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ABSTRACT

Land cover changes significantly affect mangrove forests, driven by both anthropogenic activities and natural processes.

The Banlaem mangrove in Nakhon Si Thammarat, Thailand, supports numerous mangrove plantation projects but lacks

comprehensive assessments and monitoring related to land cover changes. This study aimed to (1) investigate land cover

changes in the Banlaem mangrove from 1995 to 2023, and (2) generate a predictive model for future land cover changes.

For land cover assessment, satellite imagery from multiple sources, including Sentinel-2 (Level 2A) and Landsat (Collection

2 Level 2), was utilized to examine and classify changes in mangrove cover within the Banlaem mangrove forest from

1995 to 2023, using supervised classification with the maximum likelihood algorithm. Various regression models were

analysed to develop a predictive model based on area size and time. The mangrove area in the Banlaem mangrove forest

steadily grew throughout the study period, with the total area increasing from 56.16 ha in 1995 to 527.55 ha in 2023. This

study represents the first analysis of changes in the Banlaem mangrove cover. Throughout the tested models, they reveal

an unclear pattern of mangrove expansion, yet they indicate a high rate of expansion in the Banlaem mangrove forest. In

addition, these results are expected to encourage greater community involvement in the monitoring and management of the

Banlaem mangrove. We recommend establishing a community monitoring network to engage local residents in tracking

changes in mangrove cover, supported by training and resources.

Keywords: Land Cover; Landsat; Mangrove; Sentinel; Thailand

*CORRESPONDINGAUTHOR:

Sirilak Chumkiew, School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Email:

s.chumkiew@g.sut.ac.th

ARTICLE INFO

Received: 30 December 2024 | Revised: 2 April 2025 | Accepted: 7 April 2025 | Published Online: 14 May 2025

DOI: https://doi.org/10.30564/jees.v7i5.8264

CITATION

Pungpa, S., Chumkiew, S., 2025. IncreasingArea of Banlaem Mangrove Forest at Nakhon Si Thammarat in Southern Thailand: Land Cover Changes

and Predictive Models. Journal of Environmental & Earth Sciences. 7(5): 453–468. DOI: https://doi.org/10.30564/jees.v7i5.8264

COPYRIGHT

Copyright © 2025 by the author(s). Published by Bilingual Publishing Group. This is an open access article under the Creative Commons

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License (https://creativecommons.org/licenses/by-nc/4.0/).

453

https://orcid.org/0000-0001-5068-3768
https://orcid.org/0000-0003-0871-588X


Journal of Environmental & Earth Sciences | Volume 07 | Issue 05 | May 2025

1. Introduction

The study of mangrove ecosystems is essential because

of their diverse range of services. Mangrove ecosystems are

vital coastal environments that provide a broad range of eco-

logical and socio-economic services [1]. Mangrove forests

offer habitat for local wildlife, supplying food and other re-

sources, and offering protection against natural disasters [2].

On a larger scale, mangrove forests also regulate carbon

and nutrient cycles while providing cultural ecosystem ser-

vices [3]. Mangrove forests are among the highest carbon

density within tropical ecosystems [4]. Anthropogenic activi-

ties, including agricultural expansion, aquaculture, tourism,

urban development, and overexploitation, are driving man-

grove destruction, and if current loss rates persist, 30–40%

of coastal wetlands and the full functionality of mangrove

forests could be lost within the next century [5]. In Thailand,

the mangrove area has exhibited considerable fluctuations

from 2016 to 2022, beginning at 245,500 ha in 2016. The

country experienced an almost 10% increase in mangrove

coverage within the first year, followed by a subsequent de-

cline of approximately 7% over the following three years.

However, between 2020 and 2022, there was a resurgence,

with a 9% expansion in mangrove area, ultimately reaching

271,600 ha [6]. The study of mangrove area changes, across

scales ranging from local to global, would provide critical

data that can assist land managers and communities in the

effective management of coastal resources, especially within

blue ecosystems, which mangroves serve as significant car-

bon sinks and provide various ecosystem services.

Currently, Geographic Information Systems (GIS) and

remote sensing technologies are crucial for the assessment of

mangrove cover changes. Recent advancements in the avail-

ability of remote sensing data, image-processing techniques,

computing and information technology, and the development

of human resources have facilitated the regular observation

and monitoring of mangroves across local to global scales [5].

Advances in remote sensing have greatly enhanced Land

Use and Land Cover (LULC) mapping for mangrove ecosys-

tems [7]. A variety of tools were employed to map the LULC

changes in mangrove forests, including the use of Sentinel-

2 satellite imagery [6, 8–11], which provides open access and

high spatial resolution (10 m). The generated map offers

critical insights into the spatial distribution of land cover

types within the mangrove ecosystem, thereby supporting

evidence-based decision-making for conservation and sus-

tainable management initiatives [8].

To classify land cover changes in a forest ecosystem,

classification algorithms play a crucial role in the classifica-

tion process. Various algorithms have been applied in forest

ecosystem classification, including Maximum Likelihood,

K-Means, Support Vector Machine (SVM), and Artificial

Neural Networks (ANN) [12, 13]. For mangrove ecosystem

classification, Maximum Likelihood has been one of the

most commonly used methods in previous studies [13–15]. To

integrate with supervised classification, Maximum Likeli-

hood classification is widely recognized as a well-known

algorithm used in supervised classification as a parametric

classifier [16]. Supervised classification enhances classifi-

cation performance by incorporating additional knowledge

from training data, improving the reliability of the final clas-

sifier [17]. Therefore, utilizing supervised classification with

an appropriate algorithm is crucial for ensuring high-quality

classification in a mangrove ecosystem. The selected algo-

rithm directly impacts on the accuracy and reliability of the

classification results, highlighting its importance in analyz-

ing and understanding each ecological environment.

This study focuses on the mangrove forest within the

Banlaem community, located in Tha Sala, Nakhon Si Tham-

marat, Southern Thailand. Between 1984 and 1994, the

area underwent significant transformation, changing from a

sandy beach into a muddy soil wetland [18]. This shift in the

landscape laid the foundation for the introduction of various

mangrove planting initiatives. Since then, multiple planting

efforts, particularly those related to ecotourism, have been

implemented in the area. These initiatives involved the in-

troduction of loop-root mangroves (Rhizophora mucronata),

which played a key role in stimulating the rapid development

of the mangrove ecosystem [18]. In the community, most

of the villagers are Muslims, and their main occupation is

local fisheries [19]. The community participates in several

economic activities, such as the mud spa, curry paste produc-

tion, creating naturally dyed fabric from mangrove leaves,

mangrove planting, and other related products [19]. How-

ever, there has been a lack of comprehensive monitoring and

impact assessments since the initial planting of mangroves

in the area [18], making it difficult to fully understand the

ecological and environmental changes over time.

Comprehensive assessments play a crucial role in un-
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derstanding ecological changes at both local and broader

scales. A study conducted in Thailand examined the histori-

cal changes in Thai mangrove forest cover, along with the

biodiversity of plant and animal species [20]. It also analyzed

long-term study data, mangrove biomass and carbon storage,

as well as various aspects of mangrove conservation andman-

agement [20]. Additionally, in Tong Tasae and LaemMakham

Villages, located in Trang, Southern Thailand, it showed that

the success of community-managed mangrove forests relies

on multiple factors, with effective monitoring being one of

the key elements [21]. This study focused on mangrove cover.

One of the challenges in the monitoring activities, in the

Banlaem community, is the lack of specific records on plant-

ing data. The monitoring of the Banlaem land cover change

would provide valuable insights into ecosystem dynamics,

supporting sustainable management and conservation efforts.

To address existing knowledge gaps in this mangrove

area, this study aimed to (1) examine land cover changes in the

Banlaem mangrove forest from 1995 to 2023 and (2) develop

a predictive model to forecast future land cover changes. The

Maximum Likelihood algorithm was utilized for supervised

classification to analyze mangrove changes in the Banlaem

community, while regression analysis was employed for pre-

dictive model generation. Understanding these changes is

essential for effective environmental management and conser-

vation planning in coastal ecosystems. This study provided a

comprehensive approach to monitoring and managing man-

grove ecosystems. The findings of this research offer valuable

insights into the ongoing changes in the Banlaem mangrove

forest. The results highlight critical patterns of mangrove

expansion and loss, which are essential for informing conser-

vation efforts. This study contributes significant information

that can support the sustainable management of the Banlaem

mangrove forest, helping policymakers, researchers, and lo-

cal communities implement effective conservation strategies.

Furthermore, the new data on mangrove cover changes, com-

bined with predictive modeling, serve as essential resources

for community-based environmental initiatives.

