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ABSTRACT

This study demonstrates the complexity and importance of water quality as a measure of the health and sustainability

of ecosystems that directly influence biodiversity, human health, and the world economy. The predictability of water

quality thus plays a crucial role in managing our ecosystems to make informed decisions and, hence, proper environmental

management. This study addresses these challenges by proposing an effective machine learning methodology applied to the

“Water Quality” public dataset. The methodology has modeled the dataset suitable for providing prediction classification

analysis with high values of the evaluating parameters such as accuracy, sensitivity, and specificity. The proposed

methodology is based on two novel approaches: (a) the SMOTE method to deal with unbalanced data and (b) the skillfully

involved classical machine learning models. This paper uses Random Forests, Decision Trees, XGBoost, and Support

Vector Machines because they can handle large datasets, train models for handling skewed datasets, and provide high

accuracy in water quality classification. A key contribution of this work is the use of custom sampling strategies within

the SMOTE approach, which significantly enhanced performance metrics and improved class imbalance handling. The

results demonstrate significant improvements in predictive performance, achieving the highest reported metrics: accuracy

(98.92% vs. 96.06%), sensitivity (98.3% vs. 71.26%), and F1 score (98.37% vs. 79.74%) using the XGBoost model. These

improvements underscore the effectiveness of our custom SMOTE sampling strategies in addressing class imbalance. The
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findings contribute to environmental management by enabling ecology specialists to develop more accurate strategies for

monitoring, assessing, and managing drinking water quality, ensuring better ecosystem and public health outcomes.

Keywords: Data Modeling; Class Imbalance; SMOTE; Machine Learning Classification; Model Estimation; Water Quality

Dataset

1. Introduction

Globally, 703 million people, approximately 1 in every

10 individuals, lack sufficient access to clean water, with over

1,000 children under 5 succumbing daily to diseases caused

by contaminated water [1]. Addressing this crisis is a critical

component of Goal 6 of the United Nations Sustainable De-

velopment Goals, aiming for universal access to clean water

and sanitation by 2030 [2]. However, the absence of reliable

water monitoring techniques impedes progress, hindering

improvements in water systems and the implementation of

effective water recovery mechanisms.

In recent years, there has been a notable surge in the

development of biological methods for monitoring and as-

sessing water resources. However, processing the increasing

volume of data generated by monitoring devices presents

significant challenges. In this context, artificial intelligence,

based on machine learning and deep learning techniques,

emerges as a potent tool for addressing water quality issues.

Artificial intelligence offers numerous methods for pre-

diction, classification, and clustering, providing effective

solutions to water quality challenges.

The importance of artificial intelligence is further em-

phasized by the research efforts of various authors who have

explored publicly available datasets to assess water quality.

Water quality can be represented by various characteristics

that need to be modeled using classification (e.g. potable,

clean, dirty, non-potable, etc.) or prediction models (level

of water pollution, etc.). Both classification and prediction

models face challenges as data quality can be an issue.

Prediction analysis faces the challenges of possible fu-

ture outliers that would shift the forecast, while classification

models may suffer from class imbalance. That is, one group

of observations to be prevailing in the target variable, thus

affecting the quality of the model.

The primary objective of this study is to develop robust

methodologies that enhance the prediction of water quality

in datasets affected by class imbalance, thereby improving

the accuracy, reliability, and applicability of water quality

classification models. This research specifically addresses

the challenge of achieving reliable water quality predictions

in the presence of a dominant class in the data. The proposed

methodologies are straightforward to implement, reduce com-

putational time, and significantly improve classification per-

formance compared to existing approaches. Furthermore,

our methods advance the discussion on class imbalance in

water quality classification models, offering a more practical

approach to this persistent issue.

Water quality prediction has become a critical focus

in environmental research due to its significant impact on

ecosystems and human health. While traditional methods of

monitoring water quality have limitations in accuracy and

scalability, recent advancements in artificial intelligence (AI)

have shown promising results. These innovations have led

to the development of more precise and scalable prediction

models that effectively address the challenges associated

with water quality monitoring.

Notable contributions in this line of research include

studies by Patel [3] utilizing Explainable AI with an accuracy

of 80% and Aldhyani [4] employing Long Short-Term Mem-

ory (LSTM) achieving 97.1% accuracy. Other research in-

cludes also using a Fuzzy Deep Neural Network with 98.1%

accuracy [5], Artificial Neural Networks (ANN) [6] achieving

96% accuracy, and utilizing ANN [7] with 85.11% accuracy.

High prediction results were also achieved by papers [8–10].

