds with predominantly 
horizontally oriented ice particles and the meteorological 
conditions leading to their formation and evolution.
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