2. Materials and Methods

2.1. Workflow

This study employed multiple satellite images, includ-

ing Sentinel-2 (Level 2A) and Landsat (Collection 2 Level

2), to analyze and classify changes in mangrove coverage

within the Banlaem mangrove forest over the long term

(1995–2023). To ensure the reliability of the classification,

the accuracy of the generated thematic map was evaluated

using accuracy assessment metrics, which are widely used

methods for assessing classification performance. This ap-

proach ensured that the thematic map accurately represented

the distribution and extent of mangrove forests during the

study period. A quantitative analysis was performed using

Geographic Information System (GIS) software to measure

the extent of mangrove cover, track changes in size, and

calculate the percentage of area lost or gained over time.

To predict future trends in mangrove coverage, regression-

based predictive models were developed to estimate annual

changes in mangrove area. These models were developed

using historical data on annual mangrove coverage and sta-

tistical analysis to identify patterns and relationships across

different years that influence mangrove growth or degrada-

tion in the Banlaem mangrove forest. Both the coefficient

of determination (R²) and Root Mean Square Error (RMSE)

were calculated and applied using k-Fold cross-validation to

assess model performance and ensure robustness. Addition-

ally, a one-way ANOVAwas conducted to analyze potential

differences in average values of both metrics among the

tested regression models. Figure 1 provides an overview of

the workflow employed in this study, illustrating the sequen-

tial steps undertaken from data acquisition and classification

to accuracy assessment, quantitative analysis, model devel-

opment, and validation.

Figure 1. Workflow in this study.

2.2. Study Area

The study area was located in the Banlaem mangrove

forest (8°36′32.7″ N, 99°57′59.0″ E), within the Banlaem
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community in Tha Sala, Nakhon Si Thammarat, Thailand

(Figure 2). According to the Climate Center, Meteorologi-

cal Department of Thailand [22], Nakhon Si Thammarat is a

province located on the eastern coast of southern Thailand.

Due to its geographical location adjacent to the sea, Nakhon

Si Thammarat Province experiences minimal temperature

variation between seasons and between day and night. The

average temperature remains moderate, and extreme heat

is uncommon. During the winter season, occasionally cool

weather may occur. The mean annual temperature is approx-

imately 27.3 °C, with an average maximum temperature of

32.5 °C and an average minimum temperature of 23.2 °C. In

the eastern coastal lowland region, which includes the Ban

Laemmangrove forest, heavy rainfall is prevalent throughout

the northeasterly winds, with an average annual precipita-

tion of approximately 2,701.1 mm. Amask highlighting the

study area, covering 895.73 ha, was created through man-

ual digitization and included mangrove areas, the seashore,

and nearby sea bodies. Mangroves in this region have been

planted through various ecotourism-related initiatives led

by the community. The dominant mangrove species in this

area are from the Rhizophora and Avicennia genera. In some

sections of the forest, channels have been created by humans

to allow boats to navigate to the open sea.

Figure 2. Study area (the map produced using QGIS): (a) Thailand

map; (b) the Banlaem mangrove forest, Nakhon Si Thammarat,

Southern Thailand.

2.3. Data Set

This study employed satellite imagery from the open-

access Sentinel-2 and Landsat programs, which provide

multi-spectral data suitable for environmental monitoring

and long-term analysis of changes in the Banlaem man-

grove forests (Table 1). The Sentinel-2 imagery used in

this study features the Multi-Spectral Imager (MSI) at Level

2A, whereas Landsat imagery includes Landsat 5 Thematic

Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus

(ETM+), and Landsat 8 Operational Land Imager (OLI),

all parts of Collection 2 at Level 2 (atmospherically cor-

rected surface reflectance). These imagery levels offer at-

mospherically corrected surface reflectance values, making

them ideal for analyzing the surface characteristics of the

mangrove forest. Sentinel-2 imagery was sourced from the

European Space Agency’s (ESA) Sentinel Scientific Data

Hub [23], whereas Landsat imagery was obtained from the

United States Geological Survey (USGS) [24]. Imagery from

the years 1995, 1997, 1999, 2001, 2003, 2005, 2007, 2009,

2011, 2013, 2015, 2017, 2019, 2021, and 2023 was selected

for analysis, with a primary focus on minimizing cloud cover

over the study area—the Banlaem mangrove forest. For

Sentinel-2 imagery, the selection of either Sentinel-2A or

Sentinel-2B in each year was determined based on image

availability and minimal cloud cover over the study area

during the specified period. This decision was crucial for

ensuring the acquisition of high-quality, cloud-free images,

which are essential for accurate classification and analysis of

mangrove area dynamics. The selected years provide a range

of temporal conditions, allowing for a meaningful analysis

of long-term trends. While this study aimed to primarily use

high-resolution, open-access Sentinel-2 imagery, it could not

cover all changes in the Banlaem mangrove forest. There-

fore, Landsat satellite imagery from 1995 to 2015 was used

to fill these gaps, ensuring the robustness of the land cover

change analysis. To accurately delineate the extent of the

mangrove forest, a mask was created by manually digitizing

the 2023 Sentinel-2 imagery, ensuring a precise boundary

for the mangrove area. This mask was then applied to the

pre-processed Sentinel-2 images across the selected years,

allowing for consistent identification of mangrove zones in

each dataset. Furthermore, the images were clipped to retain

only the areas likely to contain mangroves, ensuring that

the classification process would focus solely on the relevant

regions for further analysis [25].

2.4. Image Classification

This study utilized supervised classification to identify

the primary land cover types within the Banlaem mangrove

forest, Nakhon Si Thammarat, Thailand. Supervised classifi-
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Table 1. Satellite data utilized in this study.

No. Image Codes Date Resolution (m) Remarks

1 LT05_L2SP_129054_19950622_20200913_02_T1_SR 22/06/1995 30 Landsat-5

2 LT05_L2SP_129054_19971001_20200909_02_T1_SR 01/10/1997 30 Landsat-5

3 LT05_L2SP_129054_19990209_20200908_02_T1_SR 09/02/1999 30 Landsat-5

4 LE07_L2SP_129054_20010222_20200917_02_T1_SR 22/02/2001 30 Landsat-7

5 LE07_L2SP_129054_20030401_20200915_02_T1_SR 01/04/2003 30 Landsat-7

6 LT05_L2SP_129054_20050225_20200902_02_T1_SR 25/02/2005 30 Landsat-5

7 LT05_L2SP_129054_20070522_20200830_02_T1_SR 22/05/2007 30 Landsat-5

8 LT05_L2SP_129054_20090308_20200828_02_T1_SR 08/03/2009 30 Landsat-5

9 LT05_L2SP_129054_20111109_20200820_02_T1_SR 09/11/2011 30 Landsat-5

10 LC08_L2SP_129054_20130420_20200912_02_T1_SR 20/04/2013 30 Landsat-8

11 LC08_L2SP_129054_20150528_20200909_02_T1_SR 28/05/2015 30 Landsat-8

12 S2B_MSIL2A_20171118T034019_N0500_R061_T47PNK 18/11/2017 10 Sentinel-2B

13 S2B_MSIL2A_20190323T033719_N0500_R061_T47PPK 23/03/2019 10 Sentinel-2B

14 S2B_MSIL2A_20211227T034139_N0301_R061_T47PPK 27/12/2021 10 Sentinel-2B

15 S2B_MSIL2A_20230312T033539_N0509_R061_T47PPK 12/03/2023 10 Sentinel-2B

cation is a widely used remote sensing technique in which

pixels with known classes serve as training data to classify

unknown pixels based on spectral similarity [26]. This ap-

proach ensures accurate land cover classification by relying

on well-defined reference samples. The Maximum Likeli-

hood algorithm, a probabilistic method for supervised classi-

fication, was applied to satellite imagery from 1995 to 2023.

This algorithm assigns each pixel to the class it most likely

belongs to, considering the mean and variance of spectral sig-

natures for different land cover types [26]. The classification

process distinguished three primary land cover types from

1995 to 2021: mangrove forest, mudflat, and water body.

For 2023, four primary land cover types were identified to

analyse different mangrove types: vegetation type 1 (Avicen-

nia marina), vegetation type 2 (a coexistence of A. marina

and Rhizophora spp.), mudflat, and water body. For 2023,

ground truth data was available, allowing the distinction of

mangroves into two classes and facilitating comprehensive

monitoring of mangrove changes in the area. To implement

this classification, the Semi-Automatic Classification Plugin

(SCP) version 8.3.0-infinity [27] was used within QGIS (ver-

sion 3.34.1-Prizren). SCP facilitated the creation of thematic

maps, training samples, and signature lists for the mangrove

area. Training samples were selected as polygons repre-

senting distinct land cover types to derive accurate spectral

signatures. A colour composite (near-infrared, red, and green

bands) was used to facilitate the selection of training samples

in all the selected satellite imagery. Mangroves stood out

clearly (turning red) from other land cover types, making

them easier to differentiate. Mudflats appeared brown, while

water bodies ranged from blue to dark blue. For the 2023

colour composite, each mangrove type was distinguished

by: vegetation type 1 appeared dark red, while vegetation

type 2 appeared bright red. The resulting thematic maps pro-

vided a clear visualization of land cover changes over time,

offering valuable insights into the dynamics of the Banlaem

mangrove forest.