These studies demonstrate the various methodologies

and advanced techniques employed to enhance our under-

standing of water quality assessment, showcasing the multi-

disciplinary efforts to address this critical issue. While these

studies highlight improvements in model efficiency, many

still face challenges related to data quality, particularly with

class imbalance in datasets. This research addresses these

challenges by proposing new methodologies tailored to im-

prove prediction reliability in datasets with class imbalance.

Our research adds to these results by achieving 100%

accuracy using XGBoost and adjusting existing algorithms
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like SMOTE so that the model does not become too complex.

It is essential to admit that corresponding results across

these studies can be challenging due to the utilization of

different datasets. Yet, this variety highlights the signifi-

cant interest and continuing struggles among researchers to

manage water quality issues through various methodologies,

reflecting the complexity and importance of the subject mat-

ter. These efforts highlight the multifaceted nature of water

quality research and the need for broad strategies to tackle

the challenges posed by varying environmental conditions

and data characteristics.

Our research provides an effectivemethodology on how

to solve one of the challenges of water quality – class imbal-

ance. Our methodology can also be used as a tool to detect

potable water sources among various sources, incl. rivers.

This article introduces methods andmodels for predicting wa-

ter quality, leveraging the publicly available dataset sourced

from Kaggle: the “Water quality” [11] dataset. Our approach

presents a unified analysis methodology, employing well-

established machine learning models including Random For-

est (RF), Decision Tree (DT), Support Vector Machines

(SVM), and XGBClassifier. To evaluate the efficacy of our

models comprehensively, we employ a suite of performance

metrics such as accuracy, precision, specificity, recall, F1

score, NPV, ROC - AUC, and MCC. Results indicate that

our models achieve significantly higher accuracy compared

to previous studies.

Our methodology exhibits a considerable enhancement

in predicting water quality compared to previous studies.

For instance, in the article [12], the authors reported the fol-

lowing accuracies: XGBoost (96.06%), Random Forest

(96.31%), Decision Tree (94%), and Support Vector Machine

(93%). However, with our refined approach, we achieved no-

tably higher accuracies: XGBoost (98.52%), Random Forest

(97.71%), Decision Tree (97.50%), and Support Vector Ma-

chine (95.94%). These results underscore the effectiveness

and superiority of our methodology in accurately predicting

water quality, showcasing its potential for practical appli-

cation in water resource management and decision-making

processes.

These results fulfill the aims of our research – first, to

present an efficient methodology applying fast algorithms

for the accurate identification of water quality among var-

ious sources. Second, to propose a methodology that can

be used to solve the issue of class imbalance (in combina-

tion with existing techniques like SMOTE [13]), therefore

having a wide application on various water datasets [14–17].

Third, we propose a methodology that can be used to solve

other classification tasks related to water quality, e.g. iden-

tifying new sources of potable water like in [14]. Therefore,

the findings from this have important applications in water

quality research and in machine learning research as these

models are adapted to the specifics of water quality datasets.

These algorithms can also be used on other datasets, bearing

similar characteristics. Zhu et al. [18] investigated the capa-

bilities of machine learning models for environmental water

quality assessment. Their analysis evaluates and supports

the application of several models such as Support Vector

Machines (SVM), Random Forest (RF), and deep neural net-

works (DNNs). Awater quality prediction system (WaQuPs)

is proposed in [19] which is developed on deep machine learn-

ing, including an ensemble learning model based on the

Random Forest model. WaQuPs classifies water quality as

follows: potable, lightly polluted, moderately polluted, and

heavily polluted.

The next section describes the methodology. Section

3 provides the results and makes the comparison to other

sources, and Section 4 concludes.

2. Materials and Methods

In this section, we describe the proposed methodology

to handle class imbalance. The methodology is applied with

a few machine learning models. Each implementation of the

methodology with a specific model defines an algorithm that

handles heavy class imbalance and is focused on the “Water

Quality” dataset.

Random Forest constitutes a collection of regression

trees generated from randomly sampled subsets of the train-

ing data. Each tree is grown by sampling N instances with

replacement from the original dataset and selecting m ran-

dom variables out of M at each node to determine the best

split. The forest growing process maintains a constant value

of m. Unlike single tree classifiers, Random Forest typi-

cally demonstrates superior performance without the need

for pruning, yielding a generalization error rate compara-

ble to Adaboost while exhibiting greater robustness to noise.

For additional examples of how Random Forest has been
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applied in similar contexts, please refer to studies and arti-

cles [3, 12, 20, 21], which illustrate its use in diverse areas such

as environmental monitoring, medical diagnostics, and fi-

nancial prediction.

Decision Trees represent a method for supervised clas-

sification. The classification is determined by features best

dividing the data, with items split based on these features’

values, applied recursively until subsets contain data items

of the same class [3, 12, 21, 22].

