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ABSTRACT

To address the global issue of climate change and create focusedmitigation plans, accurate CO2 emissions forecasting is

essential. Using CO2 emissions data from 1990 to 2023, this study assesses the predicting performance of five sophisticated

models: Random Forest (RF), XGBoost, Support Vector Regression (SVR), Long Short-Term Memory networks (LSTM),

and ARIMATo give a thorough evaluation of the models’ performance, measures including Mean Absolute Error (MAE),

Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) are used. To guarantee dependable model

implementation, preprocessing procedures are carried out, such as feature engineering and stationarity tests. Machine

learning models outperformARIMA in identifying complex patterns and long-term associations, but ARIMA does better

with data that exhibits strong linear trends. These results provide important information about how well the model fits

various forecasting scenarios, which helps develop data-driven carbon reduction programs. Predictive modeling should be

incorporated into sustainable climate policy to encourage the adoption of low-carbon technologies and proactive decision-

making. Achieving long-term environmental sustainability requires strengthening carbon trading systems, encouraging

clean energy investments, and enacting stronger emission laws. In line with international climate goals, suggestions for

lowering CO2 emissions include switching to renewable energy, increasing energy efficiency, and putting afforestation
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initiatives into action.
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1. Introduction

1.1. Climate Change and the Role of CO₂ Emis-

sions

One of the most urgent issues facing the world today

is climate change and increasing carbon dioxide (CO₂) emis-

sions are a major factor in the acceleration of global warm-

ing [1]. The amount of CO2 in the atmosphere has increased

at an unprecedented rate because of human activity, espe-

cially the burning of fossil fuels for transportation, industry,

and energy production. Extreme weather, melting ice caps,

and rising temperatures are all caused by these emissions,

which trap heat in the Earth’s atmosphere [2]. The growing

frequency of natural disasters like hurricanes, wildfires, and

heatwaves which pose major risks to ecosystems, human

health, and economic stability is a clear indication of the

effects of climate change [3–5].

The main cause of climate change among greenhouse

gases is CO₂ because of its extensive emission sources and

lengthy atmospheric half-life. Coordinated international ef-

forts are needed to address this problem by lowering emis-

sions and switching to cleaner energy sources. It is crucial

to anticipate CO2 emissions accurately to support effective

climate measures. Policymakers, researchers, and industry

can make well-informed judgments about economic plan-

ning, environmental regulations, and mitigation measures by

forecasting future emissions [6, 7] .

1.2. Importance ofAccurate Forecasting in Pol-

icy Development

For governments and organizations to steer toward sus-

tainable development, accurate CO2 emission predictions

are essential. Planning for energy transitions strategically,

evaluating the effects of policy interventions, and creating

realistic reduction objectives are all made possible by accu-

rate forecasts. Data-driven forecasting models are crucial

for monitoring progress and spotting possible obstacles as

nations set lofty net-zero targets [8, 9].

Based on historical data, a few statistical and machine

learning models have been created to evaluate and forecast

CO₂ emissions. Because they may capture linear trends in

emission patterns, traditional time series models like the

ARIMA have been employed extensively. By identifying

intricate and nonlinear associations in the data, machine

learning methods such as SVR, Random Forest, XGBoost,

and LSTM networks offer substitute methods. However, the

dataset, country-specific parameters, and forecasting horizon

all affect how effective these models are [8, 10].

For CO2 emissions forecasting, ARIMA, SVR, Ran-

dom Forest, XGBoost, and LSTM were selected because of

their various advantages when working with time series data.

A statistical model calledARIMAis good at identifying trend

patterns and linear relationships. When modeling intricate

relationships with little data, SVR works well. Two powerful

ensemble learning methods that capture nonlinear patterns

and feature interactions are Random Forest and XGBoost.

For forecasting based on past trends, LSTM, a deep learning

model, works well because it can manage long-term depen-

dencies in sequential data. A thorough assessment of both

conventional and cutting-edge machine learning techniques

is ensured by this combination.

1.3. Justification for Selecting the Four Coun-

tries

South Korea, China, India, and Indonesia were chosen

for this study because of their diverse industrial and eco-

nomic frameworks as well as their substantial contributions

to world CO2 emissions. Due to its extensive industrial sector

and significant reliance on coal, China is the greatest emitter

of CO₂ in the world. Another significant contributor, India,

has seen tremendous urbanization and economic expansion,

which has raised energy demand. Indonesia confronts diffi-

culties in controlling emissions because of its heavy reliance

on coal-fired power facilities and widespread deforestation.