2.5. Accuracy Assessment

During post-classification, spectral classes were visu-

ally compared with reference data from multiple sources,

including historical images, ground-truth inventory data,

and unmanned aerial vehicle (UAV) imagery. For the years

1995–2021, reference points were verified using Google

Earth historical images [13]. The assessment included 50 ran-

dom points per class [28], totaling 150 points per image year.

In 2023, the reference data included ground-truth inventory

data and UAV imagery. The inventory data were used to

verify mangrove types, whereas, UAV imagery (DJI Mavic

2 Enterprise Advanced), covering the sea front (water bodies

and mudflats), was used to verify water bodies and mudflats

(50 random points per class). Besides, the inventory data,

collected between April 2023 and July 2024, included 48

sampling plots—12 plots on mudflats; thus, 36 plots were

used for mangrove type assessment. Each plot covered ap-

proximately 153.4 m², corresponding to a circular plot with a

7 m radius. The accuracy assessment evaluated overall accu-
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racy (OA), user accuracy (UA), producer accuracy (PA), and

commission error (CE), providing a comprehensive measure

of classification reliability. Additionally, Kappa analysis was

conducted to quantify the agreement between classified and

reference data, ensuring robust validation of the classifica-

tion results. An error matrix was generated to present the

accuracy assessment outcomes, offering valuable insights

into the classification performance and highlighting potential

misclassifications in the study area.

The mentioned metrics were calculated using the fol-

lowing formulas [28–30]:

PAi = True positives for class i/Total actual instances of

class i (1)

Where PA (sensitivity) reflects the likelihood that a specific

category in the reference data is accurately recognized in the

classification output.

UAi = True positives for class i/Total predicted instances of

class i (2)

Where UA reflects the likelihood that a predicted class label

belongs to that class in reality.

CEi = False positives for class i/(False positives for class i +

True positives for class i)  (3)

Where CE or False Discovery Rate (FDR) reflects the unre-

liability of predicted positive classifications.

OA = True positives for class i/Total number of predictions

(4)

Where OA reflects the proportion of correctly classified in-

stances across all classes relative to the total number of pre-

dictions.

Kappa coefficient = (n11 + n22 + … + nkk) − [(n1+ n+1) +

(n2+ n+2) + … + (nk+ n+k)]/N2 − [(n1+ n+1) + (n2+

n+2) + … + (nk+ n+k)]  (5)

Where Kappa coefficient reflects agreement between classi-

fied data and reference data.

i = 1,2,3, …

N is the total number of observations.

nii is the number of correctly classified observations

for class i.

ni+ is the total number of observations in the reference

data for class i.

n+i is the total number of observations classified as

class i.

k is the number of classes.

2.6. Detection Change Analysis

Aquantitative analysis was performed to detect changes

in mangrove cover from 1995 to 2023. The objective was

to evaluate spatial variations in mangrove extent over time

by conducting pixel-by-pixel comparisons, a straightforward

yet effective method for detecting land cover changes [26, 31].

This approach enabled the identification of specific areas

where mangrove forests had either expanded or shrunk, pro-

viding a clear understanding of the temporal dynamics of the

mangrove ecosystem. The analysis was conducted using the

Classification Report function within the Semi-Automatic

Classification Plugin (SCP) in QGIS software, a tool that is

beneficial in remote sensing for classifying land cover and

generating detailed reports on classification. In addition to

detecting spatial changes, the study also quantified the size

of the mangrove area and calculated the percentage changes

in mangrove extent over the tested years. These metrics pro-

vided a more comprehensive understanding of the magnitude

of change in mangrove coverage, allowing for an assessment

of the changes of the mangrove forest that had grown or

diminished during the study period. By analyzing both area

size and percentage changes, this analysis offered valuable

insights into the long-term trends of mangrove dynamics,

helping to inform conservation strategies and environmental

management decisions in the Banlaem community.

2.7. Model Generation and Validation

This study employed various regression models to eval-

uate the predictive capability of forecasting future land cover

changes in the Banlaem mangrove forest. This study applied

multiple regression techniques, including linear, exponential,

logarithmic, polynomial (order = 2, parabolic curve), and

power models, to identify the best-fitting trend for mangrove

area changes over time. These models were selected based

on their common usage and ability to capture different pat-

terns of change in ecological and environmental studies. The

independent variable in the analysis was time, represented by

the years 1995, 1997, 1999, 2001, 2003, 2005, 2007, 2009,

2011, 2013, 2015, 2017, 2019, 2021, and 2023, while the

dependent variable was the corresponding mangrove area for

each year. By analysing historical data, the models aimed

to estimate future trends in mangrove cover, supporting sus-

tainable forest management efforts. Data processing and
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model fitting were conducted using Python in Google Colab,

utilizing the NumPy, SciPy, Pandas, and Matplotlib libraries

for statistical analysis and visualization [32–35].

In addition, cross-validation was performed to evalu-

ate and compare the models. To validate the accuracy and

reliability of these predictive models, the R² was used as

a statistical measure of goodness-of-fit. Higher R² values

indicated a stronger correlation between observed and pre-

dicted mangrove area, ensuring robust forecasting results.

The R² value ranges from 0 to 1, with higher values indicat-

ing a better model fit [36]. In addition, the RMSE was applied

to quantify the discrepancy between the model’s predicted

values and the actual observed values. The lower RMSE,

the better the model’s performance. Subsequently, the k-

Fold cross-validation technique (with K = 5) was utilized

to evaluate the model’s effectiveness by randomly dividing

the dataset into different subsets. These analyses were con-

ducted using Python in Google Colab, utilizing scikit-learn,

an open-source machine learning library [37]. The average

R² and RMSE, along with their standard deviation, were per-

formed. These performance metrics were analyzed using

one-way ANOVA (Fisher’s test) with the SciPy library [33] to

evaluate potential differences among the tested regression

models. Due to the limited availability of environmental

data in the Banlaem mangrove forests, these analyses help

enhance themodel’s effectiveness evaluationwith a restricted

set of environmental variables.

3. Results and Discussion

3.1. Mangrove CoverAnalysis

This study evaluates the accuracy of land cover classifi-

cation in the Banlaem mangrove forest using multi-temporal

satellite imagery. The supervised classification of Landsat-

5, Landsat-7, Landsat-8, and Sentinel-2 imagery identified

three land cover types in the Banlaem mangrove forest over

the study period (1995–2021): (1) mangrove forest, (2) mud-

flat, and (3) water body. In 2023, four land cover types were

identified: (1) vegetation type 1 (Avicennia marina), (2) vege-

tation type 2 (coexistence of Rhizophora spp. andA. marina),

(3) mudflat, and (4) water body. For the period 1995–2021,

the classification of mangrove forest achieved PA, UA, and

CE of 88–100%, 83.02–100%, and 0.00–18.33%, respec-

tively. For mudflat, the PA, UA, and CE ranged from

58.00–96.00%, 66.67–97.62%, and 2.38–33.33%, respec-

tively. For water body, the PA, UA, and CE ranged from

56.00–98.00%, 71.01–100%, and 0.00–28.99%, respectively.

Overall, the classification achieved an overall accuracy

of 82.67–94.59%, with a Kappa coefficient ranging from

0.82–0.95 (Table 2). In general, the Kappa coefficient value

indicates a strong agreement (ranging from 0.80 to 0.90)

to an almost perfect agreement (above 0.90) in the accu-

racy of the thematic maps [38]. For the year 2023, the clas-

sification of vegetation type 1 achieved a PA, UA, and CE

of 64.71%, 64.71%, and 35.29%, respectively. Vegetation

type 2 achieved a PA, UA, and CE of 68.42%, 68.42%, and

31.58%, respectively. The mudflat achieved a PA, UA, and

CE of 100%, 98.94%, and 1.96%, respectively. The water

body achieved a PA, UA, and CE of 98.00%, 100.00%, and

0.00%, respectively. Overall, for the year 2023, the clas-

sification achieved an overall accuracy of 90.44%, with a

Kappa coefficient of 0.90 (Table 3). Its Kappa coefficient

indicates a strong agreement in the accuracy of the thematic

map. Overall, these Kappa coefficients (1995–2023) indicate

that the classification accuracy was sufficient for analysing

long-term changes at the study site.