The Support Vector Classifier (SVC), commonly

known as a support vector machine, is a widely used su-

pervised machine learning algorithm employed for classifi-

cation tasks. It functions by determining the optimal deci-

sion boundary, often depicted as a line in two-dimensional

space, to segregate different classes of data points effectively.

Utilizing the RBC kernel, SVC can address non-linear rela-

tionships between features, enabling it to accurately capture

intricate patterns within the data [3, 12, 22–24].

Extreme Gradient Boosting (XGBoost) [25] was intro-

duced by Tianqi Chen and Carlos Guestrin in 2016. Its rapid

adoption is evident in the substantial contributions to its

open-source project on GitHub. Known for its optimized

gradient tree boosting, XGBoost swiftly generates sequential

decision trees, making it a go-to choice for modeling and

classification tasks [3, 12, 24–26].

2.1. Methodology

Our methodology is applied on the public on the “Wa-

ter Quality” dataset from Kaggle [11]. The dataset contains

7996 observations and 21 characteristics. The target vari-

able contains 912 positive observations and 7084 negative

observations. Most samples represent contaminated water,

constituting about 87% of the observations. The uneven per-

formance of contaminated water compared to clean water

can have several significant consequences.

Obviously, this dataset is classified as an imbalanced

dataset. The problem of class imbalance significantly im-

pacts data analysis and interpretation, leading to spurious

results and inappropriate conclusions. The imbalance can

affect the performance of water quality prediction models

by preferentially predicting the more common class and mis-

classifying the rarer classes.

Addressing this issue requires detailed preference and

justification of algorithms and preprocessing techniques to

mitigate these effects and improve overall model reliability.

The primary motivation behind this methodology is

to identify practical and reproducible approaches that en-

hance predictive performance while directly applicable to

real-world datasets such as this. Advice on understanding

and managing this imbalance is essential to achieving ac-

curate and reliable results when using machine learning to

analyze water performance data.

The steps of the methodology are:

Step 1: Data Loading and Initial Preprocessing. This

step involves Performing data loading and initial preprocess-

ing, including converting columns to numerical values. The

data is loaded as DataFrame type with 7999 observations

and 21 features.

Step 2: Data Cleaning. This step involves cleaning the

data by removing rows with missing values, significantly

improving the dataset’s quality, and preparing it for further

analysis.

Step 3: Define X and y variables. The dataset is divided

into independent (X) and dependent (y) variables. The target

variable y represents water quality classification, where 1

indicates clean water and 0 represents contamination.

Step 4: Standardizing the Data. To ensure that each

feature contributed equally to the model, we standardized the

data using StandardScaler from sklearn.preprocessing. This

transformation process ensures that each feature has a mean

of 0 and a standard deviation of 1, making them comparable

and facilitating the analysis.

Step 5: There are two approaches in this step. The first

one is to apply the methodology to the original dataset. The

second one is to apply the approach of Handling Class Imbal-

ance with Oversampling - Implementing SMOTE (Synthetic

Minority Over-sampling Technique) [13].

The choice of SMOTE is based on its proven effective-

ness in generating synthetic samples to balance the target

classes in highly imbalanced datasets, such as this water qual-

ity dataset. Two sampling strategies were considered with

SMOTE: “sampling_strategy=auto” and “sampling_strat-

egy=0.50”. The parameter “sampling_strategy=0.50” sig-

nificantly improves model accuracy and reduces processing

time compared to the parameter “sampling_strategy=auto”.

Step 6: Split the Data into Training and Test Sets -

using train_test_split, 20% of the data is allocated for test-

ing, and 80% is used for training. The function is applied
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using random_state = 2 for the methodology SMOTE sam-

pling_strategy=0.50, and for the one without SMOTE, the

values depend on the corresponding machine learning model

(see Step 7). The random_state parameter was chosen for

reproducibility and varied across models to identify the most

stable configurations and ensure the same result in each trial.

Step 7: Define a Classification Model. We apply four

machine learning models including Random Forest (RF),

Decision Tree (DT), Support Vector Machines (SVM), and

XGBClassifier. Parameters for the case without SMOTE are:

RandomForestClassifier(random_state=61) with ran-

dom_state=756 for the train_test_split command;

DecisionTreeClassifier(class_weight=‘balanced’,ran-

dom_state=2401) with random_state=687 for the

train_test_split command;

SVC(kernel=‘rbf’) with random_state=14 for the

train_test_split command;

xgb.XGBClassifier(random_state=61) with ran-

dom_state=687 for the train_test_split command.

Parameters for the case with SMOTE sampling_strat-

egy=0.50 are:

RandomForestClassifier(random_state=61);

DecisionTreeClassifier(class_weight =‘balanced’,ran-

dom_state=1874);

SVC(kernel=‘rbf’);

xgb.XGBClassifier().