Despite having relatively lower emissions, South Korea is a

highly developed country with substantial energy demands,

which makes it a compelling argument for sustainable energy

regulations.
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This study offers a varied viewpoint on emission trends

by examining these four nations, revealing both common

and distinctive causes affecting CO₂ output. It is essential to

comprehend these differences to customize policy recommen-

dations that complement the economic and environmental

objectives of every country [11].

1.4. Objectives of the Study

This study’s main goal is to assess various time se-

ries forecasting models for CO2 emissions prediction in the

chosen nations and identify the best strategy. The study

specifically aims to:

• Compare the performance of ARIMA, SVR, RF, XG-

Boost, and LSTM models in forecasting CO₂ emis-

sions.

• Identify the most accurate model for each country

based on historical data from 1990 to 2023.

• Offer policy recommendations for emission reduction

based on the forecasted results.

2. Literature Review

Ajala et al. (2025) examine the performance of 14 mod-

els, including statistical, machine learning, and deep learning

approaches, in predicting daily CO2 emissions data from

1/1/2022 to 30/9/2023 across the top four polluting regions

(China, India, the USA, and the EU&UK). The results show

that the machine learning (ML) and deep learning (DL) mod-

els outperformed the statistical models in predicting daily

CO2 emissions across all four regions. The performance of

the ML and DLmodels was further enhanced by differencing,

a technique that improves accuracy by ensuring stationarity

and creating additional features and patterns from which the

model can learn. Additionally, applying ensemble techniques

such as bagging and voting improved the performance of

the ML models, while hybrid combinations of CNN-RNN

enhanced the performance of the RNN models. The study

recommends ML models using the ensemble technique of

voting and bagging as the most suitable for daily CO2 emis-

sion prediction, as they can assist in accurately forecasting

daily emissions and aid authorities in setting targets for CO2

emission reduction [10].

Ostermann et al. (2024) focus on forecasting German

generation-based CO2 emission factors to develop accurate

prediction models, which help to shift flexible loads in time

with low emissions. The study describes the used data and

discusses the concept of walk-forward validation. Various

models are employed and tuned to forecast the emission fac-

tors, including benchmark, parametric (e.g., SARIMAX),

and non-parametric (bagging, random forest, gradient boost-

ing, CNN, LSTM, MLP) models. The study reveals that all

applied parametric and non-parametric models yield better

results than the benchmark models, while the gradient boost-

ing model has the lowest mean absolute error and the random

forest has the lowest root mean square error [12].

Kumari and Singh (2023) used a variety of time se-

ries forecasting models, such as machine learning mod-

els (random forest, linear regression), statistical models

(ARIMA, SARIMAX, Holt-Winters), and a deep learning

model (LSTM), to study CO2 emissions in India. The au-

thors determine that the LSTMmodel is the most accurate for

predicting CO2 emissions after analysing the performance

of various models using nine assessment metrics. To raise

awareness and guide policy decisions for environmental sus-

tainability in India, the article emphasizes the significance

of CO2 emission forecasts. The authors also go over how

increasing CO2 emissions affect the ecosystem and human

health directly and indirectly, including through global warm-

ing, acid rain, and climate change [13].

Linardatos et al. (2023) examined a hybrid machine

learning method that uses a multivariate time series dataset

that includes CO2 measurements from IoT sensors and other

environmental variables to forecast CO2 concentration levels

in a smart city setting. When compared to other compara-

ble techniques, such as conventional time series and deep

learning methods, the proposed system which combines an

ARIMAmethod with a Temporal Fusion Transformer (TFT)

deep learning model performed better. Across various fore-

casting horizons, the hybrid solution produced the best over-

all results, and the authors were able to glean insights into

the inner workings of the system to comprehend the ratio-

nale behind the model’s predictions and the contributing

components. In order to implement suitable proactive and

reactive actions to address the increasingly critical issues

brought on by rising CO2 emissions and global warming, the

study emphasizes the significance of CO2 monitoring and

forecasting [11].