The high accuracy in mangrove area classification en-

hances the reliability of the mangrove area expansion as-

sessment in this study (Table 2). For the classification of

the mangrove forest area, the PA or sensitivity, which mea-

sures a classification model’s ability to correctly identify

actual positive cases, ranged from 88% to 100% between

1995 and 2021, except for 2023. In 2023, the mangroves

were classified into two vegetation types: vegetation type

1 had a PA of 64.71%, while vegetation type 2 had a PA of

68.42% (Table 3). Additionally, this study examined the CE,

which indicates the proportion of predicted positive cases

that were incorrect. The CE for the mangrove forest class

ranged from 0.00% to 18.33% between 1995 and 2021. In

2023, the CE was 35.29% for vegetation type 1 and 31.58%

for vegetation type 2. Overall, the high PA and low CE from

1995 to 2021 contributed to the high accuracy of the man-

grove area expansion rate. However, the classification of

mangrove forests in 2023 showed a lower PA and higher

CE, which led to lower accuracy in distinguishing mangrove

types. Nevertheless, this may not affect the calculation of

the mangrove area expansion rate, as the total mangrove

area in 2023 is based on the combined area of vegetation
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types 1 and 2. Additionally, the vegetation classification

demonstrated high accuracy when distinguishing mangroves

from mudflats or water bodies, as observed in the 1995–2021

maps. In addition, for both mudflat and water body classes,

some imagery years, such as 2005 and 2015, exhibited a low

PA. This may be due to the influence of sea tides, which

affect classification accuracy. Differences in tidal conditions,

such as variations in low and high tide timings between the

tested satellite imagery and the reference map data, could

contribute to these discrepancies.

The mangrove extent in the Banlaem mangrove forest

consistently increased over the study period. The total area

expanded from 56.16 ha in 1995 to 527.55 ha in 2023 (Table

4; Figure 3). Within the defined mask layer, mangrove veg-

etation increased from 6.28% to 58.92% (Table 4). Besides,

the 2023 classification revealed the areas of two mangrove

types (Figure 4): (1) 272.20 ha of vegetation type 1 (A. ma-

rina) and (2) 255.35 ha of vegetation type 2 (a coexistence of

Rhizophora spp. and A. marina). On a broader scale, Thai-

land’s mangrove forest area increased from 245,500 ha in

2016 to 271,600 ha in 2022, reflecting a 10.63% rise over this

period [6]. In particular, the mangrove forest in Talumphuk

Cape, Nakhon Si Thammarat Province, showed a notice-

able increase, as observed in Sentinel-2 satellite imagery [6].

Given that the Banlaem mangrove forest is located approx-

imately 30 km from Talumphuk Cape, the study found a

21.64% increase in mangrove cover from 2015 to 2023. This

suggests that the Banlaem mangrove forest follows a similar

trend to the overall mangrove expansion in Thailand but at

a faster rate. In contrast, global mangrove forests experi-

enced a 3.4% loss (524,500 ha) between 1996 and 2020 [39].

Overall, this growth reflects the successful mangrove planta-

tion efforts by the Banlaem community through ecotourism,

and the government’s restoration initiatives, which include

mangrove planting and encouraging public participation in

ecosystem conservation and management [40]. These efforts

are in line with the Ministry of Natural Resources and Envi-

ronment’s 20-year master plan for 2018–2037 [40].

Table 2. Accuracy assessment of classification in this study (1995–2021).

Table 3. Error matrix for classification in this study (2023).
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Year
(Satellite
Imagery)

Land Cover Classes
Mangrove Forest Mudflat Water Body OA

(%)
Kappa

CoefficientPA
(%)

UA
(%)

CE
(%)

PA
(%)

UA
(%)

CE
(%)

PA
(%)

UA
(%)

CE
(%)

1995 88.00 83.02 16.98 82.00 89.13 10.87 92.00 90.20 9.80 87.33 0.87
1997 98.00 96.08 3.92 84.00 89.36 10.64 90.00 86.54 13.46 90.67 0.91
1999 92.00 97.87 2.13 94.00 94.00 6.00 96.00 90.57 9.43 94.00 0.94
2001 96.00 97.96 5.88 88.00 95.65 4.35 96.00 90.57 9.43 94.59 0.95
2003 92.00 95.83 4.17 74.00 84.09 15.91 94.00 81.03 18.97 86.67 0.86
2005 96.00 97.96 2.04 58.00 90.63 9.38 98.00 71.01 28.99 84.00 0.84
2007 92.00 93.88 6.12 90.00 80.36 19.64 86.00 95.56 4.44 89.33 0.89
2009 90.00 100.00 0.00 96.00 84.21 15.79 90.00 93.75 6.25 92.00 0.92
2011 92.00 100.00 0.00 94.00 78.33 21.67 82.00 93.18 6.82 89.33 0.89
2013 98.00 87.50 18.33 86.00 78.18 21.82 75.00 100.00 0.00 87.82 0.88
2015 96.00 96.00 4.00 96.00 66.67 33.33 56.00 100.00 0.00 82.67 0.82
2017 98.00 98.00 2.00 86.00 91.49 8.51 94.00 88.68 11.32 92.67 0.93
2019 100.00 98.04 1.96 78.00 97.50 2.50 98.00 83.05 16.95 92.00 0.92
2021 100.00 98.04 1.96 82.00 97.62 2.38 98.00 85.96 14.04 93.33 0.93

Classified Data Ground Reference Data

Rhizophora spp. + Avicennia marina Avicennia marina Water Mudflat Row Total
Rhizophora spp. + Avicennia marina 13 6 0 0 19

Avicennia marina 6 11 0 0 17
Water 0 0 49 0 49
Mudflat 0 0 1 50 51

Column total 19 17 50 50 136
PA (%) 68.42 64.71 98.00 100
UA (%) 68.42 64.71 100.00 98.04
CE (%) 31.58 35.29 0.00 1.96
OA (%) 90.44

Kappa coefficient 0.90
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Table 4. Changes in mangrove cover in the Banlaem mangrove forest from 1995 to 2023.

Year Mangrove Percentage % (From the Mask Layer) Mangrove Area (ha)

1995 6.28 56.16

1997 9.38 83.88

1999 6.68 59.76

2001 12.85 114.84

2003 12.83 114.66

2005 19.54 174.69

2007 24.12 215.64

2009 25.65 229.32

2011 31.72 283.59

2013 39.62 354.15

2015 48.52 433.71

2017 46.82 419.12

2019 49.51 443.3

2021 55.94 500.82

2023 58.92 527.55

Figure 3. Land cover changes of the Banlaem mangrove forest

from 1995 to 2023.

Figure 4. Land cover of the Banlaem mangrove forest in 2023,

where vegetation type 1 represents Avicennia marina, and vegeta-

tion type 2 represents a coexistence of A. marina and Rhizophora

spp.

In 2023, the significant expansion of vegetation type 1

(A. marina) in the Banlaemmangrove forest suggests that the

area is influenced by natural secondary succession. While

Rhizophora spp. was the only species actively planted as

part of the plantation efforts in the study site, more than half

of the vegetation was found to be A. marina. A. marina is

known for its remarkable ability to maintain leaf structure,

preserve the ultrastructural stability of palisade mesophyll

and chloroplasts, and sustain photosynthesis under high salin-

ity conditions, which contributes to its high salt tolerance [41].

A. marina has exceptional adaptability to a wide range of

salinity levels, with its optimal growth occurring in salin-

ities ranging from 10% to 90% seawater (salinity 35 ppt),

depending on the source population and environmental fac-

tors [42, 43]. Furthermore, unlike Rhizophora spp., which has

a stick-like propagule, A. marina produces an ellipsoidal to

flattened ovoid propagule, characterized by its small size,

lightweight structure, and buoyancy, allowing it to float in

water [44]. In Thailand, Rhizophora typically dominates the

seaward fringe of mangrove zones, often coexisting with

Avicennia and Sonneratia spp. [45]. This study found that the

planted Rhizophora spp. grows alongside naturally occur-

ring A. marina, primarily at the mangrove patch edges. As a

result, the expansion of the Banlaem mangrove area is influ-

enced by both secondary succession and plantation efforts.

These processes jointly contribute to mangrove growth and

regeneration, with their relative influence varying according

to environmental conditions. Future research should focus

on exploring the environmental factors that affect mangrove

growth in this area.