Experiments were conducted using the original dataset

and SMOTE with sampling_strategy=0.50 to evaluate the

impact of handling class imbalance under different con-

ditions. The parameters are tailored to address the water

quality dataset’s characteristics and ensure reproducible re-

sults. For example, the random_state parameter ensures

consistent evaluation across models. The Decision Tree’s

class_weight=‘balanced’ counteracts class imbalance by giv-

ing higher weight to the minority class, improving classifica-

tion accuracy. The kernel=’rbf’ in the SVC model captures

non-linear relationships, enhancing performance on this com-

plex dataset.

Step 8: The model evaluation will utilize the metrics

defined in the Model Evaluation Metrics section. This in-

cludes using the confusion matrix and calculating Accuracy,

Precision, Specificity, Recall, F1 Score, and Negative Predic-

tive Value (NPV). These metrics comprehensively capture

model performance, particularly in handling the imbalanced

nature of the water quality dataset.

2.2. Models’ Evaluations

The evaluation of all models applied across the vari-

ous methodologies and datasets will be performed using the

standard metrics [20]. To compute their values, we need to

know the following initial entries for all classification mod-

els: TP (True Positives): Correctly predicted positive cases;

TN (True Negatives): Correctly predicted negative cases;

FP (False Positives): Incorrectly predicted positive cases,

and FN (False Negatives): Incorrectly predicted negative

cases [20].

The metrics are:

Accuracy is the overall proportion of correct predic-

tions, including positives and negatives. It provides a general

measure of the model’s performance across all classes.

Accuracy = TP+TN
TP+TN+FP+FN ;

Precision is the proportion of true positive instances

among all instances classified as positive by the model. It

is a critical measure in evaluating the accuracy of positive

predictions.

Precision = TP
TP+FP ;

Sensitivity, also known as recall, measures the propor-

tion of actual positive cases the model correctly identified.

It indicates the model’s ability to detect true positives.

Sensitivity (Recall) = TP
TP+FN ;

Specificity measures the proportion of actual negative

cases that the model correctly identified. It reflects the

model’s ability to avoid false positives by correctly iden-

tifying true negatives.

Specificity = TN
TN+FP  ;

The F1 score is the harmonic mean of Precision and

Recall, providing a metric that balances both the precision

of positive predictions and the model’s ability to identify all

relevant positive instances.

F1 Score  = 2  Precision∗Sensitivity
Precision+Sensitivity

;

Negative predictive value (NPV): measures the propor-

tion of correct negative predictions. It indicates how well

the model predicts negative cases.

NPV = TN
TN+FN  .

Area under the curve (AUC): The AUC measures the

model’s ability to distinguish between classes. It is the area

under the Receiver Operating Characteristic (ROC) curve,

which plots the true positive rate (TPR) against the false
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positive rate (FPR) at various threshold settings. A higher

AUC indicates better model performance.

AUC =
∫ 1

0
TPR (FPR) d (FPR)

where TPR is the true positive rate, and FPR is the false

positive rate.

3. Results

Our experiments are conducted on a laptop with 1.50

GHz Intel(R) Core (TM) and 8 GB RAM, running on Win-

dows with Python 3.7 in the Anaconda environment. To

consider the output from the methodology effective, the val-

ues of accuracy, precision, sensitivity, and specificity should

be high enough. We present the values of precision, sensitiv-

ity, and specificity for each algorithm and compare them to

the same obtained of Torky and coauthors [12].

Torky and coauthors [12] have proposed a classification

algorithm to classify a water sample from the Water Qual-

ity dataset [11]. In the preprocessing step of the algorithm,

the dataset is cleaned, split, and resampled [12] and then the

machine learning models RF, DT, SVM, and XGBoost are

applied for the classification process. The models are eval-

uated on the test subset. Table 1 shows the entries of the

confusion matrix obtained via models. Different machine

learning models are evaluated via standard metrics of accu-

racy, precision, recall, sensitivity, and AUC. Their values

are computed on the test subset. Moreover, Table 2 presents

the values of the evaluating parameters obtained by Torky

and coauthors [12]. Their best results are obtained from the

Random Forest model. The estimated parameters have the

following values: the accuracy is 96.31%, the precision value

is 93.23.47%, the sensitivity value is 71.26%, and the speci-

ficity is 99.37%.

Table 1. The entries of confusion matrices were obtained by Torky and coauthors [12].

Models TP FN FP TN Total (FN+FP)/Total (%)

SVM 79 95 17 1409 1600 7.0

RF 124 50 9 1417 1600 3.7

XGBoost 124 50 13 1413 1600 3.9

DT 91 83 13 1413 1600 6.0

Table 2. Results obtained by Torky and coauthors [12].