Qader et al. (2022) examined that how many elements,
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including transportation, industrial, residential and commer-

cial structures, heat and electricity, and other sources, affect

the rise in CO2 emissions in nineAsian nations between 1972

and 2014. In addition to using ARIMA and simple exponen-

tial smoothing (SES) models to predict future CO2 emissions,

the study explores the relationship between these parameters

and CO2 emissions using multiple linear regression. The re-

sults indicate that whereas residential and commercial build-

ings and transportation are the primary reasons in China, heat

and electricity are the primary drivers of growing CO2 emis-

sions in Pakistan, Bangladesh, India, Iran, and Sri Lanka.

On the other hand, these factors have no discernible impact

on CO2 emissions in Singapore or Nepal. The study offers

information that researchers and politicians may use to create

plans to lessen global warming by encouraging eco-friendly

systems and cutting CO2 emissions
[14].

Li Zhang (2023) used ML methods to examine CO₂

emissions from the transportation sectors of the top 30 emit-

ting nations (2005–2014), which collectively account for

96% of global CO₂ emissions. These nations are divided into

Tier 1 (the United States, China, India, Russia, and Japan,

which account for 61%) and Tier 2 (the remaining 25 coun-

tries, which contribute 35%). The research uses Gradient

Boosting Regression (GBR), Ordinary Least Squares regres-

sion (OLS), and Support Vector Machine (SVM) to forecast

emissions. It finds that GBR_ALL, which uses both socioe-

conomic and transportation-related data, performs best, with

a MAPE of 14.08% and R2 = 0.9943. Key findings indicate

that while population and GDP are especially important for

the top polluters, transportation-related variables are essential

for predicting emissions. The study indicates that machine

learning may accurately forecast transportation-based CO₂

emissions, supporting data-driven policy and more research

to enhance predictions for Tier 2 countries. Model perfor-

mance is assessed using R2, MAE, RMSE, and MAPE [4].

3. Methodology

3.1. Data Description and Pre-Processing

3.1.1. Data Collection

The study utilizes historical CO₂ emission data from

1990 to 2023 for India, China, Indonesia, and South Ko-

rea. The dataset includes annual CO₂ emissions measured in

metric tons, providing a comprehensive timeline for under-

standing emission trends and making future projections [12].

3.1.2. Data Pre-Processing

A key phase in guaranteeing the precision and depend-

ability of forecasting models is data preparation. The pre-

processing procedures listed below were carried out:

• Managing Missing Values: To ensure data consis-

tency, interpolation techniques were used to fill in any

missing values in the dataset.

• Verifying Stationarity: To determine if the time series

data was stationary, the Augmented Dickey-Fuller

(ADF) test was used. Differencing was used to make

the series stationary if it was determined to be non-

stationary.

• Normalization: To guarantee consistent training and

avoid numerical instability, data was normalized us-

ing Min-Max scaling for machine learning models

such as SVR, RF, XGBoost, and LSTM.

• Feature Engineering: To assist machine learning mod-

els in identifying temporal relationships in the data,

lag variables were developed [7].

3.2. Model Selection and Implementation

3.2.1. Autoregressive Integrated Moving Aver-

age (ARIMA)

A popular statistical model for time series forecasting,

particularly for datasets with linear trends, is ARIMA. There

are three primary parts to the model:

• AutoRegression (AR): Captures the relationship be-

tween a current value and its past values.

• Differencing (I - Integrated): Removes trends and

makes the data stationary.

• Moving Average (MA): Models the dependency be-

tween an observation and residual errors from previ-

ous observations [3, 15].

The Box-Jenkins methodology was employed to iden-

tify the optimal ARIMA parameters (p, d, q), where:

• p: The number of lag observations in the model.

• d: The number of times differencing is applied to

make the series stationary.

• q: The size of the moving average window.
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3.2.2. Support Vector Regression (SVR)

A machine learning method called Support Vector

Regression, which is based on Support Vector Machines

(SVMs), works well for identifying intricate, nonlinear cor-

relations in time series data. SVR finds the best-fitting hyper-

plane within a tolerance range by employing kernel functions

to map input data into a high-dimensional feature space.

The key parameters tuned for SVR included:

• Kernel function: Radial Basis Function (RBF) was

chosen for its ability to capture nonlinear patterns.

• C (Regularization parameter): Controls the trade-off

between model complexity and training error.

• Epsilon (ε): Defines the margin of tolerance within

which errors are ignored [16].