Mangrove forest expansion plays a critical role in trop-

ical ecosystems by enhancing both carbon storage and bio-

diversity. They are among the most carbon-rich ecosystems

in tropical regions, with an average carbon density of 1,023
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Mg C ha⁻¹; this value is remarkably high compared to other

major forest biomes worldwide [4]. In a mangrove ecosys-

tem, most of the carbon is stored in the soil [4]. Carbon stocks

are potentially linked to the success rates of planted man-

groves, indicating that enhancing plantation success leads

to increased greenhouse gas removal [46]. Additionally, in-

creased mangrove coverage and diversity boost the diversity

of microbenthic fauna and promote the presence of various

birds, fish, and crustacean species, especially those with

high commercial value [47]. In the case of the Banlaem man-

grove forest, the expansion of mangrove area significantly

enhances carbon storage capacity, contributing to the re-

duction of greenhouse gas emissions within the community.

This expansion is also expected to enhance the diversity of

local microbenthic fauna and increase the abundance of com-

mercially valuable species. These ecological improvements

have the potential to provide significant benefits to the local

economy by promoting biodiversity-related services, such as

enhanced fisheries, tourism, and other ecosystem functions

associated with the high species diversity in the region.

This study has certain limitations related to the avail-

ability of satellite imagery and reference data for accuracy

assessment, which may have affected the accuracy of the re-

sults. The uncertainty introduced by varying imagery resolu-

tions could affect the temporal analysis of the Banlaem man-

grove forest. This study first aimed to utilize high-spatial res-

olution (10m) imagery from the Sentinel-2 satellite [23]. How-

ever, since the Sentinel-2 satellite was launched in 2015 [48],

it only began providing imagery of the Banlaem mangrove

forest in 2016. Consequently, no satellite data were available

for years prior to 2016, limiting the study’s ability to assess

long-term trends or conditions before that period. Therefore,

this study utilized Landsat imagery for the classification of

the Banlaem mangrove forest from 1995 to 2015 to increase

the dataset available for temporal analysis. The Landsat im-

agery used in this study has a spatial resolution of 30 m [24].

The difference in spatial resolution may affect the calcu-

lation of the mangrove area, which in turn influences the

temporal analysis of this study. This discrepancy not only

impacts the mangrove area calculation but also affects the

predictive model analysis, as higher classification accuracy

leads to higher accuracy in the predictive models. For the

reference data, ground truth data identifying the two types

of mangroves were only available for 2023. As a result, only

the 2023 data were classified into two types of mangroves,

providing baseline information for the Banlaem mangrove

forest. However, this did not affect the independent variable

of predictive models, as the total mangrove area was used as

the independent variable, allowing data from previous years

to be utilized in the predictive models. Despite these limi-

tations, the study provides valuable insights into mangrove

dynamics. Future research would focus on the changes in

mangrove types to better understand the dynamics of the

mangrove ecosystem over time.

Another challenge is the classification of the two types

of mangroves in the Banlaem mangrove forest, as observed

in 2023. The PAwas only 64.71% for vegetation type 1 and

68.42% for vegetation type 2, with a high CE of 35.39% for

vegetation type 1 and 31.58% for vegetation type 2 (Table

3). Overall, this indicates the difficulty in distinguishing

between these two vegetation types, even with the high-

resolution Sentinel-2 imagery. In the 2023 color composite

(near-infrared, red, and green bands), each mangrove type

was distinguished for classification as follows: vegetation

type 1 appeared dark red, while vegetation type 2 appeared

bright red. However, according to the ground truth inventory

data, the density of each species in vegetation type 2 varies.

For example, some plots contained only a small percentage of

A. marina, with Rhizophora spp. being the dominant species;

other plots had 50% A. marina and 50% Rhizophora spp.;

and some plots had a higher percentage of A. marina. This

information describes the low accuracy in distinguishing be-

tween vegetation types. Thus, reference plots with a low

density of Rhizophora spp. may be classified as vegetation

type 2 (appearing bright red instead of dark red), affecting the

accuracy in distinguishing mangrove types on the classifica-

tion map. Additionally, 36 plots were used for the mangrove

type assessment in this study due to limitations in data avail-

ability. As the reference size increases, the overall accuracy

becomes higher and gradually stabilizes [49]. The assessment

with a higher number of reference samples may enhance the

reliability of the results.

3.2. Predictive Model Analysis

This study analyzed predictive models for the total

mangrove extent over time (1995–2023) using regression

analysis. The k-Fold cross-validation was applied to ensure

the robustness of the tested model. Both R² and RMSE were
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presented to provide complementary perspectives on model

performance. Five different models were developed in this

study (Figure 5). Overall, the tested models demonstrated a

strong relationship between the independent and dependent

variables [50]. Results of the k-Fold cross-validation (Table 5;

Table 6) illustrate that the polynomial model (average R² =

0.964, RMSE = 24.0 ha) may be the most effective model in

this study. However, to ensure their performance, a one-way

ANOVAwas applied to assess the metrics of these models.

It was found that there is no significant difference in the R²

between these models (F(4,20) = 2.57, p > 0.05), and there

is also no significant difference in the RMSE between these

models (F(4,20) = 2.42, p > 0.05). Therefore, there is no

single model that can explain the pattern of increasing ex-

tent of the Banlaem mangrove. The increase in the Banlaem

mangrove area may not follow a distinct pattern.

Figure 5. Predictive models developed in this study, including

(A) linear, (B) exponential, (C) logarithmic, (D) power, and (E)

polynomial regression models.

This study faces certain limitations related to environ-

mental variables and the satellites used for model generation.

Firstly, the available environmental variables were limited,

with only annual mangrove extent data accessible. Secondly,

differences in the resolutions of Landsat and Sentinel-2 satel-

lites may impact the scatter plot patterns, potentially leading

to misinterpretations. Additionally, the Banlaem mangrove

forest consists of both planted mangroves and those that

have naturally regenerated. The inconsistency of planting

activities each year, combined with the influence of natural

factors, may contribute to mangrove expansion without a

clear pattern. Overall, the models can be sensitive to these

factors, affecting their applicability over time.

The pattern of mangrove expansion in the Banlaem

mangrove forest can be sensitive to a combination of human

activities and natural factors, which may impact the long-

term reliability of the models. Each month, an estimated 400

to 700 participants, including students, government officials,

and travelers, take part in mangrove plantation activities in

the Banlaem mangrove forest [18]. However, these figures are

only projections, as there is no systematic record-keeping

in place. Therefore, the number of participants may vary

each year, leading to differences in the rate of mangrove

expansion over time. In addition, because of the 2023 map

(Figure 4), it showed a large area of vegetation type 1 (A.

marina), which is the result of secondary natural succession.

The fluctuation in participant numbers each year, combined

with natural succession, results in an unpredictable pattern

of mangrove expansion. Moreover, climate change can in-

fluence mangrove growth, further contributing to variability

in expansion patterns. Mangrove responses to higher atmo-

spheric CO₂ are complex, with certain species thriving, while

others decline or show little to no change [51]. Whereas ris-

ing temperatures are expected to accelerate nutrient cycling,

including the rates of soil nitrogen and phosphorus transfor-

mation processes [52]. Various factors influence mangrove

patterns, and human activities in the Banlaemmangroves can

vary annually. These factors contribute to the unpredictable

long-term expansion of the Banlaem mangrove forest.

However, the tested models still indicate a high rate of

mangrove expansion in the Banlaem mangrove forest. We

recommend that the community continue plantation projects

while systematically recording the number of participants,

the number of propagules planted, and their survival rate.

This data will help identify patterns of mangrove expansion,

supporting sustainable management efforts in the commu-

nity.

3.3. Impacts on the Banlaem Community

This study enhances comprehension of the mangrove

forest dynamics in the Banlaem community, thereby inform-

ing the development of effective management strategies for

the area. The novel data on mangrove cover changes present

valuable tools for community-based applications. We rec-

ommend the establishment of a community network, pri-

marily involving local residents, to systematically monitor

mangrove forest changes and collaboratively formulate a

plan for sustainable management and conservation within

the community. Moreover, this study supports blue carbon
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Table 5. Results of the k-Fold cross-validation (R2).

Fold Number R² of Linear

Model

R² of

Exponential

Model

R² of

Logarithmic

Model

R² of Power

Model

R² of

Polynomial

Model

1 0.945 0.925 0.944 0.938 0.974

2 0.980 0.990 0.979 0.830 0.997

3 0.984 0.913 0.984 0.722 0.979

4 0.864 0.796 0.863 0.817 0.877

5 0.992 0.988 0.991 0.927 0.995

Average Value 0.953 0.922 0.952 0.847 0.964

SD 0.0530 0.0788 0.0532 0.0887 0.0500

Table 6. Results of the k-Fold cross-validation (RMSE in ha).