Models Accuracy Precision Specificity Sensitivity F1 Score NPV AUC

SVM 0.9300 0.8229 0.9881 0.4500 0.5852 0.9368 0.72

RF 0.9631 0.9323 0.9937 0.7126 0.8078 0.9659 0.85

XGBoost 0.9606 0.9051 0.9909 0.7126 0.7974 0.9658 0.88

DT 0.9400 0.8750 0.9909 0.5230 0.6547 0.9445 0.76

We compare the results from Table 1 to those obtained

by the proposed methodology. Tables 3 and 4 present the en-

tries of confusion matrices when the methodology is applied

without SMOTE and SMOTE approach, respectively.

One of the methodology’s aims is to minimize the sum

of false cases (FN + FP). To assess how far this goal has

been achieved, we calculate the percentage of the sum (FN +

FP). The values are displayed in the last column of Tables

1, 3, and 4. Thus, the values from Tables 3 and 4 are lower

than the corresponding ones in Table 1. Moreover, the val-

ues from Table 4 are the lowest. One of the benefits of our

methodology is its ability to reduce the number of falsely

predicted samples. Table 4 shows how we reduced the sum

of falsely predicted samples compared with Table 1 from

7.0% to 3.7% for SVM, from 3.7% to 1.9% for RF, from

nearly 4% to 1% for XGBoost, and from 6% to 2% for DT.

Reducing misclassified cases is paramount when mod-

eling datasets such as ”Water Quality” which consists of

only 912 positive observations and 7,084 negative obser-

vations (pointing to contaminated water). The significant

class imbalance presents a considerable challenge for con-

ventional machine learning models, which often struggle to

accurately identify the minority class—in this case, clean

water. Addressing this imbalance is crucial, as it directly im-
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Table 3. Methodology (without SMOTE). Entries of confusion matrices. Our calculations.

Models TP FN FP TN Total (FN+FP)/Total (%)

SVM 113 12 86 1389 1600 6.1

RF 118 7 42 1433 1600 3.1

XGBoost 134 13 30 1423 1600 2.7

DT 143 19 21 1417 1600 2.5

Table 4. The Methodology applying SMOTE (sampling_strategy=0.50). Entries of confusion matrices. Our calculations.

Models TP FN FP TN Total (FN+FP)/Total (%)

SVM 677 52 26 1371 2126 3.7

RF 690 28 13 1395 2126 1.9

XGBoost 692 12 11 1411 2126 1.1

DT 684 26 19 1397 2126 2.1

pacts the practical applicability and reliability of the model

in real-world scenarios.

False Negatives, where contaminated water is incor-

rectly classified as clean, pose serious health and environ-

mental sustainability risks. Such errors could lead to the

distribution or usage of unsafe water, with potentially severe

consequences. On the other hand, false positives arising from

representing pure water as contaminated water can lead to

the wrong financial decisions, more testing procedures, and,

in balance, the management and allocation of water. Each

form of misclassification has substantial consequences; thus,

the best efforts must be made to minimize misclassification

as much as possible.

In our approach, applying SMOTE with a sampling

strategy 0.50 demonstrated exceptional effectiveness in ad-

dressing this challenge. Specifically, integrating SMOTE

with the XGBoost algorithm reduced the combined total of

misclassifications (FN + FP) to only 1% of all cases—equiv-

alent to just 23 incorrectly predicted instances out of a total

of 2,126 observations (Table 4). This substantial improve-

ment highlights the capability of advanced oversampling

techniques to optimize model performance, particularly in

datasets characterized by a pronounced class imbalance.

Recording such a low error percentage is significant

in water quality monitoring, whose predictions can directly

enhance safe water distribution and efficient resource use.

The proposed methodology improves the performance and

reliability of the developed models, allowing us to use the

developed approach in important fields, including public

health, environment, and resource management. The model

is a powerful tool for advancing water quality assessment

and ensuring better decision-making processes by mitigating

misclassification risks.

Further on, we describe the values of evaluation pa-

rameters obtained by our algorithms in both cases without

SMOTE and SMOTE applications. Tables 5 and 6 show the

results after applying the methodology.

We compare the values of Tables 2, 5, and 6. As seen

from the results in Table 2, all models have relatively high

accuracy values (over 90%). Still, the low Sensitivity’ indi-

cates that they have difficulties correctly classifying drinking

water due to the imbalance in the data. Confirming this fact,

the Random Forest model showed the best results with high

accuracy (96.31%) and precision (93.23%) but low Sensitiv-

ity (71.26%), which indicates the model’s tendency to miss

drinking samples.