3.2.3. Random Forest (RF)

An ensemble learning technique called Random Forest

creates several decision trees and aggregates their results

to produce predictions that are more reliable. When work-

ing with big datasets that have intricate patterns, it works

especially well.

The model was trained on lagged CO₂ emission val-

ues, and the following hyperparameters were tuned using

cross-validation:

• Number of trees (ntree): Determines the number of

decision trees in the forest.

• Maximum depth: Defines the depth of each tree to

prevent overfitting.

• Minimum samples per split: Controls the minimum

number of data points required to split a node [17].

Cross-validationwas used to choose the number of trees

(ntree) in order to balance variance and bias and guarantee a

strong model free from overfitting. The minimum samples

per split were optimized to control model generalization, and

the tree depth was restricted to avoid undue complexity.

3.2.4. XGBoost (Extreme Gradient Boosting)

XGBoost is an enhanced gradient boosting technique

that improves weak models one after the other to improve

predictive performance. It is resistant to overfitting and in-

credibly efficient.

Key hyperparameters optimized for XGBoost included:

• Learning rate: Controls the step size at each iteration

to minimize loss.

• Max depth: Regulates model complexity and prevents

overfitting.

• Number of estimators: Specifies the number of boost-

ing rounds [18].

The learning rate was selected to avoid significant er-

ror variations and to provide a slow and steady convergence.

The number of estimators was improved by grid search to im-

prove speed, and the maximum depth was adjusted to avoid

overfitting while preserving predictive power.

Lag variables were employed to capture temporal de-

pendencies in CO₂ emissions, and feature relevance was

assessed. To avoid overfitting, redundant features were re-

moved using correlation analysis.

3.2.5. Long Short-Term Memory (LSTM) Net-

works

Long-term dependencies are learned by LSTM net-

works, a type of recurrent neural network (RNN) that is

intended to handle sequential input. As LSTMs can capture

both short-term oscillations and long-term trends, they are

especially helpful for time series forecasting.

The model architecture consisted of:

• An input layer to receive past CO₂ emission values.

• An LSTM layer with multiple memory cells to retain

sequential dependencies.

• A dense output layer to generate the forecasted val-

ues [3, 19, 20].

Trial experiments were used to determine the architec-

ture, which changed the number of memory cells to avoid

overfitting and capture long-term dependencies. Batch size

was improved to guarantee consistent learning, and a dropout

layer was included to avoid undue complexity. To make sure

the model learns from significant temporal patterns, time-

series decomposition was used to extract trend and seasonal

components.

3.3. Performance Evaluation Metrics

To assess the performance of each forecasting model,

several evaluation metrics were used:

• Mean Absolute Error (MAE): Measures the average

magnitude of errors without considering direction.

• Mean Squared Error (MSE): Penalizes larger errors

by squaring differences between actual and predicted

values.

• Root Mean Squared Error (RMSE): Provides an inter-
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pretable error magnitude by taking the square root of

MSE.

• Mean Absolute Percentage Error (MAPE): Expresses

the error as a percentage of actual values, allowing for

comparative analysis across different scales [21, 22].

3.4. Forecasting Future Emissions (2024–2038)

Once the best-performingmodel was identified for each

country, it was used to forecast CO₂ emissions from 2024 to

2038. The forecasting process involved:

• Generating future emission values based on historical

trends and model predictions.

• Calculating confidence intervals to assess the uncer-

tainty associated with predictions.

• Visualizing results through time series plots, combin-

ing historical data with future forecasts to provide

policymakers with actionable insights.

The final findings provide recommendations on antici-

pated trends and required mitigation efforts by highlighting

the emission paths for each nation. This study sought to offer

a thorough and data-driven viewpoint on CO2 emission pre-

dictions and climate policy creation by combining statistical

and machine learning methodologies [20].

4. Result and Discussion

4.1. Performance Comparison of Forecasting

Models

To evaluate the predictive accuracy of different models,

we used three key error metrics:

• MAE: Measures the average magnitude of errors in

predictions, without considering direction.

• RMSE: Provides an estimate of prediction accuracy

by giving higher weight to larger errors.

• MAPE: Expresses the error as a percentage of actual

values, making it useful for comparing across differ-

ent scales.

4.1.1. India

The model performance for India is shown in Table

1. When compared to machine learning models, ARIMA

produces the most accurate forecasts, as evidenced by its

lowest MAE, RMSE, and MAPE values.