Fold Number RMSE of Linear

Model

RMSE of

Exponential

Model

RMSE of

Logarithmic

Model

RMSE of Power

Model

RMSE of

Polynomial

Model

1 36.905 43.417 37.269 39.255 25.674

2 19.401 13.783 19.722 55.899 7.157

3 26.957 63.408 27.093 113.399 31.368

4 48.749 59.586 48.854 56.376 46.319

5 12.539 15.268 12.684 37.177 9.671

Average Value 28.9 39.1 29.1 60.4 24.0

SD 14.3 23.7 14.3 31.0 16.2

management in the community. Blue carbon ecosystems are

vital in the regulation of climate changes [53]. In response to

global warming, nations and regions are actively pursuing

carbon-neutral policies centered on carbon reduction and

carbon sequestration [54]. The biogeochemical processes in

coastal zones are heavily influenced by mangroves, which

are among the planet’s most carbon-dense ecosystems [54].

The increase in mangrove area observed in this study sug-

gests a corresponding rise in carbon sequestration within

the Banlaem mangrove forest. Community collaboration

should prioritize carbon assessment in the mangrove forest,

as this data is crucial in supporting the country’s objectives

of achieving carbon neutrality and net-zero emissions.

In addition, this study also focused on analyzing predic-

tive models to assess changes and variations in the mangrove

area. The findings suggest that these models indicate a rapid

rate of mangrove expansion in the Banlaem mangrove forest.

Based on these results, this study strongly recommends that

relevant organizations, such as governmental agencies, the

Department of Marine and Coastal Resources, and educa-

tional institutions, consider incorporating this model into

their planning processes for conservation, sustainable man-

agement, and development in the Banlaem community. In

this way, they would have access to an effective tool that can

guide decision-making related to the protection and restora-

tion of the mangrove forest, as well as broader environmental

management strategies. Moreover, this study suggests that

the model can be used as a tool to inform residents about

the potential success of their mangrove planting efforts. Pro-

viding local communities with insights into the projected

outcomes of their restoration work can serve to reinforce

the importance of their contributions, boosting community

engagement and pride in their efforts. The Banlaem com-

munity’s approach to mangrove restoration can serve as a

role model for other regions in Thailand, demonstrating the

effectiveness of community-driven reforestation projects.

There are case studies that can serve as a baseline for

mangrove forest management in the Banlaem community.

A study evaluated the effectiveness of a community-based

mangrove management (CBMM) program in coastal vil-

lages of Central Java, Indonesia [47]. It was found that a

village successfully implemented the program, supporting a

higher diversity of macrobenthic fauna and net reforestation

coverage. The success of the program depends on several

factors, including sustained long-term funding, strong accep-

tance of protective legislation, public support, and a broad
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spatial scale of mangrove restoration [47]. Furthermore, a

study highlights the successful efforts of coastal villages in

Trang Province, southern Thailand, in managing mangrove

forests [21]. The communities’ success was attributed to sev-

eral factors, including the resources’ importance to local

livelihoods, support from an external non-governmental or-

ganization, and strong leadership [21]. These findings offer a

valuable framework for the Banlaem community’s mangrove

management efforts. By implementing these strategies, the

Banlaem community can enhance its mangrove forest man-

agement and foster the long-term growth and conservation

of the mangrove ecosystem.

The study on mangrove cover and the Banlaem commu-

nity’s conservation initiatives significantly supports global

efforts to address the climate crisis. Mangrove land cover

change data can be utilized to evaluate variations in soil

organic carbon, as well as aboveground and below-ground

living biomass carbon stocks [55]. The 29th Conference of

the Parties to the United Nations Framework Convention on

Climate Change (UNFCCCCOP29) highlighted that in 2024,

the Earth’s surface temperature hit a record high of 17.16

°C, raising concerns about the feasibility of maintaining the

1.5 °C target outlined in the Paris Agreement [56]. Thailand

is a nation that has presented its Nationally Determined Con-

tribution (NDC) to the UNFCCC. The Thailand Voluntary

Emission Reduction (T-VER) Program is a mechanism estab-

lished by the Thailand Greenhouse Gas Management Orga-

nization (Public Organization) (TGO) to voluntarily reduce

greenhouse gas (GHG) emissions. The protocol states that

remote sensing or alternative techniques can be employed

to estimate carbon stocks if considered appropriate by the

TGO [57]. Overall, the data on mangrove cover in the Ban-

laemmangrove forest can be used to assess its carbon storage

and subsequently applied to the T-VER program to support

Thailand’s NDC under the Paris Agreement. Other coun-

tries with abundant mangrove ecosystems may adopt this

approach for mangrove conservation as part of their efforts

to combat the climate crisis.

4. Conclusions

This study provides valuable insights into the mangrove

cover dynamics of the Banlaem mangrove forest, Nakhon

Si Thammarat, Southern Thailand, emphasizing its signifi-

cant growth in mangrove coverage from 1995 to 2023. The

analysis of multiple satellite imagery revealed an increase

in mangrove vegetation, which could be attributed to two

key factors: (1) natural secondary succession and (2) active

mangrove plantation efforts undertaken by local communi-

ties and conservation groups. These combined forces have

contributed significantly to the restoration and expansion

of the forest area, highlighting the resilience of mangrove

ecosystems in response to both natural recovery and human

intervention. Furthermore, predictive models show a rapid

rate of mangrove expansion in the Banlaem mangrove forest.

These findings support the broader understanding that man-

grove forests are dynamic ecosystems that are influenced by

a complex interplay of natural and human factors.

The increase in the Banlaem mangrove area aligns with

Thailand’s national goals of achieving carbon neutrality and

mitigating climate change. The increase in mangrove cover-

age is particularly significant as it enhances the potential for

carbon sequestration, an important factor in offsetting green-

house gas emissions to combat climate change. Additionally,

the Banlaem mangrove forest serves as an important role

model for the broader efforts to protect biodiversity, preserve

coastal ecosystems, and promote sustainable livelihoods.

Effective collaboration between local communities,

government agencies, and scientific institutions is essential

for maintaining the long-term health and resilience of this vi-

tal coastal ecosystem. Local communities provide invaluable

knowledge and are key to implementing conservation efforts.

Government agencies can offer policy support, funding, and

coordination, while scientific institutions contribute data, re-

search, and monitoring. Through cooperation, these groups

can develop sustainable management strategies, strengthen

the ecosystem’s ability to adapt to challenges, and ensure the

continued provision of important services of the mangrove

ecosystem, such as carbon sequestration and ecotourism.

Author Contributions

Conceptualization, S.P. and S.C.; methodology, S.P.

and S.C.; software, S.P.; validation, S.P.; formal analy-

sis, S.P.; investigation, S.P.; resources, S.P.; data curation,

S.P.; writing—original draft preparation, S.P.; writing—re-

view and editing, S.C.; visualization, S.P.; supervision, S.C.;

project administration, S.C.; funding acquisition, S.C. All

465



Journal of Environmental & Earth Sciences | Volume 07 | Issue 05 | May 2025

authors have read and agreed to the published version of the

manuscript.

Funding

This work was supported by the Development and Pro-

motion of Science and Technology Talents Project (DPST)

and the Thai Government Scholarship.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

The datasets generated and analyzed during the cur-

rent study are available from the corresponding author upon

reasonable request.

Acknowledgments

The researchers would like to extend their deepest grat-

itude to the Development and Promotion of Science and

Technology Talents Project (DPST) for its invaluable con-

tributions and support throughout this work. Additionally,

heartfelt thanks are extended to the School of Mathematics

and Geoinformatics, the School of Biology at the Institute of

Science, Suranaree University of Technology and the Center

of Excellence for Ecoinformatics, Research and Innovation

Institute of Excellence, Walailak University, for providing

access to essential facilities, resources, and expert guidance.

Their collective efforts and encouragement have played a

significant role in facilitating the successful completion of

this research.

Conflicts of Interest

The authors confirm that there are no conflicts of in-

terest associated with the publication of this paper. This

research was performed independently, without any exter-

nal funding or personal affiliations influencing the study’s

findings or interpretation.