Consider the values in Table 5. Precision and Speci-

ficity indicators decreased compared to Table 2. However,

the values of the Sensitivity and F1 Score metrics are in-

creased. The increase in F1 Score means that the two pa-

rameters Sensitivity and Specificity have closer values, i.e.

they are balanced. In addition, the models XGBoost and DT

have achieved an accuracy of just over 97%. Moreover, the

percentage of NPV values increased (see the last columns of

Tables 2 and 5).

Due to the existing imbalance in the data and to pre-

vent the presence of erroneous conclusions, we utilized the

methodology with the SMOTE technique, along with an

additional parameter sampling_strategy=0.50. Since using

SMOTE without additional parameters aims to equalize the

classes regarding several observations, it leads to a longer

algorithm processing time and the need for more computer
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Table 5. Performance evaluation results of four machine learning models with the methodology without SMOTE. Our computation.

Models Accuracy Precision Specificity Sensitivity F1 Score NPV AUC

SVM 0.9388 0.5678 0.9417 0.9040 0.6975 0.9914 0.967

RF 0.9694 0.7375 0.9715 0.9440 0.8281 0.9951 0.980

XGBoost 0.9731 0.8171 0.9794 0.9116 0.8617 0.9909 0.984

DT 0.9750 0.8720 0.9854 0.8827 0.8773 0.9868 0.929

Table 6. Performance evaluation results of four machine learning models with the methodology and SMOTE (sampling_strategy=0.50).

Our computation.

Models Accuracy Precision Specificity Sensitivity F1 Score NPV AUC

SVM 0.9633 0.9630 0.9814 0.9287 0.9455 0.9635 0.992

RF 0.9807 0.9815 0.9908 0.9610 0.9711 0.9803 0.997

XGBoost 0.9892 0.9844 0.9923 0.9830 0.9837 0.9916 0.999

DT 0.9788 0.9730 0.9866 0.9634 0.9682 0.9817 0.977

time. To avoid the extra time needed but still take advan-

tage of the advantages of SMOTE, we managed to find a

balance with the additional parameters. The results are given

in Table 6.

Table 6 compares the performance metrics for the mod-

els tested in this study, mainly focusing on results obtained

with SMOTE (sampling_strategy=0.50). These results are

compared to those reported by Torky and coauthors [12], pre-

sented in Table 2.

We compare the results served by Karthic et al. [15] for

the Random Forest model. The value ofAccuracy is 95.25%,

the value of Precision is 95.5%, and the value of Recall is

65% for Random Forest without the use of SMOTE (Table

5 [15]). According to Table 6 [15], the value of accuracy is

93.5%, the value of Precision is 73.7%, and the value of

Recall is 74.5% for Random Forest with SMOTE. The ad-

vantage of using SMOTE in the methodology of Karthic et

al. is that it increases the value of the Recall metric. At the

same time, the value of Precision is reduced. Then these two

metrics approach each other in value. Our results presented

in Table 6 above show that the same values of Accuracy,

Precision, and Recall (Sensitivity) are 98.07%, 98.15%, and

96.10% for the Random Forest model with SMOTE. In addi-

tion, Nisar et al. [17] have analyzed different machine learning

models to predict the water quality for another water dataset.

The Random Forest model achieves the highest values of Ac-

curacy, Precision and F1-score which are 93.93%, 93.97%,

and 93.94%.

By employing this methodology, the analyzed models

in Table 6 managed to increase their indicators compared to

Table 2. The highest results are achieved by the XGBoost

model as follows: Accuracy 98.92% (from 96.06%), Pre-

cision 98.44% (from 90.51%), Specificity 99.23% (from

99.09%), Sensitivity 98.30% (from 71.26%), F1 score

98.37% (from 79.74%), NPV 99.16% (from 96.58%). The

Specificity parameter gives very close results because the

models are relatively equal in classifying negative cases cor-

rectly. Since there is an imbalance in the data and themajority

class is the observations from the negative class, it leads to

success in predicting them.

This detailed analysis proves that our method is effica-

cious in improving all the leading metrics, showing our readi-

ness to solve essential problems in water quality assessment.

A comparison between our proposed XGBoost model and

the one developed by Torky et al. shows an improvement in

Accuracy from 0.9606 to 0.9892, an increase of 2.86%. This

improvement translates into a higher confidence level in the

model’s ability to identify clean versus contaminated water

instances correctly. In public health, such credibility is essen-

tial because water quality assessment determines drinking

water’s safety, preventing risks of contracting water-borne

diseases.

The Precision of 0.9844 is much higher than that

achieved in Table 2, 0.9051, which means that the false pos-

itive rate – samples tested positive for contaminated water

but are clean has been reduced significantly. This reduction

is necessary because it is even possible, in the worst case,

that safe water may be described as polluted, which means

that initiating corrective measures and chemical purification

for water is unnecessary and harms public health.
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Specificity, at 0.9923, reflects only a minor improve-

ment over Torky et al.’s 0.9909. However, limiting the gen-

erality of the model guarantees that our model continues to

be relevant and accurate in differentiating between negative

cases, namely contaminated water that should not be ingested

or consumed in any other way.