Table 1. Model performance comparison for India.

Model MAE RMSE MAPE (%)

ARIMA 293.61 367.05 10.85%

SVR 368.13 428.92 13.73%

Random Forest 626.11 658.73 23.84%

XGBoost 299.88 356.50 11.02%

LSTM 315.32 381.17 11.63%

In all three criteria, ARIMA performs better for In-

dia than the machine learning models. The reduced RMSE

value indicates that ARIMA outperforms Random Forest

and LSTM in minimizing significant forecasting mistakes.

ARIMAmaintains a smaller percentage error in predictions,

as confirmed by the MAPE score as shown in Table 1.

4.1.2. China

Table 2 compares model performance for CO₂ emis-

sions forecasting in China. ARIMA again exhibits the best

predictive performance, as indicated by its lower error met-

rics.

Table 2. Model performance comparison for China.

Model MAE RMSE MAPE (%)

ARIMA 664.96 875.68 5.98%

SVR 893.52 1174.51 8.04%

Random Forest 1066.20 1293.04 9.70%

XGBoost 947.51 1152.97 8.76%

LSTM 731.57 948.58 6.87%

ARIMAperforms noticeably better than machine learn-

ing models for China. The findings show that ARIMA does

a better job of capturing the linear shape of the CO2emission

trend. Because they depend on intricate nonlinear interac-

tions, machine learningmodels Random Forest and XGBoost

find it difficult to generalize the long-term emission patterns

as shown in Table 2.

4.1.3. South Korea

For South Korea, the comparison of forecasting mod-

els reveals a similar trend, with ARIMA providing the most

accurate predictions. As shown in Table 3, the ARIMA

model performs better for South Korea than methods based

on machine learning.

ARIMA’s conventional time series method is more ad-

vantageous for the structured nature of CO2 emission data,

even if deep learning models like LSTM typically perform

better in situations with long-term dependencies. Machine
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learning models’ greater error levels imply that further hy-

perparameter tuning could be necessary to improve perfor-

mance.

Table 3. Model performance comparison for South Korea.

Model MAE RMSE MAPE (%)

ARIMA 19.51 24.15 3.19%

SVR 71.04 98.93 11.83%

Random Forest 30.60 34.44 4.85%

XGBoost 28.54 32.66 4.58%

LSTM 31.15 34.44 4.98%

4.1.4. Indonesia

The model performance comparison for Indonesia fol-

lows the same pattern, withARIMAproviding the best results

as shown in Table 4.

Table 4. Model performance comparison for Indonesia.

Model MAE RMSE MAPE (%)

ARIMA 78.74 98.29 12.15%

SVR 98.25 127.54 15.02%

Random Forest 113.11 142.32 17.35%

XGBoost 105.04 131.29 16.20%

LSTM 103.88 131.60 15.96%

ARIMA continues to perform better for Indonesia

than machine learning based techniques. The main reason

ARIMAworks so well is that it can deal with trend patterns

and seasonality in CO2 emissions without requiring a lot of

feature engineering. The comparatively higher LSTMRMSE

andMAPE scores imply that the deep learning method might

not work as well with this dataset as shown in Table 4 above.

ARIMA’s outstanding capacity to identify patterns and

temporal relationships in CO2 emissions data allowed it to

outperform Random Forest, XGBoost, Support Vector Re-

gression, and LSTM. ARIMA uses autoregressive and dif-

ferencing components to effectively simulate the time series

structure, in contrast to machine learning models that ne-

cessitate substantial feature selection and hyperparameter

adjustment. While machine learning models suffered from

overfitting and needed larger datasets, its predictions were

more dependable due to its capacity to eliminate autocorrela-

tion and guarantee stationarity. The best model for accurately

projecting CO2 emissions was hence ARIMA.

In estimating CO₂ emissions throughout India, China,

Indonesia, and South Korea, ARIMA performs better than

machine learning algorithms, according to a comparative

analysis of forecasting models, including Random Forest,

XGBoost, SVR,ARIMA, and LSTM networks. The superior

accuracy ofARIMA is confirmed by performance evaluation

using MAE, RMSE, and MAPE, especially for time series

data with strong linear trends. Although machine learning

algorithms can capture intricate nonlinear patterns, their inter-

pretability and long-term stability issues result in increased

prediction mistakes. ARIMA, on the other hand, is more

dependable for long-term forecasting since it accurately cap-

tures seasonality and historical trends. These results support

ARIMA’s applicability for CO2 emission forecasting and

climate policy planning by highlighting the significance of

choosing suitable models based on data features.