References

[1] Getzner, M., Islam, M.S., 2020. Ecosystem services

of mangrove forests: Results of a meta-analysis of

economic values. International Journal of Environmen-

tal Research and Public Health. 17(16), 5830. DOI:

https://doi.org/10.3390/ijerph17165830

[2] Akram, H., Hussain, S., Mazumdar, P., et al.,

2023. Mangrove health: A review of functions,

threats, and challenges associated with mangrove

management practices. Forests. 14(9), 1698. DOI:

https://doi.org/10.3390/f14091698

[3] Tanner, M.K., Moity, N., Costa, M.T., et al., 2019. Man-

groves in the Galapagos: Ecosystem services and their

valuation. Ecological Economics. 160, 12–24. DOI:

https://doi.org/10.1016/j.ecolecon.2019.01.024

[4] Donato, D.C., Kauffman, J.B., Murdiyarso, D., et al.,

2011. Mangroves among the most carbon-rich forests

in the tropics. Nature Geoscience. 4(5), 293–297. DOI:

https://doi.org/10.1038/ngeo1123

[5] Giri, C., 2021. Recent advancement in mangrove

forests mapping and monitoring of the world using

earth observation satellite data. Remote Sensing. 13(4),

563. DOI: https://doi.org/10.3390/rs13040563

[6] Pinkeaw, S., Boonrat, P., Koedsin, W., et al.,

2024. Semi-automated mangrove mapping at National-

Scale using Sentinel-2, Sentinel-1, and SRTM

data with Google Earth Engine: A case study in

Thailand. The Egyptian Journal of Remote Sens-

ing and Space Sciences. 27(3), 555–564. DOI:

https://doi.org/10.1016/j.ejrs.2024.07.001

[7] Kanjin, K., Alam, B.M., 2024. Assessing changes in

land cover, NDVI, and LST in the Sundarbans man-

grove forest in Bangladesh and India: A GIS and

remote sensing approach. Remote Sensing Applica-

tions: Society and Environment. 36, 101289. DOI:

https://doi.org/10.1016/j.rsase.2024.101289

[8] Seydi, S.T., Ahmadi, S.A., Ghorbanian, A., et al.,

2024. Land cover mapping in a mangrove ecosys-

tem using Hybrid Selective Kernel-Based Convolu-

tional Neural Networks and multi-temporal Sentinel-

2 imagery. Remote Sensing. 16(15), 2849. DOI:

https://doi.org/10.3390/rs16152849

[9] Raza, S.A., Zhang, L., Zuo, J., et al., 2024.

Time series monitoring and analysis of Pak-

istan’s mangrove using Sentinel-2 data. Frontiers

in Environmental Science. 12, 1416450. DOI:

https://doi.org/10.3389/fenvs.2024.1416450

[10] Banerjee, S., Bhadra, T., Saha, A., et al., 2024. Genus

level classification of the mangroves in Indian sun-

darbans using Sentinel-2 multispectral imagery. Earth

and Environmental Science. 1382(1), 012011. DOI:

https://doi.org/10.1088/1755-1315/1382/1/012011

466



Journal of Environmental & Earth Sciences | Volume 07 | Issue 05 | May 2025

[11] Ginting, D.N.B., Setiawan, K.T., Anggraini, N., et al.,

2024. Comparison between top and bottom of atmo-

sphere Sentinel-2 image for mangrove mapping in Ba-

likpapan Bay, East Kalimantan. BIO Web of Confer-

ences. 89, 07003. DOI: https://doi.org/10.1051/biocon

f/20248907003

[12] Ahmad, A.M., Minallah, N., Ahmed, N., et al.,

2020. Remote Sensing Based Vegetation Classifi-

cation Using Machine Learning Algorithms. Pro-

ceedings of The 2019 International Conference

on Advances in the Emerging Computing Tech-

nologies (AECT); Feb 10, 2020; Al Madinah

Al Munawwarah, Saudi Arabia. pp. 1–6. DOI:

https://doi.org/10.1109/AECT47998.2020.9194217

[13] Akbar Hossain, K., Masiero, M., Pirotti, F., 2024.

Land cover change across 45 years in the world’s

largest mangrove forest (Sundarbans): The contribu-

tion of remote sensing in forest monitoring. Euro-

pean Journal of Remote Sensing. 57(1), 2097450. DOI:

https://doi.org/10.1080/22797254.2022.2097450

[14] Solikhah, F., Ariawan, I., 2024. Pemetaan distribusi

luasan mangrove menggunakan metode maximum like-

lihood. Jurnal Penelitian Pendidikan Geografi. 9(1),

24–33. DOI: https://doi.org/10.36709/jppg.v9i1.131

[15] Koesdaryanto, N.S., Wijayanti, M., Simanjuntak,

M.P.D., et al., 2024. Mangrove cover change between

2003 and 2023 on the east coast of South Sumat-

era Province, Indonesia. Prosiding Seminar Nasional

Masyarakat Biodiversitas Indonesia. 10(1), 54–60.

DOI: https://doi.org/10.13057/psnmbi/m100107

[16] Li, C., Wang, J., Wang, L., et al., 2014. Comparison

of classification algorithms and training sample sizes

in urban land classification with landsat thematic map-

per imagery. Remote Sensing. 6(2), 964–983. DOI:

https://doi.org/10.3390/rs6020964

[17] Maturo, F., Verde, R., 2024. Combining unsuper-

vised and supervised learning techniques for en-

hancing the performance of functional data classi-

fiers. Computational Statistics. 39(1), 239–270. DOI:

https://doi.org/10.1007/s00180-022-01259-8

[18] Minmun, T., 2024. Personal interview with the author

[Personal communication].

[19] Tourism Authority of Thailand (TAT), n.d.. Banlaem

Homestay Mangrove Forest Conservation Tourism

Community. (in Thai). Available from: https://shortu

rl.asia/TBRI3 (cited 28 March 2025).

[20] Wanthongchai, P., Pongruktham, O., 2019. Mangrove

cover, biodiversity, and carbon storage of mangrove

forests in Thailand. In: Gul, B., Böer, B., Khan, M.A.,

et al. (eds.). Sabkha Ecosystems: Volume VI: Asia/Pa-

cific. Springer International Publishing: Cham, Ger-

many. pp. 459–467. DOI: https://doi.org/10.1007/

978-3-030-04417-6_28

[21] Sudtongkong, C., Webb, E.L., 2008. Outcomes of state-

vs. Community-based mangrove management in South-

ern Thailand. Ecology and Society. 13(2), 27. DOI:

https://doi.org/10.5751/ES-02531-130227

[22] Climate Center, Meteorological Department, 2023. Cli-

mate of Nakhon Si Thammarat Province. Available

from: https://www.tmd.go.th/climate/summaryyearly

(cited 18 February 2025).

[23] European Space Agency, 2025. Copernicus Browser.

Available from: https://www.esa.int/Applications/O

bserving_the_Earth/Copernicus/Sentinel-2/About_th

e_launch (cited 18 February 2025).

[24] United States Geological Survey, 2025. Earth Explorer.

Available from: https://earthexplorer.usgs.gov/ (cited

18 February 2025).

[25] Long, J.B., Giri, C., 2011. Mapping the Philippines’

mangrove forests using landsat imagery. Sensors. 11(3),

2972–2981. DOI: https://doi.org/10.3390/s110302972

[26] Nguyen, H.-H., McAlpine, C., Pullar, D., et al., 2013.

The relationship of spatial–temporal changes in fringe

mangrove extent and adjacent land-use: Case study of

Kien Giang coast, Vietnam. Ocean & Coastal Manage-

ment. 76, 12–22. DOI: https://doi.org/10.1016/j.ocec

oaman.2013.01.003

[27] Congedo, L., 2021. Semi-Automatic Classification

Plugin: A Python tool for the download and pro-

cessing of remote sensing images in QGIS. Jour-

nal of Open Source Software. 6(64), 3172. DOI:

https://doi.org/10.21105/joss.03172

[28] Congalton, R.G., Green, K., 1999. Assessing the Accu-

racy of Remotely SensedData: Principles and Practices.

CRC Press: Boca Raton, FL, USA.

[29] Stehman, S.V., 1997. Selecting and interpreting

measures of thematic classification accuracy. Re-

mote Sensing of Environment. 62(1), 77–89. DOI:

https://doi.org/10.1016/S0034-4257(97)00083-7

[30] Barsi, Á., Kugler, Zs., László, I., et al., 2018. Accu-

racy dimensions in remote sensing. The International

Archives of the Photogrammetry, Remote Sensing and

Spatial Information Sciences. XLII–3, 61–67. DOI:

https://doi.org/10.5194/isprs-archives-XLII-3-61-2018

[31] Lu, D., Mausel, P., Brondízio, E., et al., 2004.

Change detection techniques. International Jour-

nal of Remote Sensing. 25(12), 2365–2401. DOI:

https://doi.org/10.1080/0143116031000139863

[32] Harris, C.R., Millman, K.J., Van Der Walt,

S.J., et al., 2020. Array programming with

NumPy. Nature. 585(7825), 357–362. DOI:

https://doi.org/10.1038/s41586-020-2649-2

[33] Virtanen, P., Gommers, R., Oliphant, T.E., et al., 2020.