Sensitivity has improved from 0.7126 to 0.9830, about

27 percent. This signifies a marked improvement in cor-

rectly classifying positive cases—clean water. From a public

health perspective, the improvement raises the likelihood that

no under-diagnosis of safe-water contamination will occur

where access to safe water defines the community.

The improvement in Sensitivity, from 0.7126 to 0.9830,

represents a 27% increase in the model’s ability to correctly

identify positive cases, specifically clean water. This en-

hancement directly addresses the class imbalance by reduc-

ing the risk of false negatives—where clean water samples

were previously misclassified as contaminated. From a pub-

lic health standpoint, this means a higher confidence in the

model’s ability to identify safe water sources. This ensures

that communities relying on accurate assessments are less

likely to face under-diagnosis of safe-water contamination.

Such improvements help mitigate public health risks by pro-

viding more accurate information for water safety manage-

ment.

The F1 Score of this study, a better metric between

Precision and sensitivity, is significantly higher at 0.9837

compared to that reported in Table 2 to −0.7974. This fea-
ture of balanced performance also minimizes the likelihood

of arriving at wrong conclusions regarding the need for in-

tervention, thereby making this tool more effective.

The NPV of 0.9916 in the current work can be com-

pared with the NPV of 0.9658 obtained by Torky et al. to

support the model in correctly predicting contaminated water.

This assists in guaranteeing that societies that depend on wa-

ter as a source of revenue are in the right place to minimize

or restrain the health risks that develop from infected water

systems.

Finally, based on our methodology, we have enhanced

the obtained AUC from 0.88, as elaborated in Table 2 to

0.999 of the XGBoost model and the closer the value to 1,

the better the model’s performance. Such a significant im-

provement is the explicit demonstration of the increasing

efficiency of the model yet distinguishing between ‘clean’

and ‘contaminated’ water environments with great Precision.

A high AUC means that our approach minimizes false posi-

tive and false negative cases, which makes the methodology

helpful in arriving at decisions regarding the quality of water

to be released. This advancement is important to know the

dependability and credibility of the available techniques for

monitoring the water quality, particularly at places where

continuous forecasts are relevant to public health and safety.

Utilizing the SMOTE (sampling_strategy=0.50), all

these achievements positively impact the ability to assess

water quality and complement improving public health stan-

dards, especially by decreasing the threats posed by contam-

inated drinking water. The methodology we proposed and

analyzed in the current work improves previous methods

and offers a more reliable and effective way to manage wa-

ter quality for human and community use to enhance their

quality lives.

4. Discussion

The “Water Quality” dataset represented the problem of

heavy class imbalance and various measurement units in the

variables. Analyzing the “Water Quality” data involved two

critical steps in overcoming these issues. First, standardize

the data with StandardScaler (Step 4 of the Methodology).

This step is crucial in enhancing the implementation of our

Methodology. Through this method, we achieve standard-

ization of the data, which allows us to manage attribute defi-

ciencies in the machine learning model and guarantees that

all features have the same scales, improving model training

efficiency.

Second, introducing the Synthetic Minority Over-

sampling Technique (SMOTE) [21, 22] is critical to achieving

better and more reliable results. With the help of SMOTE,

we address the class imbalance and create a more even dis-

tribution between polluted and clean water. This allows us

to improve the model’s performance by ensuring that those

critical to water quality are understood and understood due

to the imbalance. In addition, by setting the parameter sam-

pling_strategy=0.50 (Step 5 of the Methodology), we could

balance the algorithm’s processing time, thus improving the

model’s efficiency. Using this method allowed for a posi-

tive enhancement of the model’s performance. The resulting

balanced dataset due to SMOTE enabled the model to make
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improved distinctions of water quality, where it mitigates

false negatives and does not neglect the essential features that

need attention to identify water quality factors. Moreover,

the optimized processing time by balancing the data set en-

hanced the model’s performance and made the analysis more

convenient and feasible for future work. Due to sampling

fewer observations with SMOTE, this not only reduces the

analysis time but also minimizes the problem of over-training.

Understating variance involves the generalization of noises

and the actual pattern, which leads to poor generalization

of unknown data. Problems like this can be avoided using

proper parameter settings or examples, including fine-tuning

the sampling_strategy parameter. This increases its depend-

ability and hence provides better experimentation in actual

use.

The changes identified with the help of our Methodol-

ogy show significant enhancements in the leading metrics.