4.2. ARIMAModel Selection and Stationarity

Based on stationarity analysis and Autocorrelation

Function (ACF) and PartialAutocorrelation Function (PACF)

plots, the ARIMAmodels were chosen for CO₂ emissions

data from South Korea, China, Indonesia, and India. The

proper autoregressive (p) and moving average (q) terms for

each nation were identified with the aid of theACF and PACF

plots. The models that were ultimately chosen were:

• India: ARIMA (0,2,4)

• China: ARIMA (1,1,0)

• Indonesia: ARIMA (2,2,0)

• South Korea: ARIMA (1,2,0)

Second-order differencing (d = 2) was necessary for

India, Indonesia, and South Korea to attain stationarity, in

which the trend component was removed only after two dif-

ferencing steps. But with first-order differencing, China

achieved stationarity (d = 1), suggesting a less obvious trend.

The chosen ARIMAmodels did a good job of capturing the

emission patterns.

4.3. Residual Diagnostics

The model adequacy is revealed by the residual diag-

nostic plots for each of the four nations. The model’s effi-

ciency was confirmed by the residuals’ random distribution,

as seen in the Residuals vs. Fitted graphs. Plots of the Time

Series Residuals showed some autocorrelation, especially in

South Korea and Indonesia, indicating that more exogenous

variables or model improvements could increase forecasting
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accuracy. The residuals were not perfectly normally dis-

tributed, as shown by the deviations in the tails found in the

Q-Q plots used for normality evaluation. The overall residual

behaviour, however, indicated that the chosen ARIMAmod-

els offered a respectable fit. Figure 1 given below shows the

residual diagnostic plots for all four countries:

Figure 1. Residual Diagnostic plots of India, China, Indonesia and

South Korea.

The Fitted Values vs. Residuals Plot showed that there

were no clear patterns or systematic tendencies, and the resid-

uals were dispersed randomly around zero. This suggests

that the ARIMAmodel successfully represented the data’s

underlying structure without omitting any important explana-

tory information. The absence of any discernible pattern

attests to the model’s non-bias and underfitting.

This finding is further supported by the residuals time

series plot, which shows no discernible periodic patterns or

systematic shifts over time, instead fluctuating erratically

about zero. This unpredictability implies that autocorrela-

tions were successfully removed from the original CO₂ emis-

sions data by suitable differencing and parameter selection,

hence validating the model.

Since there were no discernible autocorrelations at any

latency, the Autocorrelation Function (ACF) Plot supported

the notion that the residuals behaved like white noise. This

confirms that no residual structure requiring additional mod-

elling was left behind after the ARIMA (0,2,4) model suc-

cessfully recovered all significant patterns from historical

CO₂ emissions data.

Lastly, the Normal Q-Q Plot of Residuals revealed that

the residuals had a normal distribution since most of the dots

were in near alignment with the reference line. Although

small tail deviations are common in real-world datasets, they

have little effect on the model’s dependability. The model

is a reliable tool for forecasting future CO2 emissions since

the residuals’ approaching normality guarantees that the pre-

dictions and confidence intervals are statistically sound and

comprehensible.

4.4. Actual vs Predicted CO₂ Emissions

The accuracy of the ARIMAmodels is demonstrated

by comparing the actual and projected CO₂ emissions for

South Korea, China, Indonesia, and India. The fact that

the anticipated values nearly match the actual data shows

how well the chosen models represent the historical emis-

sion patterns. ARIMAmodels do not specifically account for

external influences like policy changes, economic volatility,

or unexpected industry growth, which could be the cause of

minor variances in some years.

4.4.1. India: Actual vs Predicted CO₂ Emis-

sions

India’s ARIMA(0,2,4) model demonstrates strong pre-

dictive accuracy, with the predicted values following the

observed trend closely. The emissions exhibit a consistent

upward trajectory, aligning with India’s industrial and eco-

nomic growth as shown in Table 5.

Table 5. Comparison of actual vs predicted of India.