SciPy 1.0: Fundamental algorithms for scientific com-

puting in Python. Nature Methods. 17(3), 261–272.

DOI: https://doi.org/10.1038/s41592-019-0686-2

[34] McKinney, W., 2010. Data Structures for Statisti-

cal Computing in Python. Proceedings of The 9th

Python in Science Conference (SCIPY 2010); June

28–July 3, 2010; Austin, TX, USA. pp. 56–61. DOI:

467

https://doi.org/10.1051/bioconf/20248907003
https://doi.org/10.1051/bioconf/20248907003
https://shorturl.asia/TBRI3
https://shorturl.asia/TBRI3
https://doi.org/10.1007/978-3-030-04417-6_28
https://doi.org/10.1007/978-3-030-04417-6_28
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch
https://doi.org/10.1016/j.ocecoaman.2013.01.003
https://doi.org/10.1016/j.ocecoaman.2013.01.003


Journal of Environmental & Earth Sciences | Volume 07 | Issue 05 | May 2025

https://doi.org/10.25080/Majora-92bf1922-00a

[35] Hunter, J.D., 2007. Matplotlib: A 2D graphics envi-

ronment. Computing in Science & Engineering. 9(3),

90–95. DOI: https://doi.org/10.1109/MCSE.2007.55

[36] Upton, G., Cook, I., 1996. Understanding Statistics.

OUP: Oxford, UK.

[37] Pedregosa, F., Varoquaux, G., Gramfort, A., et al., 2011.

Scikit-learn: Machine learning in Python. Journal of

Machine Learning Research. 12(85), 2825–2830.

[38] McHugh, M.L., 2012. Interrater reliability: The

kappa statistic. Biochemia Medica. 276–282. DOI:

https://doi.org/10.11613/BM.2012.031

[39] Bunting, P., Rosenqvist, A., Hilarides, L., et al., 2022.

Global mangrove extent change 1996–2020: Global

mangrove watch version 3.0. Remote Sensing. 14(15),

3657. DOI: https://doi.org/10.3390/rs14153657

[40] The Ministry of Natural Resources and Environment,

2021. 20-year Master Plan of the Ministry of Natural

Resources and Environment (2018–2037). Available

from: http://164.115.46.29/media/details?media_grou

p_code=10&media_type_id=1&media_id=4785 (cited

18 February 2025).

[41] Barhoumi, Z., Atia, A., Hussain, A.A., et al.,

2022. Effects of high salinity on photosynthe-

sis characteristics, leaf histological components

and chloroplasts ultrastructure of Avicennia marina

seedlings. Acta Physiologiae Plantarum. 44(8), 85.

DOI: https://doi.org/10.1007/s11738-022-03418-2

[42] Nguyen, H.T., Stanton, D.E., Schmitz, N., et al.,

2015. Growth responses of the mangrove Avicen-

nia marina to salinity: Development and function

of shoot hydraulic systems require saline condi-

tions. Annals of Botany. 115(3), 397–407. DOI:

https://doi.org/10.1093/aob/mcu257

[43] Guo, Z., Wei, M.-Y., Zhong, Y.-H., et al., 2023. Leaf

sodium homeostasis controlled by salt gland is asso-

ciated with salt tolerance in mangrove plant Avicen-

nia marina. Tree Physiology. 43(5), 817–831. DOI:

https://doi.org/10.1093/treephys/tpad002

[44] Stocken, T.V.der, Vanschoenwinkel, B., Ryck, D.J.R.D.,

et al., 2015. Interaction between Water and wind as a

driver of passive dispersal in mangroves. PLOS ONE.

10(3), e0121593. DOI: https://doi.org/10.1371/journa

l.pone.0121593

[45] Ngernsaengsaruay, C., Chanton, P., Leksungnoen, N.,

et al., 2024. A taxonomic revision of Rhizophora L.

(Rhizophoraceae) in Thailand. PeerJ. 12, e17460. DOI:

https://doi.org/10.7717/peerj.17460

[46] Uddin, M.M., Abdul Aziz, A., Lovelock, C.E.,

2023. Importance of mangrove plantations

for climate change mitigation in Bangladesh.

Global Change Biology. 29(12), 3331–3346. DOI:

https://doi.org/10.1111/gcb.16674

[47] Damastuti, E., de Groot, R., Debrot, A.O., et

al., 2022. Effectiveness of community-based

mangrove management for biodiversity conser-

vation: A case study from Central Java, Indone-

sia. Trees, Forests and People. 7, 100202. DOI:

https://doi.org/10.1016/j.tfp.2022.100202

[48] European Space Agency, 2024. About the Launch.

Available from: https://www.esa.int/Applications/O

bserving_the_Earth/Copernicus/Sentinel-2/About_th

e_launch (cited 8 November 2024).

[49] Ming, S., Wang, S.-X., Zhou, Y., et al., 2018. Ef-

fects of training samples and classifiers on classifi-

cation of Landsat-8 imagery. Journal of the Indian

Society of Remote Sensing. 46(9), 1333–1340. DOI:

https://doi.org/10.1007/s12524-018-0777-z

[50] Sarjana, K., Hayati, L., Wahidaturrahmi, W., 2020.

Mathematical modelling and verbal abilities: How

they determine students’ ability to solve mathemati-

cal word problems? Beta: Jurnal Tadris Matematika.

13(2), 117–129. DOI: https://doi.org/10.20414/betajt

m.v13i2.390

[51] Alongi, D.M., 2015. The impact of climate change

on mangrove forests. Current Climate Change Re-

ports. 1(1), 30–39. DOI: https://doi.org/10.1007/

s40641-015-0002-x

[52] Alongi, D.M., 2018. Impact of global change on nutri-

ent dynamics in mangrove forests. Forests. 9(10), 596.

DOI: https://doi.org/10.3390/f9100596

[53] Choudhary, B., Dhar, V., Pawase, A.S., 2024. Blue

carbon and the role of mangroves in carbon se-

questration: Its mechanisms, estimation, human im-

pacts and conservation strategies for economic incen-

tives. Journal of Sea Research. 199(9), 102504. DOI:

https://doi.org/10.1016/j.seares.2024.102504

[54] Zhu, J.-J., Yan, B., 2022. Blue carbon sink function

and carbon neutrality potential of mangroves. Sci-

ence of The Total Environment. 822, 153438. DOI:

https://doi.org/10.1016/j.scitotenv.2022.153438

[55] Richards, D.R., Thompson, B.S., Wijedasa, L.,

2020. Quantifying net loss of global mangrove

carbon stocks from 20 years of land cover

change. Nature Communications. 11(1), 4260.

DOI: https://doi.org/10.1038/s41467-020-18118-z

[56] Wei, J., Jiang, T., Ménager, P., et al., 2025. COP29:

Progresses and challenges to global efforts on the

climate crisis. The Innovation. 6(1), 100748. DOI:

https://doi.org/10.1016/j.xinn.2024.100748

[57] Thailand Greenhouse Gas Management Organization

(Public Organization), 2025. Calculation for Carbon

Sequestration in Tree. Available from: https://ghgred

uction.tgo.or.th/th/tver-method/tver-tool/for-agr/item/

3451-calculation-for-carbon-sequestration.html (cited

27 March 2025).

468

http://164.115.46.29/media/details?media_group_code=10&media_type_id=1&media_id=4785
http://164.115.46.29/media/details?media_group_code=10&media_type_id=1&media_id=4785
https://doi.org/10.1371/journal.pone.0121593
https://doi.org/10.1371/journal.pone.0121593
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch
https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-2/About_the_launch
https://doi.org/10.20414/betajtm.v13i2.390
https://doi.org/10.20414/betajtm.v13i2.390
https://doi.org/10.1007/s40641-015-0002-x
https://doi.org/10.1007/s40641-015-0002-x
https://ghgreduction.tgo.or.th/th/tver-method/tver-tool/for-agr/item/3451-calculation-for-carbon-sequestration.html
https://ghgreduction.tgo.or.th/th/tver-method/tver-tool/for-agr/item/3451-calculation-for-carbon-sequestration.html
https://ghgreduction.tgo.or.th/th/tver-method/tver-tool/for-agr/item/3451-calculation-for-carbon-sequestration.html

	Introduction
	Materials and Methods
	Workflow
	Study Area
	Data Set
	Image Classification
	Accuracy Assessment
	Detection Change Analysis
	Model Generation and Validation 

	Results and Discussion
	Mangrove Cover Analysis 
	Predictive Model Analysis
	Impacts on the Banlaem Community

	Conclusions