Namely, the Accuracy, Precision, Sensitivity, and Specificity

coefficients were improved against previously described ap-

proaches mentioned by Torky et al. [12]. For instance, the

model gave an Accuracy of 0.9892 against 0.9606 for the

actual model, while Precision improved to 0.9844 from

0.9051. Such enhancements significantly decrease misclas-

sification errors, specifically for those involving pollutants-

contaminated water and cleaner water samples.

Also, applying SMOTE gave us a way to enhance the

model to provide the best possible results required to pre-

dict water quality in a practical context. This is especially

important for decision-makers who depend on data for safe

water usage and management. Our approach promotes better

decision-making and results in water resources management

since we offer a more accurate and reliable method of evalu-

ating water quality.

In conclusion, incorporating Data Standardization and

Synthetic Minority Over-sampling Technique with sam-

pling_strategy=0.50 parameter in our Methodology enriches

themodel capability in data preprocessing, resulting in higher

prediction accuracy and minimizing class over-sampling.

These advancements provide a better understanding of water

quality analysis and, more importantly, lay the foundation

for employing similar approaches in other domains with a

similarly high accuracy and reliability level.

Our methodology’s key contribution lies in its ability

to effectively address class imbalances through SMOTE and

customized sampling strategies, which has not been fully

explored in prior studies on water quality classification. The

improvements in the evaluation metrics, particularly in ac-

curacy and precision, demonstrate the effectiveness of our

approach in providing more reliable predictions. This ad-

vancement sets our methodology apart from existing mod-

els and underscores its potential to improve water quality

monitoring and management systems. By refining data pre-

processing steps and introducing innovative approaches to

model training, our study presents a more robust and prac-

tical solution to a critical environmental issue with broader

implications for public health and ecological sustainability.

However, while improvements are significant, overfit-

ting remains a potential risk, although reduced with parame-

ter tuning. The computational cost can be high due to syn-

thetic data generation and model complexity. Nevertheless,

further optimizations can address these challenges, ensuring

robustness and practicality in real-world applications.

5. Conclusions

Through collaborative efforts and interdisciplinary ap-

proaches, researchers strive to create strong frameworks and

tools for effective water quality management, ultimately con-

tributing to the preservation and sustainability of essential

water resources globally. Therefore, our methodology can be

used on other water quality datasets and on datasets related

to broader water topics. They can be integrated into other

classification algorithms as a tool for the initial analysis of

the dataset or as a part of more complex artificial intelligence

models. This approach contributes significantly to increas-

ing the accuracy and reliability of the best water efficiency

analysis and provides a better basis for decision-making.

The proposal to improve water quality assessment us-

ing machine learning has significant consequences on public

health and cost-effectiveness, thanks to the development

of our model using SMOTE (sampling_strategy=0.50). By

increasing the probability of correct water quality predic-

tions, the model minimizes the risk of waterborne diseases

affecting individuals’ and communities’ quality of life. Cor-

rectly identifying contaminated water reduces the dangerous

effects of unsafe drinking water, which often leads to over-

loading the health system and increasing health care costs.

Water quality analysis can help prevent waterborne diseases,
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seasonal epidemics, or lifelong complications from a con-

taminant source. Since the model can prevent unneeded and

false positives that are often costly, it is possible to distribute

resources for health improvement successfully where they

are justified. Thus, optimizing such sampling strategies of-

fers the possibility of much more significant improvement.

A flexible sampling strategy can be applied to a learning

problem to fit the specific data and optimize the prediction

quality and the costs simultaneously. It maintains that the

mentioned adaptability will allow the methodology to be ap-

plied to water quality and other areas of primary importance,

including environmental monitoring and public safety, all of

which will ultimately lead to more enhancements in health-

care costs and resource use. Lastly, the inclusion of more

sophisticated measures using refined machine learning ap-

proaches improves not only the precision but also the realism

of water quality evaluation. This leads to the development

of healthier communities and facilitates effective economic

saving due to the reduction of costs on unnecessary events

and the optimization of the effects of the intervention. Based

on the key concerns of water contamination, our approach

helps enhance the health and utilization of resources.

The issue of water quality classification is highly rele-

vant today due to the increasing value and scarcity of clean

water. One of the major challenges in working with such

data is class imbalance, a common problem in many datasets.

This study is innovative in exploring different SMOTE pa-

rameters, which significantly improve model performance

and reduce the risk of overfitting compared to other balancing

techniques. This novel approach enhances the accuracy of

predictions and offers a more effective solution for handling

imbalanced environmental data.

Our methodology enables real-time water quality moni-

toring, allowing for early contamination detection and proac-

tive interventions. It provides valuable insights for poli-

cymakers and environmental agencies, improving resource

management and reducing costs related to waterborne dis-

eases and environmental issues.
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