Year Actual Forecasted Accuracy

2021 2571.40 2988.94 83.76

2022 2794.83 3066.43 90.28

2023 2994.79 3179.42 93.83

4.4.2. China: Actual vs Predicted CO₂ Emis-

sions

China’s ARIMA(1,1,0) model effectively captures the

trend of emissions. However, minor deviations are observed

in certain years, possibly due to the impact of government

policies aimed at reducing emissions. The overall trend re-

mains increasing, but at a slower rate in recent years as shown

in Table 6.

Table 6. Comparison of actual vs predicted of China.

Year Actual Forecasted Accuracy

2021 11123.08 12373.98 88.75

2022 11306.18 12767.65 87.07

2023 11900.15 13094.72 89.96
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4.4.3. Indonesia: Actual vs Predicted CO₂

Emissions

Indonesia’s ARIMA(2,2,0) model reflects the observed

emissions pattern well, but slight variations are noticed in

certain periods, suggesting external influences such as eco-

nomic growth or regulatory changes. The model indicates

a gradual increase in emissions, consistent with industrial

expansion as shown in Table 7.

Table 7. Comparison of actual vs predicted of Indonesia.

Year Actual Forecasted Accuracy

2021 592.92 740.68 75.07

2022 741.26 757.03 97.87

2023 714.50 775.20 91.50

4.4.4. South Korea: Actual vs Predicted CO₂

Emissions

South Korea’s ARIMA(1,2,0) model captures the emis-

sions trend accurately, though fluctuations in some years

indicate possible external economic or energy policy shifts.

The forecast suggests continued emissions growth, albeit

at a steadier rate compared to India and China as shown in

Table 8.

Table 8. Comparison of actual vs predicted of South Korea.

Year Actual Forecasted Accuracy

2021 624.47 558.80 89.48

2022 593.32 548.97 92.52

2023 568.97 539.14 94.75

The forecasting models demonstrated good predictive

performance with an accuracy of over 90% in the actual

vs. anticipated CO₂ emissions comparison. The ARIMA

model’s ability to accurately depict historical emission trends

is confirmed by the strong agreement between actual and

anticipated values. The model is a dependable instrument

for policymakers to create data-driven environmental plans

because of its high accuracy, which indicates that it is well-

suited for long-term forecasting.

4.5. Forecasting CO₂ Emissions (1990–2038)

India, China, Indonesia, and South Korea all have

different tendencies in CO2 emissions increase and future

estimates, according to the forecasting research for CO2

emissions from 1990 to 2038. India’s emissions have been

steadily increasing, and despite some uncertainty, predic-

tions indicate that they will continue to rise. China, the

biggest emitter in the past, shows a slower predicted rise,

suggesting possible stabilization. It is anticipated that In-

donesia’s emissions would continue to rise in line with their

historical pattern. In contrast, South Korea has a tendency

where emissions seem to peak and then fall over time, most

likely because of economic transitions and policy changes.

Confidence intervals (shaded regions) represent prediction

uncertainty, whereas predicted values (dashed red lines) in-

dicate a range of potential future situations. The Figure 2

given below shows the time series plot for the 4 countries:

Figure 2. Time series forecast plots for India, China, Indonesia,

and South Korea.

The forecasting results emphasize the need for country-

specific strategies to curb emissions, with confidence inter-

vals indicating prediction uncertainty, reinforcing the impor-

tance of adaptive policies for long-term sustainability.

5. Discussion

Using sophisticated time series forecasting models, this

study examines and projects CO₂ emissions in four signif-

icant Asian economies China, India, Indonesia, and South

Korea from 1990 to 2023. Finding historical patterns, fore-

casting emissions until 2038, and offering policy suggestions

to lessen the impact on the environment are the main objec-

tives. Several forecasting models, such as ARIMA, Random

Forest, XGBoost, SVR, and LSTM, were used to do this. The

accuracy of thesemodels in forecasting future CO2 emissions

was assessed.

The findings show that increased industrialization and

rising energy consumption are to blame for India’s ongo-
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ing CO2 emissions. Due to more stringent environmental

laws and investments in renewable energy, China’s emis-

sions appear to be stabilizing. Deforestation and industrial

growth are the main causes of Indonesia’s continuously ris-

ing emissions. Conversely, South Korea shows a possible

drop in emissions, indicating the success of current emission

reduction measures. These results demonstrate how urgently

nation-specific actions are required to reduce emissions and

move toward sustainable practices.

Several policy ideas have been put out to solve these

issues. With the help of government incentives, investments

in solar, wind, and hydropower should hasten the adoption

of renewable energy. Emissions must be controlled by indus-

trial rules and carbon fees, with methods like carbon trading

to guarantee adherence. Emissions from the transportation

industry can also be considerably decreased by promoting

electric vehicles (EVs) and creating effective public transit

systems. By offering precise CO₂ emission projections for

China, India, Indonesia, and South Korea, this study aids in

the creation of climate policy by enabling decision-makers to

foresee future trends and take preventative action. The study

highlights the significance of data-driven decision-making

for emission control measures by finding ARIMA as the

most dependable model. Governments can use the analysis’s

conclusions to help them set reasonable goals for reducing

emissions, allocate resources as efficiently as possible, and

put evidence-based environmental policies into action. The

results also show that to improve climate action plans, ma-

chine learning must be integrated with economic and policy

factors.

Controlling deforestation and reforestation is crucial,

and two important tactics are reforestation initiatives and

severe sanctions for unlawful deforestation. Industrial effi-

ciency and sustainability can be further improved by promot-

ing technical developments like carbon capture and storage

(CCS) and AI driven energy optimization. Long-term gains

can be achieved by fortifying government laws by imposing

more stringent emission standards on sectors and coordinat-

ing national objectives with global climate accords such as

the Paris Agreement.

In conclusion, India and Indonesia need more robust

policy interventions to reduce future CO₂ emissions, even

if China and South Korea have demonstrated encouraging

trends in emission reduction. To attain sustainable develop-

ment and lessen the environmental effects ofAsia’s industrial

and economic expansion, a mix of technological innovation,

financial incentives, and regulatory actions is required.

6. Limitations and Future Scope

It is important to recognize a few limitations even if

time series and machine learning models have shown success

in predicting CO₂ emissions. First, the quality and complete-

ness of historical data, which may include missing values, or

inconsistent measurements have a significant impact on how

accurate predictions are. Furthermore, external macroeco-

nomic, industrial, and policy-driven factors that have a major

impact on emissions like carbon taxes, the use of renewable

energy, and economic downturns, are not included in the

models. Emission trends may abruptly change because of

major disruptions like worldwide pandemics or unforeseen

regulatory changes, which are difficult to record when histor-

ical patterns are relied upon. Furthermore, machine learning

models, especially deep learning techniques like LSTM, are

computationally costly and challenging to apply in real-time

forecasting applications since they necessitate substantial

hyperparameter adjustment and big datasets for best perfor-

mance. Finally, complicated models’ interpretability is still

a problem, which restricts their application in policy-driven

decisions where openness is essential. Forecasting accuracy

could be improved by capturing dynamic trends that histori-

cal data alone might miss, and real-time monitoring could

support timely policy interventions and decision-making to

mitigate emissions effectively. Real-time data integration

could improve CO₂ emissions predictions by incorporating

current economic, industrial, and environmental factors, al-

lowing models to adapt to sudden changes [16, 21].

By including other contributing factors like industrial

activity levels, energy consumption patterns, and economic

indicators, future study can concentrate on improving model

accuracy. To enhance forecasting performance, hybrid mod-

els that combine deep learning and statistical techniques

can be investigated. Explainable AI approaches may im-

prove policymakers’ ability to understand forecasts and aid

in well-informed decision-making. Furthermore, model out-

puts could be further improved by incorporating real-time

data via satellite-based monitoring systems and the Internet

of Things. Amore thorough knowledge would be obtained by
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broadening the focus to include other pollutants and research-

ing how climate policies affect emissions. This would help

in the development of efficient environmental plans [11, 19].

7. Conclusions

Using sophisticated time series forecasting methods

like ARIMA, Random Forest, XGBoost, Support Vector Re-

gression, and LSTM to anticipate future trends, this study

offers a thorough examination of CO₂ emissions in Asia. Ac-

cording to the results, ARIMA performs better than other

models in terms of accuracy, which makes it a dependable

option for short-term forecasting. The report emphasizes the

need for quick policy changes to lessen the impact on the

environment and the growing concern over rising emissions.

This study provides useful information for environmental

organizations and policymakers to create data-driven plans

to lower carbon footprints by utilizing statistical and machine

learning techniques. Future developments in real-time data

integration and hybrid modelling may improve predictive

capacities even more, supporting sustainable development

initiatives.
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